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ABSTRACT

Talking head generation intends to produce vivid and realistic talking head videos
from a single portrait and speech audio clip. Although significant progress has
been made in diffusion-based talking head generation, almost all methods rely
on autoregressive strategies, which suffer from limited context utilization beyond
the current generation step, error accumulation, and slower generation speed.
To address these challenges, we present DAWN (Dynamic frame Avatar With
Non-autoregressive diffusion), a framework that enables all-at-once generation of
dynamic-length video sequences. Specifically, it consists of two main components:
(1) audio-driven holistic facial dynamics generation in the latent motion space,
and (2) audio-driven head pose and blink generation. Extensive experiments
demonstrate that our method generates authentic and vivid videos with precise lip
motions, and natural pose/blink movements. Additionally, with a high generation
speed, DAWN possesses strong extrapolation capabilities, ensuring the stable
production of high-quality long videos. These results highlight the considerable
promise and potential impact of DAWN in the field of talking head video generation.
Furthermore, we hope that DAWN sparks further exploration of non-autoregressive
approaches in diffusion models. Our code will be publicly available.

1 INTRODUCTION

Talking head generation aims at synthesizing a realistic and expressive talking head from a given
portrait and audio clip, which is garnering growing interest due to its potential applications in virtual
meetings, gaming, and film production. For talking head generation, it is essential that the lip motions
in the generated video precisely match the accompanying speech, while maintaining high overall
visual fidelity (Guo et al., 2021a). Furthermore, natural coordination between head pose, eye blinking,
and the rhythm of the audio is also crucial for a convincing output (Liu et al., 2023).

Recently, Diffusion Models (DM) (Ho et al., 2020) have achieved significant success in video and
image generation tasks (Rombach et al., 2022; Ho et al., 2022b;a; Peebles & Xie, 2023; Ni et al.,
2023). However, their application in talking head generation (Shen et al., 2023; Bigioi et al., 2024)
still faces several challenges. Although many methods yield high-quality results, most of them rely
on autoregressive (AR) (Tian et al., 2024; Ma et al., 2023) or semi-autoregressive (SAR) (Xu et al.,
2024c; He et al., 2023) strategies. In each iteration, AR generates one frame, while SAR generates a
fixed-length video segment. The two strategies significantly slow down the inference speed and fail to
adequately utilize contextual information from future frames, which leads to constrained performance
and potential error accumulation, especially in long video sequences (Stypułkowski et al., 2024; Tian
et al., 2024; Xu et al., 2024b).

To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive
diffusion), a novel approach that significantly improves both the quality and efficiency of talking
head generation. Our approach leverages the DM to generate motion representation sequences from a
given audio and portrait. These motion representations are subsequently used to reconstruct the video.
Unlike other methods, our approach produces videos of arbitrary length in a non-autoregressive
(NAR) manner. However, employing the NAR strategy to generate long videos often results in either
over-smoothing or significant content inconsistencies due to limited extrapolation (Qiu et al., 2023).
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In the context of talking head generation, we suggest that the model’s temporal modeling capability
is significantly hindered by the strong coupling relationship among multiple motions. Typically,
the motions in talking head include (1) lip motions and (2) head pose and blink movements. The
temporal dependency of head and blink movements extends over several seconds, far longer than
that of lip motions (Zhou et al., 2020). Training models to capture these long-term dependencies
requires extensive sequences, thus increasing the difficulty and cost of training. Fortunately, head
and blink movements can be represented as low-dimensional vectors (Zhang et al., 2023), enabling
the design of a lightweight model that learns these long-term dependencies by training on extended
sequences. Thus, to further enhance the temporal modeling and extrapolation capabilities of DAWN,
we disentangle the motion components involved in talking head videos. Specifically, we use the
Audio-to-Video Flow Diffusion Model (A2V-FDM) to learn the implicit mapping between the lips
and audio, while generating the head pose and blinks via explicit control signals. Additionally, we
propose a lightweight Pose and Blink generation Network (PBNet) trained on long sequences, to
generate natural pose/blink movements during inference in a NAR manner. In this way, we simplify
the training of A2V-FDM as well as achieve the long-term dependency modeling of the pose/blink
movement. To further strengthen the convergence and extrapolation capabilities of A2V-FDM, we
propose a two-stage training strategy based on curriculum learning to guide the model in generating
accurate lip motion and precise pose/blink movement control.

The main contributions of this work are as follows: 1) We present DAWN (Dynamic frame Avatar
With Non-autoregressive diffusion) for generating dynamic-length talking head videos from portrait
images and audio clips in a non-autoregressive (NAR) manner, achieving faster inference speeds
and high-quality results. To the best of our knowledge, this is the first NAR solution based on
diffusion models designed for general talking head generation. 2) To compensate for the limitations
of extrapolation in NAR strategies and enhance the temporal modeling capabilities for long videos,
we decouple the motions of the lips, head, and blink, achieving precise control over these movements.
3) We propose the Pose and Blink generation Network (PBNet) to generate natural head pose and
blink sequences exclusively from audio in a NAR manner. 4) We introduce the Two-stage Curriculum
Learning (TCL) strategy to guide the model in mastering lip motion generation and precise pose/blink
control, ensuring strong convergence and extrapolation ability.

