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Abstract

We propose a new discretization of the mirror-Langevin diffusion and give a crisp
proof of its convergence. Our analysis uses relative convexity/smoothness and
self-concordance, ideas which originated in convex optimization, together with a
new result in optimal transport that generalizes the displacement convexity of the
entropy. Unlike prior works, our result both (1) requires much weaker assumptions
on the mirror map and the target distribution, and (2) has vanishing bias as the
step size tends to zero. In particular, for the task of sampling from a log-concave
distribution supported on a compact set, our theoretical results are significantly
better than the existing guarantees.

1 Introduction

We consider the following canonical sampling problem. Let V : Rd → R∪{∞} be a convex function
and let π be the density on Rd which is proportional to exp(−V ). The task is to output a sample
which is (approximately) distributed according to π, given query access to the gradients of V .

The sampling problem has attracted considerable attention recently within the machine learning
and statistics communities. This renewed interest in sampling is spurred, on one hand, by a wide
breadth of applications ranging from Bayesian inference [RC04, DM+19] and its use in inverse
problems [DS17], to neural networks [GPAM+14, TR20]. On the other hand, there is a deep
and fruitful connection between sampling and the field of optimization, introduced in the seminal
work [JKO98], which has resulted in the rapid development of sampling algorithms inspired by opti-
mization methods such as: proximal/splitting methods [Ber18, Wib18, Wib19, SKL20], coordinate
descent [DLLW21a, DLLW21b], mirror descent [HKRC18, CLGL+20, ZPFP20], Nesterov’s accel-
erated gradient descent [CCBJ18, MCC+21, DRD20], and Newton methods [MWBG12, SBCR16,
CLGL+20, WL20].

To describe this connection, we recall the Langevin diffusion, which is the solution to the following
stochastic differential equation (SDE):

dXt = −∇V (Xt) dt+
√

2 dBt. (LD)

Under standard assumptions on the potential V , the SDE is well-posed and it converges in distribution,
as t→∞, to its unique stationary distribution π. Thus, once suitably discretized, it yields a popular
algorithm for the sampling problem. The Langevin diffusion is classically studied using techniques
from Markov semigroup theory [see, e.g. BGL14, Pav14], but there is a more insightful perspective
which views the diffusion (LD) through the lens of optimization [JKO98]. Specifically, if µt denotes
the law of the process (LD) at time t, then the curve (µt)t≥0 is the gradient flow of the KL divergence
DKL(· ‖ π) in the Wasserstein space of probability measures. This perspective has not only inspired
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Figure 1: Illustration of the mirror Langevin algorithm (MLA). This illustration is adapted
from [Bub15, Figure 4.1].
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new analyses of Langevin [CB18, Wib18, DMM19, VW19], but has also emboldened the possibility
of bringing to bear the extensive toolkit of optimization onto the problem of sampling; see the
references listed above.

However, the vanilla Langevin diffusion notably fails when the support of the target distribution π is
not all of Rd. This task of constrained sampling, named in analogy to constrained optimization, arises
in applications such as latent Dirichlet allocation [BNJ03], ordinal data models [JA06], survival time
analysis [KM06], regularized regression [CEAM+12], and Bayesian matrix factorization [PBJ14].
Despite such a broad range of applications, the constrained sampling problem has proven to be
challenging. In particular, most prior works have focused on domain-specific algorithms [GSL92,
PP14, LS16], and the first general-purpose algorithms for this task are recent [BDMP17, BEL18].

In this work, we tackle the constrained sampling problem via the mirror-Langevin algorithm (MLA).
MLA is a discretization of the mirror-Langevin diffusion [HKRC18, ZPFP20], which is the sampling
analogue of mirror descent. Namely, if φ : Rd → R∪{∞} is a mirror map, then the mirror-Langevin
diffusion is the solution to the SDE

Xt = ∇φ?(Yt), dYt = −∇V (Xt) dt+
√

2 [∇2φ(Xt)]
1/2 dBt . (MLD)

Technical motivation. Recently, Zhang et al. [ZPFP20] analyze an Euler-Maruyama discretization
of MLD; see (2.2) for details. The most curious aspect of their result is that their convergence
guarantee has a bias term that does not vanish even when step size tends to zero and the number of
iterations tends to infinity. Moreover, they conjecture that this bias term is unavoidable. This is in
contrast to known results for standard Langevin, which raises the main question of this paper:

Can a different discretization of MLD lead to a vanishing bias?

Our contributions. We propose a new discretization of the mirror-Langevin diffusion, given
in (MLA) and illustrated in Figure 1. Our proposed discretization has the same cost as the standard
Euler-Maruyama discretization of MLD in terms of the number of queries to the gradient oracle for
V . We remark that our scheme for the case φ = ‖·‖

2
/2 recovers the unadjusted Langevin algorithm.

The most important aspect of our result is that the bias of our algorithm vanishes as the step size
tends to zero unlike the result by Zhang et al. [ZPFP20].

By adapting the analysis of Durmus et al. [DMM19], we provide a clean convergence analysis of our
algorithm which theoretically validates our discretization scheme. Notably, our analysis only requires
standard assumptions/definitions which are well-studied in optimization. In particular, we establish a
stronger link between sampling and optimization without relying on technical assumptions of Zhang
et al. [ZPFP20] (e.g. commutation conditions for Hessians; see (A5) therein).

Moreover, our analysis combines ideas from optimization with the calculus of optimal transport. In
particular, we establish a new generalization of a celebrated fact, namely that the entropy functional is
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displacement convex along Wasserstein geodesics, to the setting of Bregman divergences (Theorem 4).
This inequality has interesting consequences in its own right; as we discuss in Corollary 1, our result
already implies the transport inequality of Cordero-Erausquin [CE17].

We provide convergence guarantees for the following classes of potentials: (1) convex and relatively
smooth (Theorem 1); (2) strongly relatively convex and relatively smooth (Theorem 2); and (3) convex
and Lipschitz (Theorem 3). Our results largely match state-of-the-art results for the discretization
of the Langevin algorithm for unconstrained sampling. Our work paves the way for the practical
deployment of mirror-Langevin methods for sampling applications, paralleling the successes of
mirror descent in optimization [NY83, JN11, Bub15].

In Section 5, we demonstrate the strength of our convergence guarantees compared with the previous
works [BDMP17, BEL18] in an application to Bayesian logistic regression; further applications are
given in Appendix E. We also corroborate our theoretical findings with numerical experiments.

Other related works. Recently, a few works have proposed modifications of the Langevin algorithm
for the task of constrained sampling. Bubeck et al. [BEL18] studied the projected Langevin algorithm
(PLA), which simply projects each step of the Langevin algorithm onto dom(V ). A different
approach was taken in Brosse et al. [BDMP17], which applies the Langevin algorithm to a smooth
approximation of V given by the Moreau-Yosida envelope. The latter approach was later interpreted
and further analyzed by Salim and Richtarik [SR20] using the primal-dual optimality framework
from convex optimization.

A different line of work, more closely related to ours, uses a mirror map to change the geometry
of the sampling problem [HKRC18, CLGL+20, ZPFP20]. In particular, the mirror-Langevin diffu-
sion (MLD) was first introduced in an earlier draft of [HKRC18], as well as in [ZPFP20]. The diffu-
sion was further studied in [CLGL+20], which provided a simple convergence analysis in continuous
time using the sampling analog of Polyak-Łojasiewicz inequalities [KNS16]. We also remark that the
idea of changing the geometry via a mirror map also played an crucial role for the problem of sampling
from the uniform distribution over a polytope [KN12, LV17, CDWY18, LV18, GN20, LLV20].

Lastly, our work follows the trend of applying ideas from optimization to the task of sampling.
Specifically, our analysis adopts the framework of relative convexity and smoothness, which was
advocated as a more flexible framework for optimization in [BBT17, LFN18].

2 The mirror-Langevin algorithm

2.1 Background

In this section, we list basic definitions and assumptions that we employ in this work.

Convex functions of Legendre type. Throughout, we assume familiarity with the basic notions of
convex analysis [see e.g. Roc70, BL06].
Definition 1 (Convex functions of Legendre type [Roc70, §26]). A proper convex lower semicontin-
uous function φ : Rd → R ∪ {∞} is of Legendre type if

(i) Q := int(dom(φ)) 6= ∅,

(ii) φ is strictly convex and differentiable on Q, and

(iii) limk→∞‖∇φ(xk)‖ =∞ whenever {xk}k∈N is a sequence in Q converging to ∂Q.

The key properties of convex functions of Legendre type are listed below:

• The subdifferential ∂φ is single-valued and hence ∂φ = {∇φ} [Roc70, Theorem 26.1].
• φ is a convex function of Legendre type if and only if its Fenchel conjugate φ? is a convex

function of Legendre type [Roc70, Theorem 26.5].
• The gradient ∇φ forms a bijection between int(dom(φ)) and int(dom(φ?)) with ∇φ? =

(∇φ)−1 [Roc70, Theorem 26.5].

