
Published in Transactions on Machine Learning Research (06/2024)

Part I

Appendix

Table of Contents
A Training hyperparameters 22

B Sparse training algorithm hyperparameters 23

C Extended undertraining analysis 23
C.1 The validation entropy metric . 24
C.2 CelebA results . 24

D MobileNet results 25

E Impact of extended training on transfer performance 26

F Evaluation on ImageNet-C 27

G Comparison with the small dense model 27

H AC/DC dense fraction ablation 27

I AC/DC phase duration ablation 29

J Mask analysis 29

K Structured sparsity in unstructured sparse models 30

L Impact of weight decay on sparsity and model performance 30

M Loss landscape analysis 31

N Different sparsity patterns. 32

O Transfer learning datasets for language models 32

P Additional plots 33

A Training hyperparameters

We adopt and scale the training recipes proposed in the FFCV library (Leclerc et al., 2022). All runs use a
linear decaying learning rate with a peak value ηmax = 0.5 at 2nd epoch that is gradually decreased to 0 at
the end of the training. We train the models with batch size of 1024.

We use progressive resizing with training on random resized crops (RRC) of size 160 × 160 for the first 80% of
training and the remaining 20% of training with crops of size 192 × 192. We run classifier on 224 × 224 center
crops for the image resized to 256 px on validation following the standard ImageNet evaluation protocol.
Differently from the FFCV recipes, we do not use test-time augmentation with averaging of the prediction
on the original image and its flipped version since it requires 2x more inference FLOPs. For MobileNet
experiments we adopted smaller value of weight decay 3e-5 following the (Kusupati et al., 2020) work and
learning rate η = 1.024.

22

Published in Transactions on Machine Learning Research (06/2024)

Table A.1: Augmentation and regularization procedure used in the work.

Method Value
Weight decay 1e-4

Label smoothing ε 0.1
Dropout %

H.flip !

RRC !

Blurpool !

Progressive resizing !

Test crop ratio 0.875

B Sparse training algorithm hyperparameters

All sparse training methods use the same optimizer and learning rate scheduler hyperparameters and differ only
in the specifics of weight pruning / regrowth procedure. In our work we prune only weights of convolutional
(we do not prune biases and batch norm parameters) and keep the first convolution as well as the classification
head (the last linear layer outputting the logits for classes) dense. This setup is common in the literature.

AC/DC In our AC/DC training setup we train the model without sparsity for the first 10% of the training
and then alternate between sparse and dense training each 5 steps following the original paper (Peste et al.,
2021). We run the last compression step and last decompression step for 10 and 15 epochs respectively,
again following the prescription from the paper. We have ablated the duration of the compression and
decompression phases and 5 epochs appeared to yield the best performance.

RigL In the original paper (Evci et al., 2020) authors train the models with fixed target sparsity and
periodically update the fraction of connections in each pruned layer l following the cosine decay rule:

α

2

(
1 + cos

(
πt

T

))
(1 − sl) (3)

Above sl is the sparsity of a given layer l and α is the initial fraction of updated connections. The choice
of update frequency ∆T has a strong impact on the method performance and in the original work authors
obtained the best performance with ∆T ≃ 100 − 300 steps, which corresponds roughly to 0.4-1.2 epochs
on ImageNet with the batch size used in the work. In our work we updated connections every epoch to
have setup close to the original work. We set α = 0.3 as in the one used in the RigL work. Following the
original work, we train with a fixed sparsity mask for the last 25% of training. For global sparsity we apply
the ERK (Erdős–Rényi-Kernel) sparsity profile as in the original paper as it was shown to produce the best
performance for a given sparsity.

GMP We gradually increase the sparsity from 0% (dense model) to the target sparsity following a cubic
interpolation law. Sparsity is increased every 5 epochs. We train with a fixed mask for the last quarter of
training duration as in RigL.

C Extended undertraining analysis

In Section 4.1, we examined the connection between sparsity, training loss, and validation accuracy in
ResNet-50 models trained on Imagenet. Here, we present an alternative metric to the training loss, in the
form of Entropy on the validation set, as well as validate our results on the CelebA dataset.