2 RELATED WORKS

Audio-driven talking head generation. Initial approaches for talking head generation employed
deterministic models to map audio to video streams (Fan et al., 2016), with later methods introducing
generative models such as GANs (Isola et al., 2016a), VAEs (Kingma & Welling, 2022), and diffusion
models (DMs) (Ho et al., 2020). GAN-related methods (Vougioukas et al., 2020; Pumarola et al.,
2018; Hong et al., 2022) improved visual realism but faced convergence and mode collapse issues
(Xia et al., 2022). Following this, VAEs (Kingma & Welling, 2022) generated 3D priors like 3D
Morphable Models (3DMM) (Blanz & Vetter, 1999) followed by high-fidelity rendering (Ren et al.,
2021), which limited the realism and vividness. In contrast, DMs have been introduced into talking
head generation due to their good convergence, excellent generation performance, and diversity.
Stypułkowski et al. (2024) presented a DM-based talking head generation solution using an AR
strategy to generate videos frame-by-frame iteratively. Subsequently, Tian et al. (2024) improved
this AR strategy by incorporating motion conditions extracted by a VAE-based network as priors for
each iteration, effectively mitigating degradation issues. Concurrently, Xu et al. (2024c); He et al.
(2023) advocated for motion modeling instead of image modeling. They utilized DMs to iteratively
generate latent motion representations over a fixed number of frames in a SAR manner, subsequently
converting these motion representations into video frames. While most diffusion-based methods
produce promising results, their AR or SAR strategies incur slow generation speeds and collapse in
long-video generation. Although methods like Tian et al. (2024); Xu et al. (2024c) alleviate issues
such as inconsistencies in content across iterations and long video generation collapse, the risk of
error accumulation remains unresolved. While methods like Du et al. (2023) use identity-specific
NAR strategies, to the best of our knowledge, none have addressed NAR talking head generation for
arbitrary identities. Consequently, we propose a novel NAR dynamic frame generation framework
based on DM, which aims to achieve the low-cost and high-quality rapid generation of realistic
talking head video through a clip of audio and arbitrary portrait.
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Audio-driven pose and blink generation. Head pose and blink movements significantly impact the
naturalness of talking head videos. However, the mapping from audio to pose and blink movement
is a one-to-many problem, which presents a significant challenge (Xu et al., 2024a; Chen et al.,
2020). Early works primarily focused on controlling poses directly using facial landmarks or video
references (Zhou et al., 2021; Guo et al., 2021b). However, these approaches require additional
guidance information, which impairs the diversity of the results. Later studies considered generating
both pose and blink within the context of talking head generation (Zhou et al., 2020). However,
simultaneously generating all facial movements can cause interference and ambiguity (Zhang et al.,
2023). Therefore, some works attempted to decouple the speaker’s actions into components like
lip, head pose, and blink, using discriminative models to predict these conditions separately (Wang
et al., 2021; He et al., 2023). Later, researchers recognized that probabilistic modeling is better suited
for the one-to-many mapping relationship, leading to the proposal of a VAE-based pose generation
framework (Liu et al., 2023). However, most existing pose generation strategies also depend on AR
or SAR approaches, negatively impacting efficiency, smoothness, and naturalness. To address these
issues, we design a VAE-based NAR pose generation method to produce vivid and smooth pose and
blink movements while maintaining the NAR generation of the entire framework.

3 METHOD

As shown in Figure 1, DAWN is divided into three main parts: (1) the Latent Flow Generator
(LFG); (2) the conditional Audio-to-Video Flow Diffusion Model (A2V-FDM); and (3) the Pose and
Blink generation Network (PBNet). First, we train the LFG to estimate the motion representation
between different video frames in the latent space. Subsequently, the A2V-FDM is trained to generate
temporally coherent motion representation from audio. Finally, PBNet is used to generate poses and
blinks from audio to control the content in the A2V-FDM. To enhance the model’s extrapolation
ability while ensuring better convergence, we propose a novel Two-stage Curriculum Learning (TCL)
training strategy. We will first discuss preliminaries, then present the specific details of DAWN’s three
main components, namely LFG, A2V-FDM, and PBNet in Sections 3.2, 3.3, and 3.4, respectively.
Finally, we will introduce the TCL strategy in Section 3.5.

3.1 PRELIMINARIES

Task definition. The task of talking head generation involves creating a natural and vivid talking
head video from two inputs: a static single-person portrait, xsrc, and a speech sequence, y1:N =
{y0,y1, . . . ,yN}. The static image xsrc and the speech sequence y can originate from any individual,
and the output is x̂1:N = {x̂0, x̂1, . . . , x̂N}, where N represents the total number of frames.

Diffusion models. Diffusion models generate samples conforming to a given data distribution by
progressively denoising Gaussian noise (Ho et al., 2020). Let x0 represent data sampled from a given
distribution q(x0). In the forward diffusion process, Gaussian noise is progressively added to x0 after
T steps, resulting in noisy data xT (Nichol & Dhariwal, 2021; Song et al., 2020), and the conditional
transition distribution at each step is defined as:

q(xt|x0) = N (xt;
√
ᾱt x0, (1− ᾱt)I) (1)

where ᾱt =
∏t

i=1 αi . The reverse diffusion process gradually recovers the original data from the
Gaussian noise xT ∼ N (0, I), utilizing a neural network to predict pθ(xt−1|xt), where θ represents
the parameters of the neural network. The model is trained using the following loss function:

Lsimple = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2] (2)

where ϵ is the Gaussian noise added to x0 in the forward diffusion process to obtain xt, and ϵθ(xt, t)
is the noise predicted by the model. In video-related tasks, the denoising model can be implemented
via a 3D U-Net (Ho et al., 2022b; Çiçek et al., 2016).