We refer readers to [Roc70, §26] for more details. We henceforth assume that our mirror map φ is a
convex function of Legendre type.
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The natural notion of “distance” associated with the mirror map φ is given by the Bregman diver-
gence [see, e.g. Bub15, §4]:
Definition 2 (Bregman divergence [Bre67]). For a convex function φ of Legendre type, the Bregman
divergence Dφ(·, ·) associated to φ is defined as

Dφ(x, y) := φ(x)− φ(y)− 〈∇φ(y), x− y〉 , ∀x, y ∈ Q := int(dom(φ)) .

The Bregman divergence behaves like a squared distance; indeed, as x→ y a Taylor expansion shows
that Dφ(x, y) ∼ 1

2 〈x− y,∇
2φ(y)(x− y)〉. We refer to [Bub15, §4] for other basic properties of the

Bregman divergence. Hereinafter, when we use a Bregman divergence, we implicitly assume that its
associated function φ is a mirror map.

An important case to keep in mind is the mirror map φ = ‖·‖2
2 , where ‖·‖ denotes the Euclidean

norm, in which case the Bregman divergence simply becomes Dφ(x, y) = 1
2‖x− y‖

2.

Self-concordance. We recall the definition of self-concordance, which has been extensively used in
applications such as interior-point methods [NN94]. Given a C2 strictly convex function φ, the local
norm at x ∈ int(dom(φ)) with respect to φ is defined as

‖u‖∇2φ(x) =
√
〈∇2φ(x)u, u〉 for all u ∈ Rd .

The dual local norm at x ∈ int(dom(φ)) with respect to φ is

‖u‖[∇2φ(x)]−1 =

√〈
[∇2φ(x)]

−1
u, u

〉
for all u ∈ Rd .

Definition 3 (Self-concordant function [Nes18, §5.1.3]). We say that a C3 convex function φ is
self-concordant with a constant Mφ ≥ 0 if for any x ∈ int(dom(φ))

|∇3φ(x)[u, u, u]| ≤ 2Mφ ‖u‖3∇2φ(x) for all u ∈ Rd .

Relative convexity/smoothness. We recall the following definitions:

Definition 4 (Relative convexity [BBT17, LFN18]). V is α-convex relative to φ if

V (y) ≥ V (x) + 〈∇V (x), y − x〉+ αDφ(y, x) ∀x, y ∈ Q .
Definition 5 (Relative smoothness [BBT17, LFN18]). V is β-smooth relative to φ if

V (y) ≤ V (x) + 〈∇V (x), y − x〉+ βDφ(y, x) ∀x, y ∈ Q .

We give some basic facts about these definitions in Appendix B.

In the rest of this work, we assume that V ∈ C2(X ) where X := int(dom(V )), that X ⊆ Q, and
X ∩Q 6= ∅. Also, we assume that exp(−V ) is integrable so that π is well-defined; this holds if and
only if V (x) ≥ a ‖x‖ − b for some a, b > 0 [BGVV14, Lemma 2.2.1].

Optimal transport. Given a lower semicontinuous cost function c : Rd × Rd → [0,∞], we can
define the optimal transport cost between two probability measures µ and ν on Rd to be

inf{E c(X,Y ) | X ∼ µ, Y ∼ ν}. (2.1)

Here, the infimum is taken over pairs of random variables (X,Y ) defined on the same probability
space, with marginal laws µ and ν respectively. It is known that the infimum in (2.1) is always
attained; we refer to the standard introductory texts [Vil03, Vil09, San15] for this and other basic
facts in optimal transport.

In this work, we are most concerned with the case when the cost function c is the Bregman divergence
associated with a mirror map:
Definition 6 (Bregman transport cost). The Bregman transport cost is defined as

Dφ(µ, ν) := inf{EDφ(X,Y ) | X ∼ µ, Y ∼ ν} .

The Bregman transport cost was also studied in [CE17].

In particular, when φ = ‖·‖2
2 , we obtain an important special case:
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Definition 7 (2-Wasserstein distance). The 2-Wasserstein distance W2 is defined as

W 2
2 (µ, ν) := inf{E[‖X − Y ‖2] | X ∼ µ, Y ∼ ν} .

The W2 optimal transport cost indeed defines a metric over the space of probability measures on Rd
with finite second moment [Vil03, Theorem 7.3]; we refer to this metric space as the Wasserstein
space. The W2 metric is particularly important because it arises from a formal Riemannian structure
on the Wasserstein space. This perspective was introduced in [Ott01] and applied to the Langevin
diffusion in [JKO98, OV00]; in particular, these latter two works justify the perspective of the
Langevin diffusion as a gradient flow of the Kullback-Leibler divergence in Wasserstein space. A
rigorous exposition to Wasserstein calculus can be found in [AGS08, Vil09].

Here, we give a brief and informal introduction to the calculation rules of optimal transport. For any
regular curve of measures (µt)t≥0, there is a corresponding family of tangent vectors (vt)t≥0 [see
AGS08, Theorem 8.3.1]; here, vt : Rd → Rd is a vector field on Rd. Also, if F is any well-
behaved functional defined over Wasserstein space, then at each regular measure µ one can define the
Wasserstein gradient of F at µ, which we denote ∇W2F(µ); it is also a mapping Rd → Rd. Then,
we have the calculation rule

∂tF(µt) = E〈∇W2
F(µt)(Xt), vt(Xt)〉

for any regular curve of measures (µt)t≥0 with corresponding tangent vectors (vt)t≥0, whereXt ∼ µt.
We will use this calculation rule in Appendix C.

2.2 Discretization of the mirror-Langevin diffusion

In order to turn a continuous-time diffusion such as (MLD) into an implementable algorithm, it
is necessary to first discretize the stochastic process. The discretization considered in the prior
works [ZPFP20, CLGL+20] is a simple Euler-Maruyama discretization: fixing η > 0, we define a
sequence of iterates (Xk)k∈N via

∇φ(Xk+1) = ∇φ(Xk)− η∇V (Xk) +
√

2η [∇2φ(Xk)]
1/2

ξk , (2.2)

where (ξk)k∈N is a sequence of i.i.d. standard Gaussians in Rd.

However, many other discretizations are possible. Indeed, in many machine learning applications, the
most costly step is the evaluation of∇V , which may require a sum over a large training set, whereas
the mirror map φ may be chosen to have a simple form. For the purpose of obtaining a more efficient
sampling algorithm, it may therefore be a favorable trade-off to use a high-precision implementation
of the diffusion step at the cost of additional computation time (which nonetheless does not require
additional query access to the gradients of V ). Motivated by these considerations, we propose a new
discretization (see Figure 1 for an illustration):

The mirror-Langevin algorithm (MLA):

Xk+1/2 := arg min
x∈Q

[〈η∇V (Xk), x〉+Dφ(x,Xk)] , (MLA:1)

Xk+1 := ∇φ?(Wη) , where

{
dWt =

√
2 [∇2φ?(Wt)]

−1/2
dBt ,

W0 = ∇φ(Xk+1/2) .
(MLA:2)

In MLA:2, the stochastic processes (Wt)t≥0 are assumed to be driven by independent Brownian
motions at each iteration. When φ = ‖·‖

2
/2, MLA recovers the unadjusted Langevin algorithm.

Practicality. Although MLA:2 is defined using the exact solution of an SDE (and we analyze the exact
step MLA:2 for simplicity), it should be understood as capturing the idea of discretizing the diffusion
step more finely (e.g., through multiple inner iterations of an Euler-Maruyama discretization) than
the gradient step. This is indeed amenable to practical implementation since, as previously discussed,
the gradient step is typically much more costly than the diffusion step. Moreover, this is justified by
our theoretical results in the next section, which together with the conjecture of [ZPFP20] suggest
that fine discretization of MLA:2 is potentially crucial for attaining vanishing bias. Nevertheless, it is
indeed the case that a single iteration of MLA is more costly than a single step of the Euler-Maruyama
discretization of MLD, and this represents a limitation of our work.
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Remark 1. Our proposed discretization can be understood as a more faithful discretization of the
mirror-Langevin diffusion (MLD), à la [GWS21]. It can also be understood as the forward-flow
discretization of MLD in the interpretation of [Wib18].
Remark 2. In order for MLA:2 to be well-defined, we require assumptions on φ such that the
diffusion (Wt)t≥0 is non-explosive, i.e., it does not exit int(dom(φ?)) in finite time. This holds
under very mild assumptions on φ; see [GK96]. For situations of interest, the assumptions of [GK96]
can be checked directly.

