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ABSTRACT

Sampling from diffusion models can be seen as solving the corresponding prob-
ability flow ordinary differential equation (ODE). The solving process requires a
significant number of function evaluations (NFE), making it time-consuming. Re-
cently, several solver search frameworks have attempted to find better-performing
model-specific solvers. However, predicting the impact of intermediate solving
strategies on final sample quality remains challenging, rendering the search pro-
cess inefficient. In this paper, we propose a novel method for designing solving
strategies. We first introduce a unified prediction formula for linear multistep
solvers. Subsequently, we present a solver distillation framework, which enables
a student solver to mimic the sampling trajectory generated by a teacher solver
with more steps. We utilize the mean Euclidean distance between the student and
teacher sampling trajectories as a metric, facilitating rapid adjustment and opti-
mization of intermediate solving strategies. The design space of our framework
encompasses multiple aspects, including prediction coefficients, time step sched-
ules, and time scaling factors. Our framework has the ability to complete a solver
search for Stable-Diffusion in under 12 total GPU hours. Compared to previous
reinforcement learning-based search frameworks, our approach achieves over a
10× increase in search efficiency. With just 5 NFE, we achieve FID scores of
3.23 on CIFAR10, 7.16 on ImageNet-64, 5.44 on LSUN-Bedroom, and 12.52 on
MS-COCO, resulting in a 2× sampling acceleration ratio compared to handcrafted
solvers.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) have gained
widespread success in various applications including image generation (Dhariwal & Nichol, 2021;
Rombach et al., 2022), audio synthesis (Kong et al., 2021; Chen et al., 2021), video generation (Ho
et al., 2022b;a; Blattmann et al., 2023), and text-to-image synthesis (Saharia et al., 2022; Ruiz et al.,
2023; Podell et al., 2024; Esser et al., 2024). When generating samples, diffusion models perform
reverse solving of a predefined Stochastic Differential Equation (SDE) or its corresponding Proba-
bility Flow Ordinary Differential Equation (ODE) (Song et al., 2021b). This solving process often
required hundreds of function evaluations (NFE), making it extremely time-consuming compared
to classical generative models like Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014).

Fortunately, significant advancements have been made in accelerating the sampling process of dif-
fusion models. Existing acceleration methods can be broadly categorized into two classes. The first
class of methods involves an additional distillation training phase (Luhman & Luhman, 2021; Sali-
mans & Ho, 2022; Song et al., 2023; Sauer et al., 2023; Luo et al., 2024). Distilled models require
only 1-4 NFE to generate high-quality samples. However, the distillation phase typically requires
thousands of GPU hours, posing a significant training cost, especially for large scale models. Addi-
tionally, many of distilled models lack the ability to perform image processing tasks, such as image
editing and restoration (Yu et al., 2023; He et al., 2023; Wang et al., 2022; Chung et al., 2023; Zhu
et al., 2023). We will provide a more detailed discussion in Sec. 2.2.
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Figure 1: Synthesized images of Stable-Diffusion (Rombach et al., 2022) with default classifier-free
guidance scale 7.5 and text prompt “A large brown bear walking through a forest”. Our proposed
DLMS can generate more realistic and visually detailed images compared with previous handcrafted
samplers (Zhang & Chen, 2022; Lu et al., 2022b; Zhao et al., 2023).

And the second class, which is also widely regarded, focuses on designing efficient solvers without
further training the model. Techniques such as parameterization, exponential integrators, and higher-
order solvers have successfully reduced the NFE to 15-20 for the sampling process (Lu et al., 2022b;
Zhao et al., 2023; Zhang & Chen, 2022; Liu et al., 2022; Lu et al., 2022a; Song et al., 2021a; Karras
et al., 2022). However, when the NFE is less than 10, the sample quality deteriorates significantly.

The challenges have given rise to a series of search frameworks seeking more efficient solvers.
However, due to the iterative nature of solving processes, it is difficult to predict the impact of
intermediate solving strategies on the final sample quality, making the search process difficult and
inefficient. These frameworks still often require tens of GPU hours and were limited to specific
design space such as time steps (Watson et al., 2022; Li et al., 2023; Liu et al., 2023a; Sabour et al.,
2024; Chen et al., 2024), parameterization mode (Zheng et al., 2023), or solver combination (Liu
et al., 2023b). Recently, some work (Shaul et al., 2024; Zhang et al., 2024) has attempted to use
solver distillation to design solvers, but the performance improvements have been relatively limited.

In this paper, we propose a novel solver distillation framework that greatly accelerates the search
efficiency. We begin by presenting a unified prediction formula for linear multistep solvers. Next,
we introduce our solver distillation algorithm, which allows a student solver to replicate the sam-
pling trajectory of a teacher solver that uses more steps. We employ the mean Euclidean distance
between the student and teacher sampling trajectories as a metric, enabling quick adjustments and
optimization of intermediate solving strategies. Compared to previous reinforcement learning-based
search frameworks, our approach achieves over a 10× increase in search efficiency.