3.2 LATENT FLOW GENERATOR

The Latent Flow Generator (LFG) is a self-supervised training framework designed to model motion
information between the source image xsrc and the driving image xdri. As illustrated in Figure 1 (a),
LFG consists of three trainable modules: the image encoder E , the flow predictor P , and the image
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(b) Pose and Blink generation Network (PBNet)

Figure 1: The pipeline of DAWN. First, we train the Latent Flow Generator (LFG) in (a) to extract
the motion representation from the video. Then the Pose and Blink generation Network (PBNet)
in (b) is utilized to generate the head pose and blink sequences of the avatar. Subsequently, the
Audio-to-Video Flow Diffusion Model (A2V-FDM) in (c) generates the talking head video from the
source image conditioned by the audio and pose/blink sequences provided by the PBNet.

decoder D. During training, xsrc,xdri ∈ RH×W×3 are images randomly selected from the same
video. The image encoder E encodes the source image xsrc into a latent code zsrc ∈ RHz×Wz×Cz .
The flow predictor estimates a dense flow map f and a blocking map m (Siarohin et al., 2021; 2020),
corresponding to xsrc and xdri :

f ,m = P(xsrc,xdri) (3)

The flow map f ∈ RHz×Wz×2 describes the feature-level movement of xdri relative to xsrc in
horizontal and vertical directions. The blocking map m ∈ RHz×Wz×1 ranging from 0 to 1, indicates
the degree of area blocking in the transformation from xsrc to xdri. The flow map f is used to perform
the affine transformation A, serving as a coarse-grained warping of zsrc. Subsequently, the blocking
map m guides the model in repairing the occlusion area, thereby serving as fine-grained repair.
Finally, the image decoder D converts the warped latent code into the target image x̂gen, where the ⊗
is the element-wise product:

x̂gen = D(A(zsrc,f)⊗m) (4)

The LFG is trained in an unsupervised manner and optimized using the following reconstruction loss:

LLFG = Lrec(x̂gen,xdri) (5)

where Lrec is a multi-resolution reconstruction loss derived from a pre-trained VGG-19 network,
used to evaluate perceptual differences between x̂gen and xdri (Johnson et al., 2016). We consider the
concatenation of m and f as zm = [f ,m] to represent the motion of xdri relative to xsrc. In this
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way, we achieve two objectives: 1) finding an effective explicit motion representation zm, which is
identity-agnostic and well-supported by physical meaning, and 2) reconstructing xdri from xsrc and
zm without the need for a full pixel generation.

3.3 CONDITIONAL AUDIO2VIDEO FLOW DIFFUSION MODEL

Through the LFG in Section 3.2, we can specify a xsrc, and extract the identity-agnostic motion
representations zm

1:N of the talking head video clip x1:N as well as the latent code zsrc extracted by
E from xsrc. Therefore, we design the A2V-FDM to generate the motion representations ẑm

1:N =

[f̂1:N , m̂1:N ] of each frame relative to xsrc:

ẑm
1:N = DM(E(xsrc),y1:N ,ρ1:N ) (6)

where the DM refers the diffusion model and ρ1:N is the pose/blink signal. After generating ẑm
1:N ,

we use the decoder D in LFG to reconstruct the ẑm
1:N to the target video frames, via the Equation 4.

The structure of A2V-FDM is illustrated in Figure 1 (c). The A2V-FDM model includes a 3D U-Net
denoising backbone (Ho et al., 2022b). The residue block in the 3D U-Net contains temporal attention
and spatial attention modules, which handle frame-level and pixel-level dependencies respectively.
The parameters of the temporal attention module are independent of the input length, so we believe
that 3D U-Net can theoretically process video sequences of any length. However, to ease training
difficulty, we train on short sequences and aim for long-sequence inference. To enhance the 3D
U-Net’s extrapolation ability when handling long sequences, we used Rotary Positional Encoding
(RoPE) (Su et al., 2023) instead of traditional absolute position embeddings in the temporal attention
module.

Conditioning. We incorporate the following conditions to control its generative behavior: audio
embedding a1:N , pose/blink signal ρ1:N , and source image latent code zsrc. The audio embedding
a1:N , extracted from the audio y1:N using Hubert (Hsu et al., 2021), implicitly controls the lip motion.
Due to the strict alignment with video frames, we apply the audio embedding to its corresponding
image. Additionally, the avatar’s pose and blink are controlled via explicit signals. The pose is
described by a 6D vector Ji et al. (2022). During training, the pose is extracted from video using an
open-source tool (Guo et al., 2020). For the blink signal, we adopt the aspect ratio of the left and
right eyes, following (Zhang et al., 2023). To account for the arbitrary pose and eye-opening degree
of the source image xsrc, we use the difference between the current frame xi and the source frame
xsrc: ∆ρi = ρi − ρsrc, which models the transition of state rather than the state itself. The model is
provided with features zsrc to supply facial visual details. Each frame’s latent code performs cross
attention with the audio embedding ai and pose/blink information ∆ρi, respectively. This process
injects these conditions into the latent code with different spatial weights, controlling specific regions
of the generated content. The image feature zsrc is regarded as a global condition and is concatenated
directly with the noisy data as the initial input to the 3D U-Net. We also utilize landmarks to create
a face region mask for xsrc, embedded with a lightweight convolutional network, similar to the
approach by Tian et al. (2024). This mask adds to the denoising process in the same manner as zsrc.

Loss function. We employed the DM regular denoising loss, Lsimple, in Equation 2 to train our model.
The synchronization of lip motions with audio is crucial for the talking head task, while the lips often
constitute only a small portion of the frame. Consequently, during training, we employed landmarks
to isolate the lip region by generating a lip mask, mlip. We then applied an additional weight, wlip,
to the denoising process of this region, similar to Stypułkowski et al. (2024). Ultimately, our loss
function is defined as:

L = Lsimple + wlip · (Lsimple ⊗mlip) (7)

where the symbol ⊗ denotes element-wise product.