3 Convergence rates of mirror-Langevin algorithm

First, we state the main assumptions which are used for our main results.
Assumption 1 (Self-concordance of φ). We assume that φ is Mφ-self-concordant (Definition 3).
Assumption 2 (Relative Lipschitzness). We assume that V is L-relatively Lipschitz with respect to
φ, in the sense that ‖∇V (x)‖[∇2φ(x)]−1 ≤ L for all x ∈ X (see Section 2.1 for the definition of the
local norm used here).
Assumption 3 (Relative convexity and smoothness). We assume that V is α-convex relative to φ and
β-smooth relative to φ, where 0 ≤ α ≤ β ≤ ∞ (Definitions 4 and 5).
Remark 3. Our analysis works under weaker assumptions than those of [ZPFP20]. In particular, our
analysis does not assume the moment condition on the Hessian ((A2) therein) and the bound on the
commutator between ∇2φ and ∇2V ((A5) therein). Moreover, our analysis uses weaker (and more
standard) definitions of self-concordance.

Throughout this section, we assume the conditions listed above, and we present convergence results
for MLA under various sets of assumptions. Our first two results pertain to the smooth case, i.e.
β <∞. Define the parameter

β′ := β + 2MφL.

One might wonder how large β′ is for typical applications. First, we only need φ to be self-concordant,
not a self-concordant barrier. Hence the appearance of Mφ is typically not problematic; for instance,
a log barrier with m constraints is O(1)-self-concordant. The smoothness parameter could be large
and dimension-dependent in general. However, such situations are actually where our approach could
be potentially advantageous. In Appendix E.2, we demonstrate an example where the smoothness
parameter becomes much smaller by choosing φ carefully.
Theorem 1 (Weakly convex case). Suppose that Assumptions 1, 2, 3 hold with α = 0 and β′ > 0. For
a target accuracy ε > 0, let Xk ∼ µk denote the iterates of MLA with step size η = min{ ε

2β′d ,
1
β′ }.

Then, the following convergence rate holds for the mixture distribution µN := 1
N

∑N
k=1 µk:

DKL(µN ‖ π) ≤ ε , provided that N ≥ 4β′dDφ(π, µ0)

ε2
max

{
1,

ε

2d

}
. (3.1)

Proof. See Appendix C.2.

Theorem 2 (Strongly relatively convex case). Suppose that Assumptions 1, 2, 3 hold with α, β′ > 0.

1. (Convergence in Bregman transport cost) For a target accuracy ε > 0, let Xk ∼ µk denote
the iterates of MLA with step size η = min{ αε

2β′d ,
1
β′ }. Then,

Dφ(π, µN ) ≤ ε , provided that N ≥ 2β′d

α2ε
ln
(2Dφ(π, µ0)

ε

)
max

{
1,
αε

2d

}
.

2. (Convergence in KL divergence) For a target accuracy ε > 0, suppose that X0 ∼ µ0

satisfies Dφ(π, µ0) ≤ ε/α. Let Xk ∼ µk denote the iterates of MLA with step size
η = min{ αε

2β′d ,
1
β′ }. Then, the following convergence rate holds for the mixture distribution

µN := 1
N

∑N
k=1 µk,

DKL(µN ‖ π) ≤ ε , provided that N ≥ 4β′d

αε
max

{
1,

ε

2d

}
.
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Proof. See Appendix C.3.

Note that the initialization assumption Dφ(π, µ0) ≤ ε/α in the second assertion of Theorem 2 can be
obtained from the first guarantee of Theorem 2. Chaining together the two parts of the theorem, we
therefore obtain the following guarantee: suppose that we initialize MLA at a distribution µ0. Then,
with step size η = min{ αε

2β′d ,
1
β′ }, we obtain

DKL

( 1

N1

N0+N1∑
k=N0+1

µk

∥∥∥ π) ≤ ε , provided that

{
N0 ≥ 2β′d

αε ln
( 2αDφ(π,µ0)

ε

)
max

{
1, ε2d

}
,

N1 ≥ 4β′d
αε max

{
1, ε2d

}
.

Observe also that for the case φ = ‖·‖2
2 , Theorems 1 and 2 recover the corresponding convergence

guarantees for the unadjusted Langevin algorithm [Corollary 7, and Corollaries 10 and 11 respectively
in DMM19].1

Next, we present our guarantee for the non-smooth case β =∞. For this result, we assume that φ is
strongly convex w.r.t. a norm ‖·‖ on Rd, and that V is L̃-Lipschitz in this norm. Since the norm of
the gradient should be measured in the dual norm ‖·‖?, this means precisely that

‖∇V (x)‖? ≤ L̃ , for all x ∈ X . (3.2)
We also note that the next result does not require self-concordance of φ.
Theorem 3 (Non-smooth case). Assume φ is 1-strongly convex w.r.t. a norm ‖·‖ on Rd, that V is
L̃-Lipschitz in this norm (in the sense of (3.2)), and that α = 0 (i.e., V is convex). For a target
accuracy ε > 0, letXk ∼ µk denote the iterates of MLA with step size η = ε/L̃2. Then, the following
convergence rate holds for the mixture distribution µN := 1

N

∑N
k=1 µk:

DKL(µN ‖ π) ≤ ε , provided that N ≥
2L̃2Dφ(π, µ1/2)

ε2
.

Proof. See Appendix C.4.

The assumption (3.2) is stronger than relative Lipschitzness: if V satisfies (3.2) and φ is 1-strongly
convex w.r.t. ‖·‖, then V is L-relatively Lipschitz with respect to φ with L ≤ L̃. When ‖·‖ is the
Euclidean norm and φ = ‖·‖2

2 , then we recover a special case of [DMM19, Corollary 14].

We now make a number of remarks about our result.
Remark 4 (Implementing µN ). One can output a sample from µN by simply outputting one of the
iterates {Xk}Nk=1 chosen uniformly at random.
Remark 5 (Convergence in other metrics). Using standard inequalities, our results for convergence
in KL divergence imply convergence in a number of other information divergences such as the total
variation distance, see [Tsy09, §2.4].

When V is α-strongly convex (w.r.t. ‖·‖
2

2 ), then the T2 transportation-cost inequality [Vil09, Theorem
22.14] αW 2

2 (µ, π) ≤ DKL(µ ‖ π) implies convergence in the W2 distance as well. In general, we do
not have convergence inW2, but we can always obtain convergence with respect to a different optimal
transport cost, namely, the Bregman transport cost DV associated with V . This is a consequence of
Corollary 1 [also see CE17, Proposition 1], which asserts that DV (µ, π) ≤ DKL(µ ‖ π).
Remark 6 (Dimension dependence). Ignoring for now the dependence on β′ (which may also
have a dimension dependence depending on the application), the Bregman divergence Dφ(π, µ0)
term is typically of size O(d) (see Section 5 for a particular instance of this). Thus, our overall
dimension dependence is O(d2) for the weakly convex case and O(d) for the strongly convex case.
Overall, this is a significantly better dependence on the dimension as compared to the previous
works [BDMP17, BEL18]; we perform a detailed comparison in Section 5 for a specific setting.

We also remark that mirror descent has classically been used for dimension reduction by changing
the geometry of the algorithm from `2 to `1. We investigate the possibility of doing the same for
sampling in Appendix E.2.

1In this case, Mφ = 0, so the Lipschitz constant L does not enter the final result. In particular, it is not
contradictory to assume strong convexity (α > 0).
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Remark 7 (Comparison with [HKRC18]). [HKRC18] show that for strictly log-concave targets,
there exists a good mirror map φ for which the pushforward of the target distribution via∇φ enjoys
the same guarantees as ordinary Langevin. However, this result is only existential and gives no
guidance on how to construct the mirror map. In contrast, our theorems hold for any choice of mirror
map which satisfies our assumptions, and provide guidance on how to choose the mirror map. Also,
our relative smoothness condition allows for potentials which blow up at the boundary of their domain
(i.e. the target distribution vanishes near the boundary of its support), whereas this is forbidden by the
assumptions of [HKRC18]. Lastly, our algorithm does not require computing the third derivative of
the mirror map, whereas this is required for [HKRC18].
Remark 8 (Comparison with [ZPFP20]). [ZPFP20] performs an analysis of the Euler-Maruyama
discretization of MLD, which we temporarily refer to as MLA′. Our result guarantees that for any
desired accuracy ε, it is possible to choose the step size sufficiently small so that MLA achieves the
target accuracy; in contrast, the result of [ZPFP20] only guarantees that MLA′ contracts to within a ball
around π of radius O(

√
d) (measured w.r.t. a modified Wasserstein distance).2 Moreover, [ZPFP20]

conjecture that their bias term is unavoidable.

In light of our result, we believe that it is an interesting open question to resolve their conjecture.
Their conjecture, if true, suggests that replacing MLA:2 in our algorithm by a single step of the Euler-
Maruyama discretization has disastrous effects on the convergence of the algorithm, and therefore
provides further support for considering MLA instead of MLA′.