23

Published in Transactions on Machine Learning Research (06/2024)

C.1 The validation entropy metric

Low prediction entropy implies that the prediction weight is largely concentrated in a single class, while a
high entropy suggests that it is spread out over several classes. Intuitively, the entropy of the model is related
to its “confidence” in predictions, and is independent of whether the predictions are correct (and so can be
measured on data for which labels are not available). Conversely, low training loss measures the model’s
fit to the training data. The prediction entropy on test or validation data is also closely connected to the
model’s calibration.

The similarity of the two metrics can be seen directly from their formulas. We compute the cross-entropy
loss and prediction entropy by taking the softmax over the vector of output values of the network and then
applying the respective standard formulas, where the cross-entropy is taken with respect to the correct label
distribution for the model (1 for the correct class and 0 otherwise). For an output of a network outputting a
vector Z = (z1, z2, ..., zC) of size C with correct label L, the entropy H and the cross-entropy CE are given
by the following formulas:

H(Z) = −
C∑

i=1

ezi

C∑
j=1

ezj

log

 ezi

C∑
j=1

ezj

 and CE(Z) = − log

 ezL

C∑
j=1

ezj

 . (4)

We expect a sufficiently large and well-trained model to have (a) low loss on the training data and (b) fairly low
average prediction entropy, while a model that is not well-trained to have high prediction entropy. However,
as is conventionally known, continued training on dense and low-sparsity models resulting in overfitting will
lower these metrics further.

The experimental setup is exactly as in Section 4.1, just with the additional computation of the Entropy
metric on the validation set. We present the results in Figure C.1, which also includes the plots from Figure 1
for ease of comparison.

We observe that, for all sparsity levels, the Train Loss and Validation Entropy metrics behave very similarly.
Most crucially, we observe that, just as with the training loss, there is an ‘optimal’ entropy level across model
sparsities, with models whose validation entropies fall below that value having lower validation accuracy. We
believe this provides additional evidence that these metrics may be used to detect overfitting in models and
to find the optimal training duration.

0 100 200 300 400 500
Number of training epochs

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

To
p-

1
Ac

cu
ra

cy
, V

al
id

at
io

n

Sparsity
0
80
90
95
98

0 100 200 300 400 500
Number of training epochs

0.4

0.6

0.8

1.0

1.2

Tr
ai

n
Lo

ss

Sparsity
0
80

90
95

98

0 100 200 300 400 500
Number of training epochs

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

E
nt

ro
py

, V
al

id
at

io
n

Sparsity
0
80

90
95

98

Figure C.1: Average validation accuracy (left), Train loss at final epoch (center), and Entropy (right) for
sparse and dense ImageNet models trained for different numbers of epochs. The highest-accuracy model for
each sparsity level is highlighted with a larger marker. The cross-entropy loss and entropy level of the dense
model is also shown with a dashed line, to simplify comparison.

C.2 CelebA results

To validate our findings, we repeat this experiment on the Celeb-A Dataset (Liu et al., 2015). This dataset
consists of a combined 202599 face images of 10177 celebrities collected from the public domain, automatically

24

Published in Transactions on Machine Learning Research (06/2024)

cropped to the face, and annotated with 40 binary labels. Due to its content, this dataset is frequently used
to study bias in machine learning models, and has also been used in studies on the effect of sparsity on
bias (Hooker et al., 2019; Iofinova et al., 2023).

0 50 100 150 200
Number of training epochs

0.910

0.912

0.914

0.916

0.918

0.920

0.922

Av
er

ag
e

ac
cu

ra
cy

Sparsity
0.0
90.0
95.0
98.0
99.0
99.5

0 50 100 150 200
Number of training epochs

0.10

0.12

0.14

0.16

0.18

0.20

Tr
ai

n
Lo

ss

Sparsity
0.0
90.0
95.0
98.0
99.0
99.5

0 50 100 150 200
Number of training epochs

0.18

0.20

0.22

0.24

0.26

0.28

Pr
op

or
tio

n
un

ce
rt

ai
n

Sparsity
0.0
90.0
95.0
98.0
99.0
99.5

Figure C.2: Average validation accuracy (left), train loss at final epoch (center), and uncertainty (right) for
sparse and dense CelebA models trained for different numbers of epochs. The highest-accuracy model for
each sparsity is highlighted with a larger marker. The cross-entropy loss and entropy level of the dense model
is also shown with a dashed line, to simplify comparison.