3.4 AUDIO-DRIVEN POSE AND BLINK GENERATION

To prevent the generated results from exhibiting overly monotonous and minimal movements, we
design a separate module, namely the Pose and Blink generation Network (PBNet). As shown in
Figure 1 (b), PBNet learns the mapping between audio and pose/blink movements. To maintain the
non-autoregressive (NAR) generation capabilities of A2V-FDM, PBNet employs a transformer-based
Variational Autoencoder (VAE) (Petrovich et al., 2021) to generate variable-length pose and blink
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sequences. The inputs to PBNet include the initial pose/blink state ρsrc, the residual pose/blink
∆ρ1:N , and the audio embedding a1:N . The transformer encoder Et embeds these inputs into a
Gaussian-distributed and obtain latent code h ∈ RN×Ch through resampling :

µ, logσ = Et(ρsrc,∆ρ1:N ,a1:N ), s.t. h ∼ N (µ,σ) (8)
We design h to have the same length as ∆ρ to ensure it can carry sufficient information for variable-
length inputs. The transformer decoder Dt generates the final pose/blink sequence ∆ρ̂1:N , conditioned
on a1:N and ρsrc :

∆ρ̂1:N = Dt(h,a1:N ,ρsrc) (9)
To enhance the model’s extrapolation capability, we use RoPE as the positional encoding in the
decoder, consistent with A2V-FDM. During training, we apply an MSE-based reconstruction loss
Lrec and an adversarial loss LGAN to guide the model in completing basic reconstruction tasks (Isola
et al., 2016a; Ginosar et al., 2019). Additionally, we employ a KL divergence loss LKL to ensure that
the latent code h closely approximates a standard Gaussian distribution.

3.5 TWO-STAGE CURRICULUM LEARNING FOR TALKING HEAD GENERATION

Empirical evidence indicates that training our A2V-FDM model solely with fixed-length short video
clips leads to inaccurate control of poses and blinks, as well as poor generalization to longer videos.
We argue that a one-step training approach impedes the model’s convergence to an optimal solution
and fails to achieve satisfactory results in the complex task of talking head generation. To address
these issues, we propose an innovative Two-Stage Curriculum Learning (TCL) strategy inspired by
the theory of curriculum learning (Bengio et al., 2009).

Overall, the goal of the A2V-FDM during the training process can be expressed as:
x̂1:N = D(DM(E(xsrc),y1:N ,ρ1:N )) (10)

In the first stage, we set xsrc = x1, and the sequence length N = K ′ is a fixed, relatively small
constant. This stage primarily focuses on enabling the model to generate basic lip motions. However,
utilizing x1 as the source image often exhibits limited variations in poses and blinks, and using short
clips can result in a scarcity of training samples with significant pose or blink movements. Therefore,
in the second stage, we set xsrc ∈ X randomly, where X is the set of frames in the entire video, to
learn control capabilities of large pose transformation. Additionally, differing from stage one, we
randomly set N ∈ [Kmin,Kmax], Kmin > K ′. This approach aims to enhance control over poses
and blinks while maintaining precise lip motions, as longer clips contain more diverse pose and
blink movements. Training with random-length sequences also helps the model avoid a bias towards
fixed-length sequences, further enhancing the model’s extrapolation.

3.6 INFERENCE

Our inference process has four steps: 1) Extract the audio embedding a1:N . 2) Use the source image
xsrc to extract the initial pose/blink state ρsrc for PBNet. Along with a1:N and a latent space vector
h1:N sampled from a standard Gaussian distribution, PBNet generates the pose/blink sequences
ρ̂1:N . 3) Input xsrc, a1:N , and ρ̂1:N into the A2V-FDM, which generates the motion representation
sequences ẑm

1:N . 4) Finally, decode the video sequence x̂1:N from xsrc and ẑm
1:N . Both PBNet and

A2V-FDM generate sequences of dynamic length in a single pass, depending on input audio length.

Our method leverages non-autoregressive (NAR) generation during the inference process. To enhance
extrapolation during inference, we utilize local attention (Luong, 2015) in the temporal attention
module for both the PBNet decoder and the 3D U-Net in A2V-FDM, which restricts the attention
scores to a local region. This approach effectively models local dependencies in talking head videos.
To accommodate the different temporal dependencies of lip motions and pose/blink movements, we
use a larger window size in the local attention mechanism of PBNet compared to A2V-FDM.

4 EXPERIMENT

4.1 SETUP

Dataset. Our method is evaluated on two datasets: CREMA (Cao et al., 2014) and HDTF (Zhang
et al., 2021). The CREMA dataset was collected in a controlled laboratory environment and contains
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7,442 videos from 91 identities, with durations ranging from 1 to 5 seconds. The HDTF dataset
consists of 410 videos, with an average duration exceeding 100 seconds. These videos are gathered
from wild scenarios and feature over 10,000 unique sentences for speech content, along with diverse
head pose movements. We partitioned the CREMA dataset into training and testing sets following
Stypułkowski et al. (2024). As for the HDTF dataset, we conducted a random split with a 9:1 ratio
between the training and testing sets. We resized the videos at a resolution of 128× 128 and a frame
rate of 25 frames per second (fps) without any additional preprocessing.