Recently, after the first draft of our paper was published online, Li et al. [LTVW21] gave an analysis of
MLA′ under a subset of the assumptions of [ZPFP20] which indeed exhibits vanishing bias, provided
that the relative strong convexity parameter of the potential is sufficiently large compared to the
modified self-concordance parameter of the mirror map. It remains an open question to remove
this latter restriction from their work, and moreover to obtain similar results under the more usual
definitions of relative convexity/smoothness and self-concordance that we adopt in this work.

In order to generalize the discretization analysis from the vanilla Langevin algorithm to the mirror-
Langevin algorithm, in the next section we prove a new displacement convexity result for the entropy
with respect to the Bregman transport cost which may be of independent interest.

4 Convexity of the entropy with respect to the Bregman divergence

It is well-known that the entropy functional H is displacement convex along W2 geodesics [AGS08,
Theorem 9.4.11]. In fact, this displacement convexity is crucial in showing that DKL(· ‖ π) = E + H
is displacement convex (when π is log-concave), which in turn is used to analyze the convergence of
LD to the target measure. Therefore, in order to understand the convergence of MLD, it is crucial
to see if such a result is true when W2 is replaced by Dφ. We prove that indeed the displacement
convexity-like property holds for H under Dφ-optimal couplings.
Theorem 4 (“Convexity” of the entropy with respect to the Bregman divergence). Let µ, ν be
probability measures on Rd and let X ∼ µ, Y ∼ ν be coupled according to the Bregman transport
cost Dφ(µ, ν). Then, it holds that

H(ν) ≥ H(µ) + E
〈
[∇W2H(µ)](X), Y −X

〉
.

As a corollary, we can use the calculus of optimal transport in order to recover the transportation-cost
inequality of [CE17]. In the following, we do not carry out the approximation arguments necessary
to make the proof fully correct because a rigorous proof of the statement is already given in [CE17].3
Rather, our main purpose in giving this argument is simply to point out the convexity principle which
underlies the transport inequality.
Corollary 1 ([CE17, Proposition 1]). For any probability measure µ on Rd,

DKL(µ ‖ π) ≥ DV (µ, π).

Proof Sketch. Let (X,Y ) be optimally coupled according to the Bregman transport cost DV (·, ·)
between µ and π. We decompose DKL(µ ‖ π) = EV (X) + H(µ). On one hand, the first term is

EV (X) = EV (Y ) + E〈∇V (Y ), X − Y 〉+ EDV (X,Y ).

2Notably, the radius of this ball is comparable to the distance at initialization.
3In fact, the proof of [CE17] does not even require convexity of V .
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On the other hand, the convexity result (Theorem 4) shows that

H(µ) ≥ H(π) + E〈∇W2
H(π)(Y ), X − Y 〉.

Putting these together, we obtain

DKL(µ ‖ π)

≥ EV (Y ) + E〈∇V (Y ), X − Y 〉+ EDV (X,Y ) + H(π) + E〈∇W2
H(π)(Y ), X − Y 〉

= DKL(π ‖ π) + E
〈
[∇V +∇W2

H(π)](Y ), X − Y
〉

+ EDV (X,Y ) = EDV (X,Y ),

since ∇V +∇W2H(π), the W2 gradient of DKL(· ‖ π) at π, is zero. This proves the result.

5 Application to Bayesian logistic regression

In this section, we apply our main result to Bayesian logistic regression. For more applications of our
result, such as the possibility of dimension reduction and sampling from non-smooth distributions,
we refer the readers to Appendix E.

We recall the setting of Bayesian logistic regression: we observe pairs (Xi, Yi), i = 1, . . . , n, where
Xi ∈ Rd and Yi ∈ {0, 1}. The data are assumed to follow the model

Yi ∼ Bernoulli
( exp 〈θ,Xi〉

1 + exp 〈θ,Xi〉

)
, independently for i = 1, . . . , n. (5.1)

Here, the parameter θ itself is assumed to be a random variable taking values in Rd. If we assume
that θ has a prior density λ with respect to Lebesgue measure, then the posterior distribution is

π(θ) ∝ λ(θ) exp
[ n∑
i=1

(
Yi 〈θ,Xi〉 − ln(1 + exp 〈θ,Xi〉)

)]
.

Since it may be computationally infeasible to explicitly compute the normalizing constant for the
posterior distribution, we turn towards sampling algorithms.

When we take a prior λ which has full support on Rd, e.g. a Gaussian prior, then we may apply
off-the-shelf methods such as the Langevin diffusion (LD). However, if we choose a prior which has
compact support, then the unadjusted Langevin algorithm is no longer an acceptable option because
it outputs samples outside the support of the posterior. In this case, we must turn to other methods,
such as the projected Langevin algorithm [BEL18]. Here, we explore the use of the mirror-Langevin
algorithm (MLA) for constrained sampling.

For the rest of this section, we will focus on a particular problem for concreteness and interpretability:
we consider the uniform prior λ on the `∞ ball [−1, 1]

d. By duality, this is an attractive model when
the data (Xi)

n
i=1 have small `1-norm, i.e., are approximately sparse. A natural choice of mirror map

for this problem is the logarithmic barrier

φ(θ) =

d∑
i=1

(
ln

1

1− θ[i]
+ ln

1

1 + θ[i]

)
,

where we use θ[·] to denote the coordinates of θ ∈ Rd. Then, φ is 1-self-concordant ([Nes18, §5.1.3]).
We remark that the separability of the mirror map in this example implies that the diffusion step
MLA:2 can be simulated in O(d) steps, rather than O(d2).

For this setting, we compare the guarantees of MLA with the Projected Langevin Algorithm
(PLA) [BEL18] and the Moreau-Yosida unadjusted Langevin algorithm (MYULA) [BDMP17];
see Table 1. The details of the comparison are given in Appendix E.1.

We also perform a numerical experiment to compare the practical performance of MLA with PLA.
We take θ? := (0.9, . . . , 0.9) ∈ R10 as the ground truth, and we generate 1000 i.i.d. pairs (Xi, Yi)
where Xi is sampled uniformly from the `1 ball and Yi is generated from Xi according to (5.1) with
θ = θ?. We generate 30 samples using both MLA and PLA (both with step size η = 0.005). At each
iteration, we average the samples to obtain an estimate θk for the posterior mean, and we plot the
error ‖θk − θ?‖2 in Figure 2, averaged over 10 trials. We implement MLA:2 by performing 10 inner
iterations of an Euler-Maruyama discretization.

9



Algorithm Guarantee

MLA O(d/ε2)
PLA O(d15/ε6)

MYULA O(d9/ε3)

Table 1: Comparison of MLA with
other constrained sampling algo-
rithms for the number of iterations
required to output a sample whose
squared total variation distance to
π is at most ε. For simplicity, we
focus on the dependence with re-
spect to dimension and the accuracy
ε, and we defer details of the com-
parison to Appendix E.1.

Figure 2: We plot the error for estimators of the posterior mean
computed using both MLA and PLA, each taken with step size
η = 0.005.
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A Open questions

We conclude by discussing some questions for future research.

1. As we discuss in Remark 8, it is an open question to determine if the analyses of [ZPFP20,
LTVW21] can be improved to obtain vanishing bias for the Euler-Maruyama discretization
of MLD under weaker assumptions.

2. In our work, we analyze the sampling analogue of mirror descent under the assumption
that the mirror map is self-concordant. This notably bears resemblance to the development
of interior-point methodology in optimization [NN94], and it is an interesting problem to
develop further sampling analogues of interior-point algorithms.

3. In Appendix E.2, we conduct a preliminary investigation into the possibility that MLA can
alleviate the dependence on dimension for some sampling problems. However, Metropolis-
adjusted variants of the Langevin algorithm enjoy significantly better dependence on the
dimension as compared to their unadjusted counterparts; see [RR98, PST12, CLA+21].
Thus, the Metropolis-adjusted version of MLA may be a more appropriate setting in which
to investigate this dimension reduction question, which we leave to future work.

B Details on relative convexity and smoothness

For the reader’s convenience, we list basic facts regarding relative convexity and smoothness.
Proposition 1 ([LFN18, Proposition 1.1]). The following conditions are equivalent:

• f is β-smooth relative to h.

• βh− f is convex on Q.

• Under twice differentiability,∇2f(x) � β∇2h(x) for any x ∈ int(Q).

• 〈∇f(x)−∇f(y), x− y〉 ≤ β 〈∇h(x)−∇h(y), x− y〉 for all x, y ∈ int(Q).

Furthermore, the following conditions are equivalent:

• f is α-convex relative to h.

• f − αh is convex on Q.

• Under twice differentiability,∇2f(x) � α∇2h(x) for any x ∈ int(Q).

• 〈∇f(x)−∇f(y), x− y〉 ≥ α 〈∇h(x)−∇h(y), x− y〉 for all x, y ∈ int(Q).