Experimental Setup. Following (Iofinova et al., 2023), we train the ResNet18 architecture on this task.
We train dense and sparse (90%, 95%, 98%, 99%, and 99.5%) models for a varying number of epochs (5-200);
in some cases the very low or very high-epoch runs are skipped if it is clear that the duration will not be
optimal for that sparsity. Sparse models are produced with a variant of AC/DC, in which the sparsity of the
sparse phases ramps up progressively from 90% to the final target sparsity; this is necessary to prevent layer
collapse at very high sparsities. Unlike the ImageNet experiments, here the phase length varies somewhat
with duration, due to the extremely short duration of some runs. For each experiment, characterized by a
sparsity/epoch-length pair, we measure the accuracy and training loss of the resulting model. In addition,
following (Iofinova et al., 2023), we measure the uncertainty, rather than entropy, of the model predictions on
the test set. The prediction uncertainty is computed as follows: first, the sigmoid operator is applied to each
logit’s output in order to obtain a pseudo-probability of a positive label between 0 and 1; if this quantity is
between 0.1 and 0.9, the prediction is considered uncertain. We then compute the proportion of uncertain
predictions across the validation dataset.

Results. The results are presented in Figure C.2. We observe that, consistent with our earlier observations
on ImageNet, the optimal training duration goes up with sparsity, with dense models reaching their optimal
accuracy at 25 epochs, and 99% and 95% sparse models at 150 epochs. Further, we observe that, even as
training loss and test uncertainty always decrease with longer training, the overall training loss and proportion
of uncertain predictions goes up with sparsity at a fixed training length. As in the ImageNet example, the
highest-performing models at each sparsity have a similar training loss of about 0.17 and mean prediction
uncertainty of about 24%, except for the very sparse 99.5% model, which has slightly higher 26% uncertain
predictions.

Discussion. We interpret these results as corroborating evidence that sparse models require longer training
compared to dense models to achieve optimal accuracy before the overfitting starts to take place.

D MobileNet results

In addition, we conducted sparsification of the MobileNet-V1 model (Howard et al., 2017), a CNN optimized
for inference on mobile devices. We applied AC/DC for 1000 epochs with sparsity targets 75% and 90% using
a similar training recipe to ResNet50 except for some differences specified in Appendix A. To achieve the best
results we do not prune the input convolution, as well as the classification head and depthwise convolutions,
due to their minor contribution to the overall amount of FLOPs and significant impact on the performance
of the model.

25

Published in Transactions on Machine Learning Research (06/2024)

Top-1 accuracy (%) Relative Drop Sparsity
Method Dense (D) Pruned (P) 100 × (P −D)

D

AC/DC++ 72.74 72.49 -0.25 75.00
72.74 70.80 -1.94 90.00

Table D.2: Sparse training of MobileNet-V1 with AC/DC++ on ImageNet-1k.

With a longer training recipe one can achieve almost negligible accuracy drop at 75% sparsity and moderate
performance decrease at 90%. The results can be found in Table D.2.

E Impact of extended training on transfer performance

We further validate our results by using sparse and dense ResNet50 models pretrained on ImageNet for
transfer learning for other vision recognition tasks. Transfer learning is a common paradigm in which a large
dataset is used to set network weights before they are further fine-tuned on the (typically, smaller) dataset of
interest; this approach can provide significant gains over direct training on the smaller task from a random
initialization. In this section, we refer to the larger dataset/task (in our case, ImageNet) as the upstream
task, and the smaller dataset/task as the downstream task.

There are two common approaches to transfer learning, the choice of which largely depends on the technological
capabilities of the system doing the learning task. If a large amount of compute is available, all model weights
can be trained on the downstream task, in a process we call full finetuning. Otherwise, if compute is limited,
all the layers of the deep neural network except for the final classifier are frozen after downstream training and
used purely as a feature extractor, and only the final layer (properly resized) is trained on the downstream
task, as a linear classifier on the extracted features. We call this process linear finetuning.