Implementation details. The architecture of the encoder and decoder in our model aligns with the
design proposed by Johnson et al. (2016), while the flow predictor is implemented based on MRAA
(Siarohin et al., 2021). The PBNet model is trained using pose and blink movement sequences of
200 frames. During the inference phase of the PBNet model, a local attention mechanism with a
window size of 400 is employed. For the inference phase of the A2V-FDM model, local attention
with a window size of 80 is applied. In our evaluation, the length of one-time inference for CREMA
is dynamic and depends on the ground truth, while for HDTF, it is fixed at 200 frames for better
comparison.

Evaluation metrics. We evaluate the performance of our method using various metrics. Specifically,
we employ the Fréchet Inception Distance (FID) (Heusel et al., 2017) to assess the image quality. We
utilize the FVD16 and FVD32 scores, which calculate the Fréchet Video Distance (FVD) based on
window sizes of 16 and 32 frames, respectively, to evaluate video quality across different temporal
scales. Furthermore, we assess the perception loss of lip shape using the confidence score (LSEC)
and distance score (LSED) (Chung & Zisserman, 2017). To evaluate the preservation of speaker
identity, we use ArcFace (Deng et al., 2019) to extract features from both the ground truth image and
the generated image, and use the cosine similarity (CSIM) between the two as the evaluation metric.
Moreover, we employ the Beat Align Score (BAS) (Siyao et al., 2022) to evaluate the synchronization
of head motion and audio, and calculate the number of blinks per second (blink/s) to assess the
liveliness of the eyes. To better illustrate the error accumulation from a quantitative perspective, we
design a metric to quantify the severity of error accumulation in the image space inspired by Bian
et al. (2022) in the sequential generation task: Degradation Rate (DR), defined as DR = FIDed

FIDst
− 1.

DR is related to the ratio between the FID of the last n frames FIDed and the first n frames FIDst.
The motivation for proposing this metric is that when error accumulation occurs, the quality of the
generated data at the end of the sequence significantly deteriorates compared to the beginning. A
larger DR indicates more severe error accumulation. In our experiments, we set n to 25 frames (1s)
and 50 frames (2s), denoted as DR25 and DR50, respectively.

4.2 OVERALL COMPARISON

We compared our method with several state-of-the-art methods: Wav2Lip (Prajwal et al., 2020),
Audio2Head (Wang et al., 2021), SadTalker (Zhang et al., 2023), Diffused Heads (Stypułkowski
et al., 2024), DreamTalk (Ma et al., 2023), Hallo (Xu et al., 2024b), and Echomimic (Chen et al.,
2024). The quantitative experimental results are shown in Table 1. Our method achieves promising
performance in FID, FVD16, FVD32, CSIM, BAS, and Blink/s metrics for the CREMA and HDTF
datasets, as shown in Table 1. It also attains nearly best scores for LSEC and LSED. It is important to
note that EchoMimic and DreamTalk are only applicable to face-aligned scenarios, whereas other
methods do not require pre-cropping. Additionally, Hallo and EchoMimic are built upon pre-trained
Stable Diffusion models (Rombach et al., 2022), inheriting substantial visual generation capabilities.
Despite this, our method still achieves comparable or even better performance on the HDTF dataset.
Furthermore, our method also outperforms Hallo and EchoMimic in terms of generation speed. In
Appendix A.3.4, results indicate that our method achieves the fastest or near-fastest generation speed
and requires significantly less time than Diffused Heads, Hallo, and Echomimic.

For the qualitative experiment, as shown in Figure 2, we visualize the generation results for each
baseline on different datasets. Our method evidently achieves the visual quality most similar to
the ground truth, showcasing the most realistic and vivid visual effects. Compared to our method,
SadTalker relies on the 3DMM prior, which limits its animation capability to the facial region
only, resulting in significant artifacts when merging the face with the static torso below the neck.
Additionally, SadTalker exhibits unnatural head pose movements and gaze direction, partially due
to limited temporal modeling ability. Audio2Head fails to preserve the speaker’s identity during
generation. For the HDTF dataset, the Diffused Heads method collapsed due to the error accumulation.
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Table 1: Quantitative comparison with several state-of-the-art methods methods on HDTF (Zhang
et al., 2021) and CREMA (Cao et al., 2014) datasets. We use bold to indicate the best score and
underline to represent the second-best score.* Wav2Lip generated videos that only contain lip motions,
while the rest remain still images. For the sake of rigor, we deem it as a reference for quality of lip
motion and will not include Wav2Lip in the ranking. “↑” indicates better performance with higher
values, while “↓” indicates better performance with lower values. For both BAS and Blink/s, we
consider performance to be better when they are closer to the ground truth.

Method FID↓ FVD16↓ FVD32↓ LSEC↑ LSED↓ CSIM↑ BAS Blink/s

GT - - - 5.88 7.87 1 0.192 0.24
Audio2Head 29.58 188.54 208.44 5.13 7.92 0.660 0.274 0.01

SadTalker 16.05 101.43 158.85 5.57 7.36 0.808 0.244 0.33
Diffused Heads 13.01 64.27 116.18 4.56 9.26 0.673 0.185 0.26

Wav2Lip* 10.23 130.23 242.19 6.08 7.74 0.801 - -C
R

E
M

A

DAWN (ours) 5.77 56.33 75.82 5.77 8.14 0.845 0.231 0.29

GT - - - 7.95 7.33 1 0.267 0.75
Audio2Head 30.10 122.26 205.42 6.88 7.58 0.705 0.290 0.09

SadTalker 26.11 97.43 187.43 6.27 8.03 0.767 0.297 0.47
Wav2Lip* 23.85 166.15 281.73 7.42 7.44 0.701 - -
DreamTalk 58.8 406.58 516.21 6.48 8.43 0.641 0.311 0.032
Echomimic 32.8 139.00 178.16 6.69 8.27 0.731 0.318 0.121

Hallo 14.2 57.47 100.99 7.16 8.01 0.709 0.301 0.254

H
D

T
F

DAWN (ours) 9.60 60.34 95.64 6.71 7.94 0.790 0.281 0.86

Table 2: Comparison with other generation strategies. The semi-autoregressive (SAR) generation
strategy is similar to He et al. (2023). The two temporal resolution (TTR) generation method is
mentioned in Harvey et al. (2022). For the DR metric, we consider the performance to be better when
it is closer to zero.