C Proof of the convergence rates

C.1 Per-iteration progress bound

For the convergence rates of MLA, we first prove the following per-iterate progress bound, from
which Theorems 1 and 2 will be easily deduced.
Lemma 1 (Per-iteration progress bound). Assume β > 0. For 0 ≤ η ≤ 1

β , let Xk ∼ µk be the
iterates of MLA with step size η. Then, under Assumptions 1-3, the following holds:

ηDKL(µk+1 ‖ π) ≤ (1− αη)Dφ(π, µk)−Dφ(π, µk+1) + (β + 2MφL)dη2 . (C.1)

Proof. We decompose the KL divergence into two parts:

DKL(µ ‖ π) =

∫
Q
V (x) dµ(x)︸ ︷︷ ︸
=:E(µ)

+

∫
Q
µ(x) lnµ(x) dx︸ ︷︷ ︸

=:H(µ)

.

Here and throughout the paper, we abuse notation by identifying a measure µ with its density.
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The first term above has the interpretation of energy, while the second term has the interpretation of
(negative) entropy. The basic scheme of the proof follows the method in [DMM19], which views
the two steps of the update rule MLA as alternately dissipating the energy and the entropy. More
specifically, we will show that MLA:1 dissipates E and MLA:2 dissipates H, while the two steps do
not badly interfere with each other.

Our analysis proceeds by controlling each term in the following decomposition:

DKL(µk+1 ‖ π) = E(µk+1) + H(µk+1)− E(π)−H(π)

= E(µk+1/2)− E(π)︸ ︷︷ ︸
1

+E(µk+1)− E(µk+1/2)︸ ︷︷ ︸
2

+H(µk+1)−H(π)︸ ︷︷ ︸
3

.

Before we go into the analysis of each term, we outline our proof strategy. Term 1 corresponds to a
deterministic step of the mirror descent algorithm, and we adapt the analysis of mirror descent based
on the Bregman proximal inequality [CT93, Lemma 3.2].

For terms 2 and 3 , it will be important to understand the stochastic process (Zt)t∈[0,η] in MLA,
where Zt := ∇φ?(Wt), along with the corresponding marginal laws (νt)t∈[0,η]. There are two
important and distinct perspectives we can adopt. On one hand, the stochastic process (Zt)t∈[0,η] is a
diffusion, and can be studied via stochastic calculus. On the other hand, the laws (νt)t∈[0,η] follow a
Wasserstein “mirror flow” of the entropy functional H, in the sense that it evolves continuously in
Wasserstein space with tangent vector −[∇2φ]

−1∇W2
H(νt) (see Section 2.1 for a brief introduction

to Wasserstein calculus, and [CLGL+20] for a discussion of MLD from this perspective). In turn,
these two perspectives offer different calculation rules: stochastic calculus provides Itô’s formula
(see [LG16, Theorem 5.10] or [Str18, §3.3]), while Wasserstein calculus provides the rule

d

dt
F(νt) = −E〈∇W2F(νt)(Zt), [∇2φ(Zt)]

−1∇W2H(νt)(Zt)〉,

for any sufficiently well-behaved functional F on Wasserstein space. Both of these perspectives are
insightful, and we will employ both.

For term 2 , we show that MLA:2 does not greatly increase the energy, and we accomplish this
via calculations using Itô’s formula together with the relative smoothness and self-concordance
assumptions. Finally, we control term 3 by developing a new displacement convexity result
(Theorem 4) for the entropy functional H, which is crucial for applying Wasserstein calculus.

1 : Let Y be a random variable (defined on the same probability space) which is distributed
according to π. Then,

E(µk+1/2)− E(π) = E[V (Xk+1/2)]− E[V (Y )]

= E[V (Xk+1/2)]− E[V (Xk)] + E[V (Xk)]− E[V (Y )]

≤ E[
〈
∇V (Xk), Xk+1/2 −Xk

〉
+ βDφ(Xk+1/2, Xk)]

+ E[〈∇V (Xk), Xk − Y 〉 − αDφ(Y,Xk)]

= E[〈∇V (Xk), Xk+1/2 − Y 〉+ βDφ(Xk+1/2, Xk)− αDφ(Y,Xk)] ,
(C.2)

where the inequality follows due to the α-relative strong convexity and β-relative smoothness
of V . Now to control (C.2), we invoke a standard tool from optimization:

Lemma 2 (Bregman proximal inequality [CT93, Lemma 3.2]). For a convex function f
and a convex function φ of Legendre type, suppose that

x+ := arg min
z∈Q

[f(z) +Dφ(z, x)] .

Then,

f(x+)− f(y) ≤ Dφ(y, x)−Dφ(y, x+)−Dφ(x+, x) ∀y ∈ Q .
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Applying the Bregman proximal inequality (Lemma 2) with f(x) = η 〈∇V (Xk), x〉,

(C.2) ≤ E
[(1

η
− α

)
Dφ(Y,Xk)− 1

η
Dφ(Y,Xk+1/2) +

(
β − 1

η

)
Dφ(Xk+1/2, Xk)

]
≤ E

[(1

η
− α

)
Dφ(Y,Xk)− 1

η
Dφ(Y,Xk+1/2)

]
,

provided that 1
η ≥ β ⇔ η ≤ β−1. Choosing Y so that the coupling (Y,Xk) minimizes

E[Dφ(Y,Xk)], we obtain

η {E(µk+1/2)− E(π)} ≤ (1− αη)Dφ(π, µk)− E[Dφ(Y,Xk+1/2)]

≤ (1− αη)Dφ(π, µk)−Dφ(π, µk+1/2) .

2 : First, note from MLA that

E(µk+1)− E(µk+1/2) = E
[
V
(
∇φ?(Wη)

)
− V

(
∇φ?(W0)

)]
.

To compute the above term, we define f(x) := V (∇φ?(x)) and apply Itô’s formula to the
random variable f(Wη)− f(W0). To that end, we first compute the Hessian of f :

∇f(x) = ∇V (∇φ?(x))>∇2φ?(x) = ∇V (∇φ?(x))>[∇2φ(∇φ?(x))]
−1
,

∇2f(x) = ∇2V (∇φ?(x)) [∇2φ(∇φ?(x))]
−1

[∇2φ?(x)]

+∇V (∇φ?(x))> [∇2φ(∇φ?(x))]
−1

[∇3φ(∇φ?(x))] [∇2φ(∇φ?(x))]
−2
.

Itô’s formula now decomposes f(Wη)− f(W0) into the sum of an integral and a stochastic
integral. Intuitively, the stochastic integral has mean zero (since it is a local martingale),
and this can be rigorously argued using the standard technique of localization; we give the
argument at the end of this step. Thus, we concentrate on the expectation of the first term.
Writing Zt := ∇φ?(Wt), the above Hessian calculation gives

E[f(Wη)− f(W0)] (C.3)

= E
[∫ η

0

〈
∇2V (Zt) [∇2φ(Zt)]

−2
,∇2φ(Zt)

〉
dt
]

+ E
[∫ η

0

〈
∇V (Zt)

> [∇2φ(Zt)]
−1

[∇3φ(Zt)] [∇2φ(Zt)]
−2
,∇2φ(Zt)

〉
dt
]

= E
[∫ η

0

〈
∇2V (Zt), [∇2φ(Zt)]

−1〉
dt
]

(C.4)

+ E
[∫ η

0

tr
(
∇V (Zt)

> [∇2φ(Zt)]
−1

[∇3φ(Zt)] [∇2φ(Zt)]
−1)

dt
]
.

(C.5)

We can control (C.4) easily based on the relative smoothness of V : indeed, since ∇2V �
β∇2φ (see Appendix B),

(C.4) ≤ βdη .
To control (C.5), we use the self-concordance of φ. We recall here the following result:

Proposition 2 ([Nes18, Corollary 5.1.1]). A function φ is self-concordant with a constant
Mφ ≥ 0 if and only if for any x ∈ dom(φ) and any direction u ∈ Rn we have

∇3φ(x)u � 2Mφ ‖u‖∇2φ(x)∇2φ(x) .

Using Proposition 2, it follows that

(C.5) ≤ 2Mφ

∫ η

0

E
[∥∥[∇2φ(Zt)]

−1∇V (Zt)
∥∥
∇2φ(Zt)

tr
(
[∇2φ(Zt)] [∇2φ(Zt)]

−1)]
dt

≤ 2Mφd

∫ η

0

E
[
‖∇V (Zt)‖[∇2φ(Zt)]

−1

]
dt ≤ 2MφLdη.
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Thus, our calculation shows that

E(µk+1)− E(µk+1/2) ≤ (β + 2MφL)dη. (C.6)

We now sketch the localization argument. Let (τ`)`∈N be a localizing sequence for
(Wt)t∈[0,η]. The argument above may be applied rigorously for the stopped process
(Wt∧τ`)t∈[0,η] to obtain EV (Zη∧τ`) − EV (Z0) ≤ (β + 2MφL)dη. Since V is bounded
below, we use Fatou’s lemma to pass `→∞ and deduce (C.6).