We apply both transfer learning approaches to a standard set of twelve downstream tasks, which are frequently
used as benchmarks for transfer learning performance(Kornblith et al., 2019; Iofinova et al., 2022; Salman
et al., 2020). The twelve datasets include six specialized tasks and six general tasks; a full list of downstream
tasks is given in Appendix Table E.4.

We use four variants of ResNet50 models pretrained on ImageNet as the upstream model: dense and 95%
globally sparse models trained for 100 and 1000 epochs. Otherwise, we follow the training hyperparameters
of (Iofinova et al., 2022), and, also following this work, we compute a single metric across all twelve tasks by
computing Average Increase in Error for a set of tasks T over a baseline model. This metric is computed
as follows: for each of the downstream tasks, we compare the difference in the error (1−Top-1 accuracy)
when the baseline (100-epoch dense) model is used for transfer learning, versus when another model (either
sparse, or extended-training dense) is used. The increase in error is the difference of these two quantities
divided by the dense error; the final metric is the average of these relative differences across all downstream
datasets. As argued in (Iofinova et al., 2022), normalizing error differences by the dense error allows us to
roughly equalize dataset impact when we compute a single metric across different datasets with very different
model performance (e.g., nearly 100% accuracy on the Pets dataset, but about 50% accuracy on the Aircraft
dataset. Formally, the metric is computed as:

AIE = 1
|T |

∑
t∈T

ErrModel,t − ErrBaseline,t

ErrBaseline,t
(5)

We compute the AIE using the 100-epoch dense model as the baseline model, and present the results in
Table E.3. We observe that the effect of extended training on the dense model is neutral at best - there is
a small increase in error with extended training in the linear finetuning regime, and no change in the full
finetuning regime. Conversely, the 1000 epoch 95% sparse model outperforms the 100-epoch one across both
regimes, with a higher error drop in the linear finetuning regime and a smaller error increase in the full
finetuning regime.

26

Published in Transactions on Machine Learning Research (06/2024)

Training Duration Linear - Dense Linear - 95% Sparse Full - Dense Full - 95% Sparse
100ep. - -0.123 - 0.112
1000ep. 0.026 -0.182 0.000 0.062

Table E.3: Transfer learning for image recognition - Average Increase in Error over the 100-epoch dense model.
Lower is better: positive numbers indicate that the model has, on average, more error than the baseline
model; negative numbers indicate that the model has, on average, less error.

Dataset Number of Classes Train/Test Examples Accuracy Metric
SUN397(Xiao et al., 2010) 397 19 850 / 19 850 Top-1

FGVC Aircraft(Maji et al., 2013) 100 6 667 / 3 333 Mean Per-Class
Birdsnap(Berg et al., 2014) 500 32 677 / 8 171 Top-1
Caltech-101(Li et al., 2004) 101 3 030 / 5 647 Mean Per-Class

Caltech-256(Griffin et al., 2006) 257 15 420 / 15 187 Mean Per-Class
Stanford Cars(Krause et al., 2013) 196 8 144 / 8 041 Top-1
CIFAR-10(Krizhevsky et al., 2009) 10 50 000 / 10 000 Top-1
CIFAR-100(Krizhevsky et al., 2009) 100 50 000 / 10 000 Top-1

Describable Textures (DTD)(Cimpoi et al., 2014) 47 3 760 / 1 880 Top-1
Oxford 102 Flowers(Nilsback & Zisserman, 2006) 102 2 040 / 6 149 Mean Per-Class

Food-101(Bossard et al., 2014) 101 75 750 / 25 250 Top-1
Oxford-IIIT Pets(Parkhi et al., 2012) 37 3 680 / 3 669 Mean Per-Class

Table E.4: Datasets used as downstream tasks for transfer learning with computer- vision models.

F Evaluation on ImageNet-C

In order to confirm the robustness of our models against perturbations, we evaluate AC/DC and dense models
on the ImageNet-C(Hendrycks & Dietterich, 2019) dataset, which consists of the standard ImageNet validation
dataset to which perturbations such as noise, blur, photographic effects (such as contrast enhancement) or
weather conditions (such as snow or fog) were digitally added. We use the lowest “1” level of perturbation, as
we find that the quality already drops considerably over the clean data. Our results are shown in Figure F.4.
We observe that, as expected and also as reported in (Liebenwein et al., 2021), dense models outperform
sparse ones on corrupted data. Further, and consistently with our other findings, extended training on the
dense model does not improve performance on the ImageNet-C dataset; conversely, such improvement can be
seen for all 19 perturbation categories for 95% sparse models.

