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Model Kendall𝜏𝑏 Kendall 𝜏𝑐 Acc. Acc.(1 Ref)

YOLOv8 53.9 55.2 84.5 92.0
MobileSAMv2 55.9 56.4 86.1 93.1

Table 1: Ablation studies of semantic visual regions extractor.

1 MORE IMPLEMENTATION DETAILS
In this section, we introduce more implementation details about
each module of our proposed HICE-S.

Image region generation. A single image typically contains
numerous visual concepts, distributed throughout various local re-
gions of the image. To extract local visual representation, previous
metrics [2, 3] utilize an off-the-shelf detector to acquire objects
bounding boxes in the image. However, the rectangular bounding
boxes include undesired background information in that most ob-
jects have irregular boundaries. To better represent local visual
concepts, we leverage a segmentation model to obtain exact seman-
tic regions. Recently, the advent of the segment-anything (SAM)
model has been a prominent milestone for general image segmenta-
tion owing to powerful zero-shot capabilities. SAM addresses two
practical yet challenging segmentation tasks: segment anything
(SegAny), which utilizes a certain point to predict the mask for a
single object of interest and segment everything (SegEvery), which
predicts the masks for all objects on the image. To conduct fast and
comprehensive image segmentation, we choose MobileSAMv2 [5]
which is a lightweight SAMmodel designed for fast SegEvery mode.
To extract semantic visual regions, we leverage MobileSAMv2 to
extract region masks {A𝑛}𝑁𝑛=1 to represent different local visual
concepts. For better model relationships between objects in the
image, we utilize a full-one mask Ã to represent the whole image.
Finally, we get a region mask set ({A𝑛}𝑁𝑛=1, Ã) to hierarchically
represent the original image. To compare mobileSAMv2 with the
conventional detector, we also tried another alternative regionmask
generator YOLOv8 [1]. Comparison results are shown in Table. 1. It
is observed that mobileSAMv2 is superior than YOLOv8, indicating
the effectiveness of the current design.

Text phrase generation. A complete caption sentence usually
contains multiple entities and relationships between them, where
each entity represents an instance in the image. Thus we use a
frozen TextGraphParsor [4] to extract a textual scene graph from
captions and references as shown in Fig.2 in the main paper. The tex-
tual scene graph contains several subject-predicate-object triplets,
where the subject and object are entities existing in the image. Each
triplet usually represents a specific local image region. Then we
transform the triplet into a short phrase in the form of a “subject
predicate object”. For example, we transform the “(man, with, bike)”
into a short description “man with bike.” To conduct local evalua-
tion, we can calculate the 𝑙 ITC between image regions and cation

phrases. Meanwhile, 𝑙TTC are computed between caption phrases
and reference phrases.

Fig. 1 has shown more qualitative examples for image region
generation and text phrase generation.

2 HUMAN EVALUATION
We invite 5 human experts to assess the detailed captions from two
perspectives: correctness and completeness. Specifically, we give
human experts an image and a candidate LLaVa caption each time
and require them to provide an evaluation score. The evaluation
scores range from 1 to 4. Concrete instructions are as follows:

Correctness. Correctness is a metric to evaluate whether the
captions contain mistakes or unrelated hallucinations. Specific in-
struction is:

We would like to evaluate the correctness of the captions. The
evaluation scores range from 1 to 4, where 1 indicates all the content
of the candidate caption is unrelated to the image and 4 means the
candidate description is accurate and has no mistakes.

Completeness. Completeness is a metric to evaluate whether
all concepts that appear in the image are included in the description.
Specific instruction is:

We would like to evaluate the completeness of the descriptions. The
evaluation scores range from 1 to 4, where 1 indicates the caption
contains no visual concepts from the image, and 4 means that the
caption includes all critical visual details and is comprehensive enough
to represent all image content.

The whole human evaluation involves 5000 images from the
MSCOCO Karpathy-split test subset with each image having 4
candidate LLaVa captions. The sentence lengths of 4 LLaVa captions
are 10, 25, 60, and 75. Generally, longer captions contain more visual
details. HICE’s correlation with human evaluation results is shown
in Sec. 4.5 system-level correlation.
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1. There is a woman sitting on a 
bed using a lap top.

2. A woman in glasses using an 
apple fruit

3. A girl in glasses is sitting at a
laptop.

4. A woman sitting on the couch
with her laptop.

5. A woman laying on a couch 
looking at a laptop.

1. A man sticking his head out of 
a doorway into a rainy city 
street.

2. A man peeks out a window 
during a light rain.

3. People are walking in the rain 
holding umbrellas.

4. People walking outside in the 
rain under umbrellas and a 
man peeking his head out of a 
doorway.

1. A table topped with donuts 
and a small box of even more 
donuts.

2. Various pastries on napkins 
that include donuts and donut 
holes.

2. A selection of doughnuts and 
pastry sitting on waxed sheets

3. A table is laid out with several 
different doughnuts and 
pastries.

1. A lady and woman addressing 
the press with microphones 
on the stand.

2. A man and woman standing in 
front of a podium.

3. A man and woman giving a 
press conference.

4. There is a man and a woman 
speaking in to many micro 
phones

1. A man riding a snow board on             
top of a snow covered slope.

2. A boy on a snowboard at the 
top of a hill.

2. A young boy is riding a 
snowboard downhill

3. A picture of a young boy 
standing on a snowboard.

4. A young boy is attempting to 
slide down a slope.

1. Two bowls filled with broccoli 
soup on top of a table.

2. Cream of broccoli soup can be 
a filling lunch.

3. Two bowls of creamy soup 
and broccoli on a wood table.

4. There are two bowls of 
broccoli and cheese soup on 
the table.

5. There are two bowls of 
Broccoli soup on the table.

re
fe

re
n

ce
s

— man ride snowboard
— snowboard on top of slope
— snow cover slope
— boy on snowboard
— boy on top of hill
— boy ride snowboard
— young boy
— downhill snowboard
— boy stand on snowboard
— boy slide down slope

— 2 bowls
— bowls fill with soup
— broccoli soup
— bowls on top of table
— bowls have soup
— soup fill with broccoli
— bowls on table
— creamy soup
— bowls on table
— cheese soup

— small box
— donuts in box
— table top with donuts
— pastries on napkins
— pastries have donuts
— pastries have holes
— waxed sheets
— doughnuts sit on sheets
— pastry sit on sheets
— table lay with pastries

— man stick out doorway
— man into city street
— rainy city street
— light rain
— man peek out window
— people hold umbrellas
— people walk in rain
— man peek out of doorway
— people walk in rain
— people with umbrellas

— woman use laptop
— woman sit on bed
— woman wear glasses
— woman use apple fruit
— girl sit at laptop
— girl wear glasses
— woman sit on couch
— woman with laptop
— woman lay on couch
— woman look at laptop

— microphones on stand
— lady address press
— women address press
— lady on stand
— woman stand in front of 
podium
— man give press conference
— man talk to cellphones
— many cellphones
— man stand in front of 
microphones

te
xt

p
h

ra
se

s

Figure 1: More qualitative examples.
.
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