3 : Let νt denote the law of Zt := ∇φ?(Wt). For this step, we start with a calculation of the
derivative of t 7→ Dφ(π, νt). Noting that ∇2Dφ(y, x) = −∇2φ(x) (y − x) and that νt
follows the Wasserstein tangent vector −[∇2φ]

−1∇W2H(νt), we expect that

d

dt
Dφ(π, νt) = E

〈
[∇2φ(Zt)]

−1∇W2
H(νt)(Zt),∇2φ(Zt) (Y − Zt)

〉
= E〈∇W2

H(νt)(Zt), Y − Zt〉,
where (Y,Zt) are optimally coupled for π and νt for the Bregman transport cost. In general,
the differentiability properties of optimal transport costs can be quite subtle, but thankfully
it is much easier to establish the superdifferentiability

d

dt+
Dφ(π, νt) ≤ E〈∇W2H(νt)(Zt), Y − Zt〉

at almost all t, which is all that will be needed for the subsequent argument. The superdiffer-
entiability result is proven along the lines of [OV00, Lemma 2]; see also [AGS08, Theorem
10.2.2] or the proof of [Vil09, Theorem 23.9].

Next, we apply a result which can be interpreted as convexity of the entropy functional with
respect to the Bregman divergence; it will be given as Theorem 4 in the next section. It
implies that for t ∈ [0, η],

d

dt+
Dφ(π, νt) ≤ E〈∇W2

H(νt)(Zt), Y − Zt〉 ≤ H(π)−H(νt) ≤ H(π)−H(νη) ,

where the last inequality follows since

d

dt
H(νt) = −E

[〈
∇W2

H(νt)(Zt), [∇2φ(Zt)]
−1∇W2

H(νt)(Zt)
〉]
≤ 0 ,

which implies H(νη) ≤ H(νt) for any t ∈ [0, η]. Integrating from 0 to η, we obtain

Dφ(π, νη)−Dφ(π, ν0) ≤ η {H(π)−H(νη)} ,
which is the same as

η {H(µk+1)−H(π)} ≤ Dφ(π, µk+1/2)−Dφ(π, µk+1) .

Combining the upper bounds from 1 , 2 , and 3 , the proof of Lemma 1 is complete.

C.2 Proof of Theorem 1

From the per-iteration progress bound (Lemma 1), we have for any k ∈ N
ηDKL(µk+1 ‖ π) ≤ Dφ(π, µk)−Dφ(π, µk+1) + β′dη2 . (C.7)

Summing (C.7) over k = 0, 1, . . . , N − 1,

η

N∑
k=1

DKL(µk ‖ π) ≤ Dφ(π, µ0)−Dφ(π, µN ) + β′dη2N .

Using the convexity of the KL divergence [which follows from the Gibbs variational principle; see
RAS15, §5.1],

DKL(µN ‖ π) ≤ Dφ(π, µ0)

Nη
+ β′dη ≤ ε

2
+
ε

2
,

where the last inequality follows from the choice N ≥ 2Dφ(π,µ0)
ηε and η ≤ ε

2βd .
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C.3 Proof of Theorem 2

Let us first prove the convergence in Bregman transport cost. For any k ∈ N, the per-iteration
progress bound (Lemma 1) together with the fact DKL(µk+1 ‖ π) ≥ 0 imply

Dφ(π, µk+1) ≤ (1− αη)Dφ(π, µk) + β′dη2 . (C.8)
Recursively applying (C.8) for k = 0, 1, . . . , N − 1, we obtain

Dφ(π, µN ) ≤ (1− αη)
N
Dφ(π, µ0) + β′dη2

N−1∑
k=0

(1− αη)
k

≤ (1− αη)
N
Dφ(π, µ0) + β′dη2

∞∑
k=0

(1− αη)
k

≤ exp(−αηN)Dφ(π, µ0) +
β′dη

α
≤ ε

2
+
ε

2
,

where the last inequality follows since N ≥ 1
αη ln

2Dφ(π,µ0)
ε and η ≤ αε

2β′d . Having proved the
convergence in terms of the Bregman transport cost, the convergence in terms of the KL divergence
follows by applying Theorem 1.

C.4 Analysis for the non-smooth case (Theorem 3)

The analysis for the non-smooth case proceeds in a similar manner to the smooth case. We first prove
the following per-iterate progress bound.
Lemma 3 (Per-iteration progress bound; non-smooth case). LetXk ∼ µk be the iterates of MLA with
step size η > 0. Assume that φ is 1-strongly convex w.r.t ‖·‖, and that V is convex and L̃-Lipschitz
w.r.t ‖·‖. Then, the following holds:

ηDKL(µk+1 ‖ π) ≤ Dφ(π, µk+1/2)−Dφ(π, µk+3/2) +
η2L̃2

2
. (C.9)

Proof. Our analysis proceeds by controlling each term in the following decomposition:
DKL(µk+1 ‖ π) = E(µk+1)− E(π)︸ ︷︷ ︸

A

+H(µk+1)−H(π)︸ ︷︷ ︸
B

.

For term B , we invoke the following upper bound (from the analysis of term 3 in the proof of
Lemma 1):

η {H(µk+1)−H(π)} ≤ Dφ(π, µk+1/2)−Dφ(π, µk+1) . (C.10)
Let us turn to A , and let Y be a random variable (defined on the same probability space) which is
distributed according to π. Since we have

Xk+3/2 = arg min
x∈Q

[〈η∇V (Xk+1), x〉+Dφ(x,Xk+1)] ,

applying the Bregman proximal inequality (Lemma 2) with f(x) = η 〈∇V (Xk+1), x〉 gives
η 〈∇V (Xk+1), Xk+3/2 − Y 〉 ≤ Dφ(Y,Xk+1)−Dφ(Y,Xk+3/2)−Dφ(Xk+3/2, Xk+1) ,

which after rearranging becomes
Dφ(Y,Xk+3/2)−Dφ(Y,Xk+1) ≤ η 〈∇V (Xk+1), Y −Xk+3/2〉 −Dφ(Xk+3/2, Xk+1) . (C.11)

On the other hand, the right hand side of (C.11) can be controlled using the convexity, the Lipschitz-
ness of V , and strong convexity of φ:

RHS of (C.11)
= η 〈∇V (Xk+1), Y −Xk+1〉+ η 〈∇V (Xk+1), Xk+1 −Xk+3/2〉 −Dφ(Xk+3/2, Xk+1)

≤ η [V (Y )− V (Xk+1)] + η ‖∇V (Xk+1)‖? ‖Xk+1 −Xk+3/2‖ −
1

2
‖Xk+1 −Xk+3/2‖2

≤ η [V (Y )− V (Xk+1)] +
η2

2
‖∇V (Xk+1)‖2?

≤ η [V (Y )− V (Xk+1)] +
η2L̃2

2
.
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For the LHS of (C.11), choose Y so that the coupling (Y,Xk+1) minimizes E[Dφ(Y,Xk+1)] to
obtain

E[LHS of (C.11)] = E[Dφ(Y,Xk+3/2)]−Dφ(π, µk+1) ≥ Dφ(π, µk+3/2)−Dφ(π, µk+1) .

Combining these upper and lower bounds, (C.11) becomes:

η [E(µk+1)− E(π)] ≤ Dφ(π, µk+1)−Dφ(π, µk+3/2) +
η2L̃2

2
.

Together with (C.10), the proof is complete.

Now using Lemma 3, we prove Theorem 3.

Proof of Theorem 3. From Lemma 3, we have for any k ∈ N

ηDKL(µk+1 ‖ π) ≤ Dφ(π, µk+1/2)−Dφ(π, µk+3/2) +
η2L̃2

2
. (C.12)

Summing (C.12) over k = 0, 1, . . . , N − 1,

η

N∑
k=1

DKL(µk ‖ π) ≤ Dφ(π, µ1/2)−Dφ(π, µN+1/2) +
η2L̃2

2
N .

Again using the convexity of the KL divergence, we obtain

DKL(µN ‖ π) ≤
Dφ(π, µ1/2)

Nη
+
ηL̃2

2
≤ ε

2
+
ε

2
,

where the last inequality follows from the choice N ≥ 2Dφ(π,µ1/2)

ηε and η ≤ ε
L̃2

.