G Comparison with the small dense model

One may ask whether one can achieve similar performance with a smaller dense model. We have taken a
smaller version of ResNet50 with 2x smaller hidden dimension (denoted ResNet-50x0.5). We trained the
model with the same training procedure as the baseline ResNet-50 model for 1000 epochs. One can observe
from Table G.5 that even for smaller number of FLOPs sparse model is much better than the dense one.

Table G.5: Small-dense vs sparse model on ImageNet-1k

Model (%) Sparsity (%) FLOPs Accuracy (%)
ResNet-50x0.5 0 - 69.8

ResNet-50 95 - 77.5

H AC/DC dense fraction ablation

The original AC/DC paper has equal length of compression and decompression phases and one may raise
a question, whether it would be better to train the model longer in compressed state or decompressed to

27

Published in Transactions on Machine Learning Research (06/2024)

Aircraft Birds Caltech101 Caltech256 Cars CIFAR-10 CIFAR-100 DTD Food-101 Pets SUN397 Flowers
Downstream Task

0.0

0.2

0.4

0.6

0.8

M
ea

n
Pe

r-C
la

ss
 V

al
id

at
io

n
Ac

cu
ra

cy

Dense - 1000 ep.
Dense - 1000 ep.
95% Sparse - 100 ep.
95% Sparse - 1000 ep.

Aircraft Birds Caltech101 Caltech256 Cars CIFAR-10 CIFAR-100 DTD Food-101 Pets SUN397 Flowers
Downstream Task

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Pe

r-C
la

ss
 V

al
id

at
io

n
Ac

cu
ra

cy

Dense - 1000 ep.
Dense - 1000 ep.
95% Sparse - 100 ep.
95% Sparse - 1000 ep.

Figure E.3: Linear (left) and Full-network (right) transfer learning mean per-class accuracy for individual
datasets.

co
nt

ra
st

pix
ela

te

ela
sti

c_
tra

ns
for

m

jpe
g_

co
mpr

es
sio

n fog

br
igh

tn
es

s
fro

st
sn

ow

moti
on

_b
lur

zo
om

_b
lur

de
foc

us
_b

lur

gla
ss_

blu
r

sh
ot_

no
ise

im
pu

lse
_n

ois
e

ga
us

sia
n_

no
ise

sp
att

er

sp
ec

kle
_n

ois
e

sa
tu

ra
te

ga
us

sia
n_

blu
r

Perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
Ac

cu
ra

cy

95% Sparse - 1000ep.
95% Sparse - 250ep.
95% Sparse - 100ep.
Dense - 1000ep.
Dense - 100ep.

Figure F.4: Linear (left) and Full-network (right) transfer learning mean per-class accuracy for individual
datasets.

achieve better performance for a given sparsity target. In the experiments below we train the ResNet-50
model for 1000 epochs with 95% sparsity. It turns out that allocating equal time for dense and sparse training
works the best, as one can see from the Table H.6. Here 0 means pruning at some moment of training and
finetuning with fixed mask and 1 is the accuracy of dense model. Even when training most of the time in
sparse regime one still doesn’t lose much in performance.

Table H.6: Ablation on the sparse training fraction.

Sparse training fraction (%) Accuracy (%)
0 79.0

0.2 77.2
0.5 77.5
0.8 77.3
1 75.0

28

Published in Transactions on Machine Learning Research (06/2024)

200 400 600 800 1000
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Io
U

Sparsity=95%

AC/DC
GMP
RigL

200 400 600 800 1000
Epoch

0.2

0.4

0.6

0.8

1.0

Io
U

Sparsity=98%

AC/DC
GMP
RigL

Figure J.5: Mask IoU between two consecutive checkpoints.