Method Time(s)↓ FID↓ FVD16↓ FVD32↓ LSEC↑ LSED↓ DR25 DR50

SAR 11.42 13.00 120.33 210.52 4.34 8.29 0.307 0.021
TTR 19.25 9.77 95.42 137.14 4.87 8.68 -0.028 -0.005
Ours 7.32 9.60 60.34 95.64 6.71 7.94 0.044 0.031

DreamTalk is only applicable to face-aligned scenarios, thus requiring cropping the source image.
Hallo causes serious error accumulation in the CREMA dataset, resulting in abnormal patches of
color in the background, thus indicating the robustness defect.

4.3 COMPARISON WITH OTHER GENERATION STRATEGIES

We compared our non-autoregressive generation strategy with two regular video generation strategies:
1) semi-autoregressive (SAR) generation similar to He et al. (2023), and 2) two-temporal resolution
(TTR), which trains two models with different temporal resolutions (Harvey et al., 2022). The time
cost represents the time required to generate an 8-second talking head video. The models were
evaluated on the CREMA dataset, and the results are shown in Table 2. According to the results, our
non-autoregressive method produces videos with the highest overall quality and fastest speed. In
addition, the SAR method results in a very high DR, which is at least one order of magnitude higher
than TTR and NAR. This is because autoregressive methods suffer from degradation issues during
iterative generation. Although TTR also successfully alleviates the degradation issue, it compromises
generation speed and overall quality. In summary, our non-autoregressive method addresses the
degradation problem while preserving fast generation speed and high overall quality.
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Target

Ours

Audio2Head

SadTalker

Diffused Heads

Hallo

DreamTalk

Figure 2: Qualitative comparison with several state-of-the-art methods methods on HDTF (Zhang
et al., 2021) and CREMA (Cao et al., 2014) datasets. Our method produces higher-quality results in
video quality, lip-sync consistency, identity preservation, and head motions.

Table 3: The experiment of extrapolation evaluation. "Inference length" refers to the number of
frames generated in a single inference process.

Inference length FID↓ FVD16↓ FVD32↓ LSEC↑ LSED↓
40 9.35 59.58 94.09 5.76 7.89
100 9.83 61.72 98.80 6.41 7.96
200 9.60 60.34 95.64 6.71 7.94
400 10.36 61.57 97.84 6.63 8.12
600 10.30 60.44 96.62 6.76 8.02

4.4 EXTRAPOLATION VALIDATION

To evaluate the extrapolation ability of our method, we used the HDTF dataset to assess the impact of
inference length on model performance, ranging from 40 to 600 frames. FID and FVD metrics remain
stable with inference length, while longer audio improves lip movement precision. This suggests that
inference with sufficient length helps the model produce more precise lip movement. Furthermore,
to better compare the extrapolation of other DM-based methods using AR, Hallo was selected for
comparison. As shown in Table A.3 from the Appendix A.3, the DR metric of our method stabilizes
in a certain range, contrasting with Hallo’s error accumulation at increased inference lengths.

4.5 ABLATION STUDY

Ablation study on TCL strategy. Since TCL strategy is used only on A2V-FDM, PBNet is excluded
by using ground truth pose/blink for evaluation. In this section, we extend the number of training
epochs based on data throughput when using single-stage training. A2V-FDM trained with either
stage 1 or 2 separately shows that stage 1 decreases overall performance except for FID, due to shorter
clip training causing minor warping and lower FID scores but poorer FVD. Stage 2 improves LSEC
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Table 4: Ablation study on TCL and PBNet. The "GT PB" refers to whether to use ground truth
pose/blink signal.

Method GT PB FID↓ FVD16↓ FVD32↓ LSEC↑ LSED↓
only stage 1 ✓ 7.95 81.84 126.52 4.38 10.04
only stage 2 ✓ 13.71 125.75 166.83 6.14 8.43

DAWN ✓ 9.68 52.05 87.11 6.71 7.99
w/o PBNet × 15.20 100.94 162.35 5.79 8.36

DAWN × 9.60 60.34 95.64 6.71 7.94

Table 5: User study.

Method L-Sync O-Nat M-Viv V-Qual

Audio2Head 3.87 3.67 3.28 3.66
Sadtalker 4.23 3.13 2.81 4.14

DreamTalk 4.38 3.89 3.41 4.42
Hallo 4.40 3.76 3.89 4.03

Echomimic 4.45 4.30 4.06 4.53
DAWN(ours) 4.57 4.41 4.43 4.51

and LSED but results in worse FID and FVD as the model struggles with simultaneous pose/blink
control and lip movement. Both stages alone underperform compared to the proposed TCL strategy,
underscoring its effectiveness.

Ablation study on PBNet. We evaluate the effectiveness of the PBNet in Table 4. The term "w/o
PBNet" indicates that the PBNet module was removed from the architecture, requiring the A2V-FDM
to simultaneously generate pose, blink, and lip motions from the audio by itself. The results suggest
an overall enhancement of all evaluation metrics with the inclusion of PBNet. This is because
modeling the long-term dependency of pose and blink movements through PBNet simplifies training
for the A2V-FDM. We also visualized the effectiveness of PBNet in Appendix A.3.6.