D Proofs for the convexity of entropy

To prove Theorem 4, we will use the known result about the convexity of H along generalized
geodesics [AGS08, Theorem 9.4.11]. To that end, the first step is to obtain a characterization of the
optimal Bregman transport coupling which is analogous to Brenier’s theorem. The following theorem
is of independent interest:
Theorem 5 (Brenier’s theorem for the Bregman transport cost). Let µ, ν be probability measures on
Rd. The optimal Bregman transport coupling (X,Y ) for µ and ν is of the form

∇φ(X)−∇φ(Y ) = ∇h(X),

where h : Rd → R ∪ {−∞} is such that φ− h is convex..

Proof. From the general theory of optimal transport duality, it holds that

∇1Dφ(X,Y ) = ∇h(X),

where h is a Dφ-concave function [see Vil09, Theorem 10.28].4 The left-hand side of this equation
evaluates to∇φ(X)−∇φ(Y ), so we simply have to check that Dφ-concavity of h implies that φ−h
is convex (which is in fact equivalent to saying that h is 1-relatively smooth with respect to φ, see
Appendix B).

Recall that the Dφ-concavity of h means there exists a function h̃ : Rd → R ∪ {−∞} such that

h(x) = inf
y∈Rd
{Dφ(x, y)− h̃(y)},

4In fact, there are three assumptions for [Vil09, Theorem 10.28]. Here, we explicitly check them one
by one for clarity. (i) Super-differentiability: Dφ is clearly differentiable on Q as φ is of class C3. (ii)
Injectivity of gradient: ∇1Dφ(x, ·) = ∇φ(x)−∇φ(·) is injective as φ is of Legendre type. (iii) µ-almost-sure
differentiability of Dφ-concave functions: In (D.1), we actually show that for any Dφ-concave function h, φ− h
is convex and thus differentiable Lebesgue a.e. [Roc70, Theorem 25.5]. Since µ is absolutely continuous w.r.t.
Lebesgue measure and φ is differentiable, h must be differentiable µ-almost surely.
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see [Vil09, Definition 5.2].5 If we expand out the definition of the Bregman divergence, we can
rewrite this as

φ(x)− h(x) = sup
y∈Rd
{〈∇φ(y), x− y〉+ h̃(y) + φ(y)}. (D.1)

As a supremum of affine functions, we see that φ− h is convex, which completes the proof.

We now prove Theorem 4 using Theorem 5:

Proof of Theorem 4. By Theorem 5, the optimal Bregman transport coupling is of the form∇φ(Y ) =
∇(φ − h)(X) = ∇ζ(X), where we have defined the convex function ζ := φ − h. Hence, letting
ν denote the law of Y := ∇φ(Y ), it follows that (X,∇ζ(X)) is a W2 optimal coupling between µ
and ν. Furthermore, since φ is a convex function of Legendre type, (∇ζ(X),∇φ? ◦ ∇ζ(X)) is also
a W2 optimal coupling between ν and ν. Noting that

∇φ? ◦ ∇ζ(X) = ∇φ? ◦ ∇φ(Y ) = Y ,

it follows that (X,Y ) is a generalized geodesic according to W2. Therefore, the convexity of H
along generalized geodesics [AGS08, Theorem 9.4.11] concludes the proof (see [SKL20, Lemma
4]).

Remark 9. For reader’s convenience, we provide a direct calculation that (formally) shows the
convexity result. Since we have shown Y = ∇φ? ◦ ∇ζ(X), the change of variable formula gives

H(ν) =

∫
ν(y) ln ν(y) dy =

∫
µ(x) ln ν

(
∇φ? ◦ ∇ζ(x)

)
dx

=

∫
µ(x) ln

µ(x)

det∇(∇φ? ◦ ∇ζ)(x)
dx.

(Here the change of variables is valid since [∇(∇φ? ◦ ∇ζ)](x) = [∇2φ?(∇ζ(x))] [∇2ζ(x)] � 0.)
Thus, using the convexity of − ln det and integrating by parts, we obtain

H(µ)−H(ν) = −
∫
µ(x) ln det∇(∇φ? ◦ ∇ζ)(x) dx

≥ −
∫
µ(x) tr[∇(∇φ? ◦ ∇ζ)(x)− Id] dx =

∫
〈∇µ(x), (∇φ? ◦ ∇ζ)(x)− x〉dx

=

∫
〈∇ lnµ(x), (∇φ? ◦ ∇ζ)(x)− x〉dµ(x) .

Recalling that∇W2
H(µ) = ∇ lnµ and Y = ∇φ?(∇ζ(X)), the convexity result follows.

E Further applications

E.1 Details for the Bayesian logistic regression application

We may compute

V (θ) =

n∑
i=1

(
−Yi 〈θ,Xi〉+ ln(1 + exp 〈θ,Xi〉)

)
, φ(θ) =

d∑
i=1

(
ln

1

1− θ[i]
+ ln

1

1 + θ[i]

)
∇V (θ) = −

n∑
i=1

(
Yi −

exp 〈θ,Xi〉
1 + exp 〈θ,Xi〉

)
Xi, ∇φ(θ) =

d∑
i=1

( 1

1− θ[i]
− 1

1 + θ[i]

)
ei,

∇2V (θ) =

n∑
i=1

exp 〈θ,Xi〉
(1 + exp 〈θ,Xi〉)2

XiX
>
i , ∇2φ(θ) = diag

[ 1

(1− θ)2
+

1

(1 + θ)
2

]
.

5In Villani’s book, he works with the definition of c-convexity rather than c-concavity, but this is merely a
matter of convention; c.f. [Vil03, §2.4] for the conventions regarding c-concavity.
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From these expressions, we see that

0 � ∇2V �
n∑
i=1

XiX
>
i , 2Id � ∇2φ.

Let L := sup[−1,1]d ‖∇V ‖ denote the (ordinary) Lipschitz constant of V , and let β denote the
(ordinary) smoothness parameter of V (from above we see that β can be taken to be the largest
eigenvalue of

∑n
i=1XiX

>
i ). Note that the 2-strong convexity of φ implies that V is L/

√
2-relatively

Lipschitz and β/2-relatively smooth with respect to φ, so Theorem 1 holds with

β′ =
β

2
+
√

2L.

In order to fully understand the quantitative convergence rate provided by Theorem 1, we must also
bound the Bregman divergence Dφ(π, µ0). We have:
Lemma 4. Let µ0 = δ0 be the point mass at 0. Then, for the logarithmic barrier mirror map φ
defined above, we have Dφ(π, µ0) ≤ 4.1 (1 + β + L) d.

Proof. See Appendix F.

From Theorem 1, we can deduce that using N iterations of MLA, we can obtain a distribution µMLA
N

such that

2‖µMLA
N − π‖2TV ≤ DKL(µMLA

N ‖ π) ≤ ε, provided N ≥ 23(1 + β + L)
2
d2

ε2
max

{
1,

ε

2d

}
,

where β is the largest eigenvalue of
∑n
i=1XiX

>
i and L := sup[−1,1]d ‖∇V ‖ is the usual Lipschitz

constant of V ; for details, see Appendix E.1. In fact, if we use the non-smooth guarantee in Theorem 3,
then we can improve this to O(L2d/ε2) iterations. For comparison purposes, the guarantee for the
projected Langevin algorithm (PLA) [BEL18, Theorem 1] with R =

√
d implies

‖µPLA
N − π‖2TV ≤ ε, provided N ≥ Ω̃

( (
√
d+ β + L)

12
d9

ε6

)
.

On the other hand, the Moreau-Yosida unadjusted Langevin algorithm (MYULA) [BDMP17, Theo-
rem 2] with R =

√
d provides the guarantee6

‖µMYULA
N − π‖2TV ≤ ε, provided N ≥ Ω̃

(β4d9

ε3

)
.

E.2 Better dimension dependency via mirror Langevin

As described in [Bub15, §4.3], a classical application of mirror descent is to obtain better dependence
on the dimension by changing the geometry of the optimization algorithm from `2 to `1. We
investigate the possibility of analogous improvements in the setting of constrained sampling.

We consider a simple toy problem in which the constraint set is the interior of the filled-in simplex
Q := {x ∈ Rd | x > 0,

∑d
i=1 x[i] < 1}, and we take the potential to be a quadratic

V (x) :=
1

2
〈x,Ax〉,

where A ∈ Rd×d is a symmetric positive semidefinite matrix with all entries bounded in magnitude
by 1. We choose as our mirror map the barrier:

φ(x) :=

d∑
i=1

ln
1

x[i]
+ ln

1

1−
∑d
i=1 x[i]

.

6To be precise, their bound on the number of iterates required reads N ≥ Ω̃(∆4
2d

7/ε3), where ∆2 is a
parameter measuring how close the domain dom(V ) is to an isotropic convex body. For concreteness, we bound
this parameter by βR following [BDMP17, pg. 7].
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This map is self-concordant with parameter 1.

We can compute

∇φ(x) =

d∑
i=1

(
− 1

x[i]
+

x[i]

1−
∑d
j=1 x[j]

)
ei,

∇2φ(x) = diag
1

x2
+

Id

1−
∑d
i=1 x[i]

+
xx>

(1−
∑d
i=1 x[i])

2 .