I AC/DC phase duration ablation

Another hyperparameter that may have a significant impact on performance is the update interval of AC/DC
iteration. Intuitively, more frequent updates may allow for more changes in the choice of sparsity of the
pruning mask and at the same longer training with fixed mask can be needed to the weights to adapt well for
a given sparsity pattern. We have tried different choices of AC/DC iteration duration for ResNet-50 trained
for 1000 epochs and 95% global sparsity and the chosen frequency update of 5 epochs is close to the optimum.

Table I.7: AC/DC iteration length ablation.

Phase length duration (epochs) Accuracy (%)
1 77.0
5 77.5
10 77.2
50 75.9

J Mask analysis

Sparse methods considered in our work differ in the amount of sparsity mask exploration. GMP gradually
increases sparsity; once the weight is pruned, it is never reintroduced. RigL decreases the fraction of updated
parameters following the cosine annealing rule:

fdecay(t; α; Tend) = α

2

(
1 + cos

(
πt

Tend

))
(6)

This fraction of connections is dropped and reintroduced in a single step. AC/DC makes all parameters
trainable on decompression phases, therefore any parameter could be potentially reintroduced. However, as
shown later, some fraction of weights remains zero even on decompression. To measure the difference between
two consecutive sparsity masks we compute their IoU (Intersection over Union), the amount of parameters
that are nonzero for both checkpoints divided by the amount of parameters that are nonzero in either of
checkpoints. High IoU value (close to 1) means that two sparsity masks overlap significantly, whereas low
IoU (close to 0) implies low similarly between sparsity masks.

We have taken checkpoints saved on the 109th, 119th, . . . 999th epoch (taken at the end of every AC/DC
step and at the same epochs for other methods for a consistent comparison) collected during 1000 epochs
runs with 95% and 98% target sparsity and measured IoU between two consecutive masks for parameters
being pruned (skipping biases and batch norm parameters). For GMP and RigL, mask IoU can be computed
analytically based on the update rule. The evolution of sparsity mask IoU during training is presented on

29

Published in Transactions on Machine Learning Research (06/2024)

Figure J.5. One can observe that AC/DC shows significantly stronger mask exploration compared to GMP
and RigL. This behavior could account for the better performance of AC/DC as a sparse trainer.

K Structured sparsity in unstructured sparse models

Channel sparsity
Sparsity Epochs layer1.0.conv2 layer2.1.conv2 layer4.2.conv2 avg

80 100 0 0 0 1.07
1000 18.75 0 35.35 4.91

90 100 4.69 1.56 0.78 3.58
1000 31.25 19.53 61.91 10.68

95 100 0 7.03 22.85 8.8
1000 26.56 22.66 80.27 16.76

98 100 7.81 12.5 75.59 23.65
1000 48.44 37.5 96.68 27.93

Table K.8: Fraction of zero output channels for specific layers and on average.

We mainly consider only unstructured sparsity, therefore groups of weights and entire channels in particular
do not have to be sparse. However, we observed that some of the channels in convolutional kernels are entirely
pruned. The effect becomes more pronounced with higher sparsity and longer training.

In Table K.8, we show the fraction of sparse output channels for layers in the front, middle and the end of
the model and the global fraction of zero channels across all convolutional layers in the model. We observe
that channel sparsity increases proportionally with the unstructured sparsity target and with training time,
and that, for high sparsity, we obtain a very high proportion of zeroed-out output channels, especially in
the wider bottom layers. This is in tune with previous work observing the emergence of structured sparsity
in dynamic sparse training (Peste et al., 2021; Iofinova et al., 2022; Yin et al., 2023). We provide a first
explanation for this behavior in the next section.

L Impact of weight decay on sparsity and model performance

Recall that AC/DC makes all parameters trainable on decompression, therefore, one might expect that
sparsity on decompression phase would be near zero. However, we observed that a large fraction of weights
remains zero even when the sparsity mask is not imposed. This effect is linked to the channel sparsity
discussed in the previous section: once a channel is completely zeroed out, it will continue to receive zero
gradients even when the sparsity mask is removed. Further, we provide evidence that this phenomenon is
linked to increasing the weight decay mechanism, and in particular the value of this parameter: intuitively,
weight decay slowly drives weights towards zero; whenever a full channel is zeroed out in the compression
phase, it remains “captured” under the sparsity mask until the end of training.