4.6 USER STUDY

The user study evaluates generated videos across four dimensions: 1) L-Sync: Lip-audio synchro-
nization; 2) O-Nat: The overall naturalness of the generated talking head ; 3) M-Viv: The vividness
of the head movements; 4) V-Qual: The overall video quality (e.g., presence of artifacts or abnormal
color blocks). We generated 10 test videos per method, with 23 participants scoring each on a 1-5
scale. Users disregarded resolution and cropping when rating. As shown in Table 4.2, our method
surpasses existing approaches in lip synchronization, naturalness, and head movement vividness, and
is comparable to EchoMimic in video quality.

5 CONCLUSION

We introduce DAWN, an innovative architecture that non-autoregressively generates dynamic frames
of talking head videos from given portraits and audio. We utilized the LFG to extract motion
representations from speech videos. To produce vivid talking head videos, we propose PBNet and
A2V-LDM. The PBNet generates natural pose/blink movements from speech, while A2V-LDM
produces motion representations conditioned on audio and pose/blink movements. Finally, these
generated motion representations are decoded into videos using LFG. We demonstrate on two datasets
that our model can generate extended talking head videos with high-quality dynamic frames in a
single pass, achieving realistic visual effects, accurate lip synchronization, and strong extrapolation
capabilities.
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A APPENDIX

A.1 SOCIAL IMPACT CONSIDERATION

DAWN focuses on creating realistic talking head videos with the aim of generating positive social
impact. We firmly oppose the malicious misuse of our method, including fraud, creating fake news,
and violating portrait rights. Thus, we assert that our open-source code and model should be used
exclusively for research purposes. We hope that our technique can provide social benefits in the
future, such as promoting education, enabling face-to-face communication for separated people, and
treating certain psychological disorders.

A.2 TRAINING DETAILS

Since the HDTF dataset contains fewer videos of longer length compared to the CREMA dataset,
each video in the HDTF dataset is sampled 25 times per epoch to achieve better I/O performance. The
LFG is fine-tuned independently on the training datasets of CREMA and HDTF, using a checkpoint
initially trained on the VoxCeleb (Nagrani et al., 2017) dataset. We fine-tune the LFG with 400
epochs. During the training of A2V-FDM, we trained with 500 epochs for each stage. In both two
stages, we select the wlip = 1 for the loss function in Equation 7. We freeze the parameters of LFG
when training the A2V-FDM. Although end-to-end training can prevent errors in the LFG from
affecting the A2V-FDM, the primary reason we did not adopt an end-to-end training approach is the
difficulty in achieving stable convergence. In an end-to-end training setup, the A2V-FDM is likely to
receive incorrect supervision signals, which can hinder the training process of the model and make it
highly unstable. For PBNet, the MSE-based reconstruction loss can be expressed as:

LMSE =
1

T

N∑
n=1

(∆ρ̂n −∆ρn)
2 (11)

where ∆ρ̂ is the predicted pose/blink sequences, and ∆ρ is the ground truth sequences. We also
implement a KL divergence loss to constrain the latent code h closely approximates a standard
Gaussian distribution. The adversarial loss LGAN is defined as:

LGAN = argmin
G

max
D

(G,D) (12)

where the G is our proposed PBNet and the D is a discriminator implemented based on PatchGAN
(Isola et al., 2016b). We use a 1D convolution based network to output the probability of each patch
in the pose/blink sequence originating from real actions. The discriminator is guided by the BCE loss.
In the training, the loss function of PBNet is set as:

L = λrecLrec + λKLLKL + λGANLGAN (13)

where we set λrec = 1, λGAN = 0.6. During the training process, we observed that LKL rapidly
converges to approximately zero at the beginning. This convergence impairs the latent state’s ability to
retain effective information, causing the model to depend almost entirely on the decoder’s predictive
capability for completing the fixed fitting task from audio to pose/blink. To ensure diversity in
generation, we implemented a method of progressively increasing the λKL in training PBNet. The
PBNet was trained over 1600 epochs. In the initial 400 epochs, we did not apply the LKL constraint
to the latent code., which helped the model develop basic sequence reconstruction capabilities in the
early training phase. From that point until the end of training, λKL was gradually increased to 0.01.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 EXTRAPOLATION COMPARISON

To highlight the advantages of NAR generation, we selected an image-based diffusion method, Hallo,
for comparison, due to its representative structure similar to most of the latest AR or SAR methods.
We evaluated the degradation rate for both our model and Hallo across inference lengths of 200, 400,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Source

Image

Generated

Frames

Source

Image

Generated

Frames

Figure 3: The qualitative study on higher resolution (256× 256) and different portrait styles.

Table 6: The comparison experiment of error accumulation with Hallo. "Inference length" refers to
the number of frames generated in a single inference process.

Inference length DAWN Hallo

DR25 DR50 DR25 DR50

200 0.253 0.043 0.214 0.094
400 0.208 0.164 0.279 0.161
600 0.152 0.152 0.422 0.332

and 600, as detailed in Table A.3. The results indicate that, in our method, both the DR25 and DR50

metrics remain stable as inference length increases. In contrast, Hallo’s DR25 and DR50 metrics
significantly increase with longer inference lengths, suggesting notable error accumulation in the
image space. This demonstrates that image-based AR methods, such as Hallo, struggle with error
accumulation in longer tasks, while our model exhibits superior extrapolation capabilities and more
consistent performance with extended video sequences. These findings underscore the superiority of
NAR methods compared to AR and SAR alternatives.

