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A APPENDIX

A.1 INFORMATION BASED MEASURE DERIVATION

Given that the choice of pz for sampling zis is p(z) ∼ Unifrom(1, nz) a catergorical uniform
distribution where the cardiality of |Z| = nz we can write the mutual infromation based measure as
follows.
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(13)

Here we can write p(sj |zi) = dπi
(sj) as it is the steady state probability induced by the policy

corresponding to a certain zi ∈ Z. Furthermore we replace If we replace p(zi|sj) in 13 with the
following.
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(14)

Since KL divergence is a convex function we can see that the information measure for the ith policy
is convex on dπi

induced by that policy πi.

A.2 INFORMATION BASED MEASURE’S DEVIATION FROM IDEAL MEASURE
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A.3 PROPOSED METHOD’S DEVIATION FROM IDEAL MEASURE
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A.4 COMPARISON OF OUR DEVIATION VS INFORMATION BASED MEASURE’S DEVIATION

Since log is a monotonic function we can lower bound the information based measure’s deviation as
follows
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If we compared both δinfo and δours
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For a discrete case the cross entropy is a non negative quantity. Thus always δours ≤ δinfo making
our measure close to the ideal measure than the information based measure.

A.5 VISUALIZATION OF THE DIVERSITY MEASURE LANDSCAPE FOR THE GRID WORLD
PROBLEM

(1) π−1
i (1) Reward Landscape

(2) π−1
i (2) Reward Landscape

(3) π−1
i (3) Reward Landscape

Figure 5: This figure illustrates learned diversity measure’s landscape corresponding policy of others
in different occasion in the gridworld setting. For the figures in the right the x, y axis denote the grid
and the z axis denotes the value of the reward function. This figure illustrates on how visted states
are penalized by a function independent of the policy πi under the proposed diversity measure.
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A.6 COVERAGE: CONTINUAL CONTROL TASK
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Figure 6: This figure illustrates the state space coverage by the policies generated by each agent in
the ant environment. Dimensionality reduction was performed through PCA on the visited states.
Here the x and y axes represents the two primary dimensions resulting from PCA. Our proposed
method demonstrated better coverage in the areas on the right hand side of the space a compared to
the lack of coverage in case of SAC. All three of the polices showing better performance than the
standard SAC on test task while having certain level of coverage in this area leads us to hypothesize
that the diverse polices are generated by the visitation of these states. Our proposed measure with
a higher coverage was able perform better in average the than other methods both enhancing our
hypothesis and the ability of our measure to induce better diversity.
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