We investigated this empirically by training ImageNet models on ResNet50 with 95% compression sparsity
using AC/DC++ for 100 epochs, varying the weight decay parameter from 10−6 to 10−3. Our results are
shown in Figure L.6. We observe that the fraction of zero parameters increases with the magnitude of weight
decay and also over the course of training. Concretely, we observe that all weight decay values lead to
almost fully dense models during the first decompression phase. From there, very low weight decay values
of 10−6 and 10−5 lead to very little sparsity during the next two decompression phases, and about 10%
sparsity during the final five. Conversely, very high weight decay of 10−3 leads to an immediate jump to
50% sparsity during the second decompression phases, which then increases to 60% over the rest of training.
The intermediate value of 10−4, which is the standard setting and was used in our experiments, leads to an
intermediate sparsity, which gradually rises to about 24% over successive decompression phases.

We further present the accuracy of the resulting models in Table L.9. We observe that properly setting the
weight decay hyperparameter is crucial for good performance of AC/DC++, and confirm that the standard
value 10−4 is close to the optimal value, as the Table L.9 shows.

30

Published in Transactions on Machine Learning Research (06/2024)

Sparse Decompression. Building on this observation, we ask how imposing a fixed minimal sparsity
also on decompression stage impacts the final performance. We conducted a few 100-epoch long AC/DC
experiments with 95% target sparsity and set the sparsity on decompression to some fixed value, smaller
than compression sparsity. We observe that the performance is almost unaffected up to 80% decompression
sparsity, showing that full mask exploration is not necessary during training.

0 1 2 3 4 5 6
Decompression phase

0

10

20

30

40

50

60

Sp
ar

si
ty 1e-3

1e-4
1e-5
1e-6

Figure L.6: Sparsity on decompression phases for 100-
epoch AC/DC++ runs with varying values of weight
decay. We point out that on decompression phases no
sparsity is enforced.

Weight decay Top-1 accuracy (%)
10−6 70.52
10−5 73.54
10−4 74.90
10−3 68.57

Table L.9: Accuracy vs weight decay.

Decompression sparsity Top-1 accuracy (%)
0 74.82
50 75.09
60 74.81
70 74.83
80 74.38

Table L.10: Accuracy vs decompression sparsity.

M Loss landscape analysis

In order to get more insights into the reasons for the difficulty of optimizing sparse neural networks, we
investigate two properties of the loss landscape. First, we measured landscape sharpness at the end of the
training, defined as the maximal eigenvalue of the Hessian matrix, for all sparse training methods considered,
various sparsities and number of training epochs and compared with the one of standard dense training.
Second, we interpolated the training and validation loss between checkpoints obtained at intermediate steps
throughout the 1000 epoch AC/DC run with 95% target sparsity.

The largest Hessian eigenvalue was estimated via the power iteration method based on Hessian-vector products
using a customized version of the Eigenthings library (Golmant et al., 2018). To compute the largest Hessian
eigenvalue we ran power iteration method (von Mises & Pollaczek-Geiringer, 1929) for 20 iterations using the
modified version of the code from (Golmant et al., 2018) package. 20 iterations were usually enough for the
iterations to converge. Hessian is computed only with respect to the non-zero weights. Technically, for a
current estimate of a leading eigenvector ei and sparsity mask m we compute ∇(m · ∇(m · ei)) = Hm which
is equivalent to the hessian-vector product for a truly sparse model. In Figure ??, we observe that, across all
methods, sharpness increases with the length of the training run, indicating that sharper minima require
extended training to be reached via SGD. Additionally, sharpness decreases with the increase of sparsity. All
sparse training methods attain lower sharpness compared to the dense model. Models trained with AC/DC
and RigL have slightly lower sharpness compared to models trained with GMP, presumably because the
former two methods manage to reach flatter optima which are conjectured to have better generalization
properties (Merity et al., 2017).

To examine mode connectivity behavior, in Figure M.7, we connected the checkpoint obtained on the
99th, 199th, . . . 999th epoch via piecewise-linear curves with 10 points between checkpoints. A notable
observation is that all checkpoints are separated by a loss barrier, whose height is increasing with the number
of epochs. Probably, this behavior is a manifestation of the progressive sharpening phenomenon (Cohen et al.,
2022) where the model sharpness is increasing gradually with training until reaching the peak value and then

31

Published in Transactions on Machine Learning Research (06/2024)

plateaus. Yet, for sparse models, the duration of the longest runs is not long enough to reach the sharpness
plateau.