A.3.2 POSE/BLINK CONTROLLABLE GENERATION

In addition to generating lifelike avatars, our method also enables the controllable generation of pose
and blink actions. Users can either use pose and blink information generated by our PBNet or provide
these sequences directly, such as by extracting them from a given video. The results, as shown in
Figure 4, demonstrate that our method not only provides high-precision control over the pose/blink
movements of the generated avatars, but also effectively transfers rich facial dynamics, including
expressions, blinks, and lip motions.

A.3.3 EXPERIMENT ON HIGHER RESOLUTION AND DIFFERENT PORTRAIT STYLES

We further investigate the generalization ability of our method on higher-resolution images and
different portrait styles. We trained DAWN on the HDTF dataset with a resolution of 256 × 256.
Then we evaluated our higher-resolution model on the HDTF test set. The quantitative results are
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Drive audio, pose, blink

Generated video

Source 
image

Figure 4: Visualization of cross-identity reenactment. We extract the audio, head pose, and blink
signals from the video in the first row, and use them to drive the source image, generating the talking
head video in the second row.

Table 7: Quantitative study on different resolutions. The "128" indicates our method is trained on a
128× 128 resolution, and the "256" indicates training on a 256× 256 resolution.

Method FID↓ FVD16↓ FVD32↓ LSEC↑ LSED↓ CSIM↑ BAS Blink/s

GT - - - 7.95 7.33 1 0.267 0.75
DAWN (128) 9.60 60.34 95.64 6.71 7.94 0.790 0.281 0.86
DAWN (256) 11.80 68.07 105.20 7.20 7.80 0.791 0.278 0.73

illustrated in Table A.3.4. The results show that our method still maintains strong competitiveness
compared to the latest talking head models. We also test our method on multiple out-of-dataset source
images featuring diverse styles, as showcased in Figure 3. The results indicate that our method yields
promising outcomes in high-resolution generation and demonstrates considerable generalization
ability across various image styles, including photos, paintings, anime, and sketches.

A.3.4 COMPARISON EXPERIMENT ON GENERATION TIME COST

We experimented to test the time cost of video generation. We generated 8-second talking head
videos with the same source image and audio, then recorded the time consumption for each method.
To ensure a fair comparison, we excluded the audio encoding step for all methods. The testing
was performed on a single V100 16G GPU. As shown in Figure A.3.4, our method achieves the
fastest or near-fastest generation speed and requires significantly less time compared to the previous
diffusion-based methods, Diffused Heads, Hallo, and Echomimic.

A.3.5 ABLATION STUDY ON THE LOCAL ATTENTION MECHANISM

In our work, we utilized a local attention mechanism to enhance the extrapolation capability of
our model. We conducted experiments to evaluate the effect of varying the window size of the
local attention mechanism in A2V-FDM, ranging from 20 to 200, and also assessed the model’s
performance without the local attention mechanism. To eliminate the influence of the generated
pose/blink, we used the ground-truth pose/blink signals to drive the model. The results, presented in
Table 8, indicate that the model’s performance peaks around a window size of 80. This is attributed
to the maximum length of the video clips during training, which is 40 frames. Consequently, the
model learns to process temporal dependencies within a 40-frame distance. Thus, using the window
size of twice the max training clip length takes full advantage of the model’s capability. Reducing
or increasing the window size degrades performance; a smaller window size leads to a loss of
contextual information, significantly impairing the model’s performance, while a larger window size
or the absence of the local attention mechanism reduces extrapolation ability, also resulting in lower
performance. Since extrapolation ability is also supported by our TCL strategy and the intrinsic
structure of A2V-FDM, removing the local attention mechanism causes relatively minor damage
compared to the loss of contextual information.
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Figure 5: The comparison experiment on generation time cost. The Diffused Heads, Hallo, Echomimic
are existing diffusion-based methods.

Table 8: Ablation study on the local attention mechanism. The "window" means the window size in
the local attention operation. The "None" means we use the original attention mechanism instead.

Window FID↓ FVD16↓ FVD32↓ LSEC↑ LSED↓
20 14.47 159.19 217.54 5.69 8.97
40 10.93 72.93 114.52 6.35 8.33
80 9.68 52.05 87.11 6.71 7.99
200 9.44 53.48 88.84 6.60 7.94

None 9.70 63.95 103.83 6.37 8.15

A.3.6 ABLATION STUDY ON THE PBNET

We further provide the visualization of the ablation study on PBNet in Figure 6, while the quantitative
results are illustrated in Table 4. It suggests that using the PBNet to generate the pose exclusively will
provide the pose with more vividness and diversity. However, generating lip, head pose, and blink
movement from audio simultaneously will cause a relatively static head pose, which severely impacts
the vividness and naturalness.

A.3.7 ABLATION STUDY ON THE PBNET

A.4 LIMITATION AND FUTURE WORKS

Our work still has certain limitations. For instance, the model cannot fully comprehend the physical
common sense during the generation, particularly when individuals in the portraits wearing items
such as hats, helmets or headpieces. Sometimes, these items will not move along with the head, thus
causing artifacts in the results. We leave the injection of these physical dependencies into the model
without the loss of vividness as our future work. Additionally, our architecture currently requires
training each sub-module separately. In future work, we plan to enable joint training to minimize
error propagation across different modules.
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GT

w PBNet

w/o PBNet

Figure 6: The visualization of the ablation study on PBNet demonstrates different methodologies.
The term "w/o PBNet" indicates "without PBNet", whereby the A2V-FDM is utilized to infer pose
and blink movements. Conversely, "w PBNet" signifies the "with PBNet", which directly generates
explicit pose and blink signals to control the generation of A2V-FDM.
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