Since x[i] < 1 for all i = 1, . . . , d, it follows that 〈v,diag(1/x2)v〉 ≥ 〈v,diag(1/x)v〉 ≥ ‖v‖21,
where the second inequality follows from the strong convexity of the entropy with respect to the
`1-norm. Hence, φ is 1-strongly convex with respect to the `1-norm. From our assumption on A,

‖∇V (x)‖[∇2φ(x)]−1 ≤ ‖∇V (x)‖∞ ≤ 1,

〈v,∇2V (x)v〉 ≤
∣∣∣ d∑
i,j=1

Ai,jvivj

∣∣∣ ≤ d∑
i,j=1

|vi||vj | ≤ ‖v‖21,

which implies that V is 1-relatively Lipschitz and 1-relatively smooth with respect to φ, and the
assumptions of Theorem 1 hold with β′ = 3. In contrast, if we had instead considered the `2-norm,
then the Lipschitz constant of V could be as large as

√
d, and the smoothness parameter of V could

be as large as d. Together with a warm start, this suggests that MLA could attain a better dimension
dependence for this example.
Remark 10. Alternatively, we can apply Theorem 3 with the entropic mirror map

φ(x) =

d∑
i=1

x[i] lnx[i] +
(

1−
d∑
i=1

x[i]
)

ln
(

1−
d∑
i=1

x[i]
)

to the above setting; note that Theorem 3 only requires standard assumptions for mirror descent
guarantees (e.g., [Bub15, Theorem 4.2]), and does not require the mirror map to be self-concordant.
In particular, V is 1-Lipschitz w.r.t. ‖·‖1 and φ is strongly convex w.r.t. ‖·‖1, so Theorem 3 implies
that DKL(µN ‖ π) ≤ ε after N = O

(Dφ(π,µ1/2)

ε2

)
iterations. For comparison, note that the approach

of Hsieh et al. [HKRC18] does not apply to this example, because the pushforward of the distribution
via the entropic mirror map is not log-concave.

In Figure 3, we report the results of a preliminary numerical study which indicates that MLA may
have an advantage in high dimension. In this example, we generate a 100× 100 matrix Ã with i.i.d.
entries drawn uniformly from [−1, 1], and we take A to be the matrix ÃÃ>, rescaled so the largest
magnitude of the entries is 1. We compare the performance of MLA (with step size η = 5× 10−3

and 10 inner iterations of the Euler-Maruyama discretization for MLA:2) with PLA (taken with step
size η = 10−6). The step sizes were tuned to be as large as possible while avoiding instabilities in
the algorithms. We plot the convergence in W 2

2 , averaged over 10 trials.

E.3 Sampling from non-smooth distributions

Thus far, we have focused on distributions whose potential V is bounded within its domain dom(V ).
However, in many applications, one is required to sample from a distribution whose potential V
blows up near the boundary of its domain. Such distributions violate the standard assumptions of
Lipschitzness and smoothness and hence are beyond the scope of the existing guarantees. In this
subsection, we demonstrate that one can still sample from such distributions via MLA together with
the relative Lipschitzness and relative smoothness.

Consider the Dirichlet distribution π which is defined on the interior of the filled-in simplex Q :=

{x ∈ Rd | x > 0,
∑d
i=1 x[i] < 1} by the potential

V (x) = a0 ln
1

1−
∑d
i=1 x[i]

+

d∑
i=1

ai ln
1

x[i]
,
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Figure 3: 30 iterations of MLA vs. PLA for a 100-dimensional example with step size 5 × 10−3

for MLA and 10−6 for PLA. The step sizes were tuned to be as large as possible while avoiding
instability. The results are averaged over 10 runs to smooth out the curves.

for some constants a0, a1, . . . , ad > 0, and we take V = φ. Then, it is well-known that V
is (maxi=0,1,...,d ai

−1/2)-self-concordant [Nes18, Theorem 5.1.1]. Also, from (
∑d
i=0 ai)-exp-

concavity of V [Nes18, Theorem 5.3.2], it holds that ‖∇V (x)‖[∇2V (x)]−1 ≤ (
∑d
i=0 ai)

1/2
. There-

fore, it follows that V is (
∑d
i=0 ai)

1/2
-Lipschitz, 1-convex, and 1-smooth relative to V , which

implies that the assumptions of Theorem 2 holds with

β′ = 1 + 2
(

max
i=0,1,...,d

ai
−1/2) ( d∑

i=0

ai

)1/2
≤ 3
√
d

√
amax

amin
,

where amax := maxi=0,1,...,d ai and amax := mini=0,1,...,d ai. Therefore, one can obtain a mixture
distribution µN after N iterations of MLA such that

DKL(µN ‖ π) ≤ ε , provided that N ≥ Ω̃
(√amax

amin

d3/2

ε

)
.

Using this example, we perform a numerical experiment to investigate the effect of simulating the
diffusion step (MLA:2) more faithfully. In Figure 4, we run MLA for 30 iterations with step size
0.005. The potential V and the mirror map φ are taken as above, with a0 = a1 = · · · = a10 = 2.
When implementing MLA:2, we use k inner iterations of an Euler-Maruyama discretization, where k
ranges in {1, 5, 10, 20}, and the results are averaged over 10 trials. We do indeed observe that a more
precise implementation of MLA:2 yields better results, although the difference is subtle.

F Auxiliary results

Lemma 5. Let π be a probability distribution supported on [−1, 1]
d which has density proportional

to exp(−V ). Assume that V : [−1, 1]
d → Rd is L-Lipschitz and β-smooth. Then, we have the

following bound on the marginal density π1 of π on the first coordinate:

sup
[−1,1]

π1 ≤ 3(1 +
√
β + L).
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Figure 4: We investigate the effect of implementing MLA:2 using 1, 5, 10, or 20 steps of an Euler-
Maruyama discretization. A more faithful implementation of MLA:2 appears to bring slight benefits.

Proof. Let Z :=
∫
[−1,1]d exp(−V ) denote the normalizing constant, let θ?1 ∈ [−1, 1] be the maxi-

mizer of π1, and let θ ∈ [−1, 1]
d. We can write θ = (θ1, θ−1), where θ−1 ∈ Rd−1.7 Then,

V (θ) ≤ V (θ?1 , θ−1) + ∂1V (θ?1 , θ−1) (θ1 − θ?1) +
β

2
(θ1 − θ?1)

2

≤ V (θ?1 , θ−1) + L |θ1 − θ?1 |+
β

2
(θ1 − θ?1)

2

≤ 1

2
+ V (θ?1 , θ−1) +

β + L2

2
(θ1 − θ?1)

2
.

This yields the lower bound

π1(θ1) =
1

Z

∫
[−1,1]d−1

exp
(
−V (θ1, θ−1)

)
dθ−1

≥ exp[−(β + L2) (θ1 − θ?1)
2
/2− 1/2]

Z

∫
[−1,1]d−1

exp
(
−V (θ?1 , θ−1)

)
dθ−1

= exp

[
−1

2
(β + L2) (θ1 − θ?)2 −

1

2

]
sup
[−1,1]

π1.

Next,

1 =

∫
[−1,1]

π1(θ1) dθ1 ≥
sup[−1,1] π1√

e

∫
[−1,1]

exp
[
−1

2
(β + L2) (θ1 − θ?)2

]
dθ1

≥
sup[−1,1] π1√

e

∫ 1

0

exp
[
−1

2
(β + L2)x2

]
dx.

Let c :=
∫ 1

0
exp(−x2) dx. By splitting into the two cases β + L2 ≤ 1 and β + L2 ≥ 1, we can

deduce the inequality

1 ≥
c sup[−1,1] π1√

e

( 1√
β + L2

∧ 1
)
.

It yields

sup
[−1,1]

π1 ≤
√
e

c

(√
β + L2 ∨ 1

)
≤
√
e

c

(
(
√
β + L) ∨ 1

)
≤
√
e

c
(1 +

√
β + L),

which is the result.
7In Section 5 we used the notation θ[i] for the ith coordinate of θ, but for the sake of simplicity we switch to

the notation θi for this proof.
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Proof of Lemma 4. Let πi denote the ith marginal of π. Then, since φ(0) = ∇φ(0) = 0, we must
estimate

Dφ(π, µ0) =

∫
[−1,1]d

d∑
i=1

ln
1

1− θ[i]2
π(θ) dθ =

d∑
i=1

∫
[−1,1]

ln
1

1− θ[i]2
πi(θ[i]) dθ[i]

≤ C (1 +
√
β + L)d

∫
[−1,1]

ln
1

1− x2
dx ≤ 3

2
C (1 + β + L)d

∫
[−1,1]

ln
1

1− x2
dx,

where C is the constant from the proof of Lemma 5. It yields the result.
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