0.0 0.2 0.4 0.6 0.8 1.0
α

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

n
Lo

ss

0.0 0.2 0.4 0.6 0.8 1.0
α

3

4

5

6

7

Va
lid

at
io

n
Lo

ss

Figure M.7: Loss interpolation curves on the training (left) and validation (right) checkpoints of the 95%
sparse 1000-epoch AC/DC model. α corresponds to the fraction of paths traversed from the first checkpoint
to the last. Stars denote checkpoints between which loss is interpolated.

N Different sparsity patterns.

Since the ResNet models increase the number of channels with the decrease of feature map resolution, one
would expect that bottom layers (those with more channels) should be pruned more aggressively compared
to the one with less channels. Here our results are consistent with the known observations from literature
that global sparsity achieves higher performance for the same sparsity. In addition, we have carried out
experiments with the more hardware-friendly block-4 sparsity pattern.

0.90 0.92 0.94 0.96 0.98
Sparsity

73

74

75

76

77

78

Ac
cu

ra
cy

Global
Uniform
block4

Figure N.8: Accuracy vs sparsity for different sparsity distributions. Block4 denotes global pruning with
weights pruned in groups of 4.

O Transfer learning datasets for language models

In Table O.11 we provide a brief summary of datasets in the popular GLUE benchmark (Wang et al., 2018).
Following previous work (Sanh et al., 2020; Zafrir et al., 2021; Kurtic & Alistarh, 2022; Kurtic et al., 2022;
Zhang et al., 2022; Huang et al., 2021), we exclude WNLI dataset from consideration in all experiments.

32

Published in Transactions on Machine Learning Research (06/2024)

Dataset Train/Test Examples Accuracy Metric
RTE (Wang et al., 2018) 2.5k / 3k Accuracy
QNLI (Wang et al., 2018) 105k / 5.4k Accuracy

MRPC (Dolan & Brockett, 2005) 3.7k / 1.7k F1 score and Accuracy
SST-2 (Socher et al., 2013) 67k / 1.8k Accuracy

CoLA (Warstadt et al., 2019) 8.5k / 1k Matthews correlation coefficient
STS-B (Cer et al., 2017) 7k / 1.4k Pearson and Spearman correlation

MNLI (Williams et al., 2017) 393k / 20k Matched (m) and mismatched (mm) accuracy
QQP (Wang et al., 2018) 364k / 391k Accuracy and F1 score

Table O.11: Datasets used as downstream tasks for transfer learning with language models.

P Additional plots

100 250 500 1000
Epochs

76.5

77.0

77.5

78.0

78.5

Va
l A

cc
ur

ac
y

Sparsity=80%

Method
RigL
AC/DC
GMP

100 250 500 1000
Epochs

75

76

77

78

Sparsity=90%

Method
RigL
AC/DC
GMP

100 250 500 1000
Epochs

1.6

1.7

1.8

1.9

Tr
ai

n
Lo

ss

Sparsity=80%

Method
RigL
AC/DC
GMP

100 250 500 1000
Epochs

1.7

1.8

1.9

2.0

2.1

Sparsity=90%

Method
RigL
AC/DC
GMP

Figure P.9: (left) Validation accuracy on ImageNet-1k vs number of epochs for different sparse training
methods. (right) Training loss on ImageNet-1k vs number of epochs for different sparse training methods.

33

	I Appendix
	Training hyperparameters
	Sparse training algorithm hyperparameters
	Extended undertraining analysis
	The validation entropy metric
	CelebA results

	MobileNet results
	Impact of extended training on transfer performance
	Evaluation on ImageNet-C
	Comparison with the small dense model
	AC/DC dense fraction ablation
	AC/DC phase duration ablation
	Mask analysis
	Structured sparsity in unstructured sparse models
	Impact of weight decay on sparsity and model performance
	Loss landscape analysis
	Different sparsity patterns.
	Transfer learning datasets for language models
	Additional plots