Our framework has the ability to complete a solver distillation for Stable-Diffusion (Rombach et al.,
2022) in less than 1.5h on 8 NVIDIA V100 GPUs. The design scope includes the time steps,
the time scaling factors and the prediction coefficients. We extensively evaluate our approach on
various resolution datasets in both pixel space and latent space. The Distilled Linear Multistep
Solver (DLMS) significantly surpasses previous handcrafted and search-based solvers. Compared
to handcrafted solvers, DLMS achieves a 2× sampling acceleration ratio.

2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

Given the data distribution p0, diffusion models employ a forward process xt = αtx0 + σtϵ, t ∈
[0, T ] with marginal distribution {pt}T0 to gradually degenerate the data x0 ∼ p0 with Gaussian
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noise ϵ ∼ N (0, I). The noise schedule αt, σt > 0 is designed to make pT approximately a pure
Gaussian distribution N (0, σ̃2I). Notably, there exists a corresponding Probability Flow ordinary
differential equation (PF-ODE) (Song et al., 2021b):

dxt =

[
f(t)xt −

1

2
g2(t)∇ log pt(xt)

]
dt, (1)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2 d logαt

dt σ2
t (Kingma et al., 2021). The PF-ODE shares the

same marginal distribution pt as the forward process. And the score function ∇ log pt(xt) can be
expressed using Tweedie’s formula (Robbins, 1992):

∇ log pt(xt) =
αtE[x0|xt]− xt

σ2
t

= −E[ϵ|xt]

σt
. (2)

To estimate the score function, a neural network ϵθ(xt, t) is trained to predict E[ϵ|xt] via the least
square estimation by minizing the L2 loss

Ex0∼pdata,ϵ∼N (0,I) ∥ϵθ(xt, t)− ϵ∥22 (3)

for each t ∈ [0, T ]. Consequently, we can sample from diffusion models by solving the empirical
PF-ODE:

dxt =

[
f(t)xt +

g2(t)

2σt
ϵθ(xt, t)

]
dt (4)

from time T to time 0. Additionally, the conditional sampling can be carried out by guided sampling
(Dhariwal & Nichol, 2021; Ho & Salimans, 2021). Remarkably, classifier-free guidance (Ho &
Salimans, 2021) defines a guided noise predictor:

ϵ̃θ(xt, t, c) = s · ϵθ(xt, t, c) + (1− s) · ϵθ(xt, t, ∅), (5)

where c is the condition, ∅ stand for the unconditional sampling, and s > 0 is the guidance scale.

In practice, except for the noise predictor ϵθ(xt, t), diffusion models can also be parameterized as
data predictor xθ(xt, t) to predict x0 or velocity predictor vθ(xt, t) to predict αtϵ − σtx0, where
the parameterizations are theoretically equivalent, but have impact in practice performance (Karras
et al., 2022; Hang et al., 2023).

2.2 IMAGE PROCESSING WITH PRE-TRAINED DIFFUSION MODELS

Pre-trained diffusion models are versatile tools for a variety of image processing tasks. When aiming
to manipulate or restore a reference image y, one can simply adjust the sampling score function using
Bayes’ Rule:

∇ log pt(xt|y)︸ ︷︷ ︸
conditional score

= ∇ log pt(xt)︸ ︷︷ ︸
score

+∇ log pt(y|xt)︸ ︷︷ ︸
guidance term

(6)

The guidance term can be derived from the gradient of a differentiable loss function. For example,
FreeDoM (Yu et al., 2023) uses Gram matrices (Johnson et al., 2016) of the intermediate layers of
the CLIP image encoder as the loss function.

Another image processing technique is post-processing. These methods achieve the goal of image
processing tasks by projecting the estimated value xθ(xt, t) at each time step onto a predefined
manifoldMy (He et al., 2023; Wang et al., 2022; Chung et al., 2023; Zhu et al., 2023).

While there are efforts towards distillation work for the guided diffusion model (Meng et al., 2023),
the high distillation costs make it impractical to distill for every kind of guidance. In contrast,
efficient ODE solvers are much more flexible.

2.3 FAST SAMPLING WITH EXPONENTIAL INTEGRATORS

Samplers based on exponential integrator have been found to be more efficient than directly solving
the ODE (4). Given an initial value xs at time s, the ODE solution xt can be analytically computed
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Figure 2: Designer network architecture. We concatenate the embeddings of the bottleneck feature,
time step, and step index, and pass them through a fully connected layer to obtain the parameters
required for the prediction formula (8, 9).

with the following exponentially weighted integral by changing the variable from t to half log-SNR
λt := log(αt/σt) (Lu et al., 2022a;b):

xt =
αt

αs
xs − αt

∫ λt

λs

eλϵ̂θ(x̂λ, λ)dλ,xt =
σt

σs
xs + σt

∫ λt

λs

e−λx̂θ(x̂λ, λ)dλ (7)

where ϵ̂θ(·, λ) := ϵθ(·, t(λ)), x̂θ(·, λ) := xθ(·, t(λ)) and x̂λ := xt(λ). To predict the integral part,
DEIS (Zhang & Chen, 2022) approximates ϵθ(xt, t) with polynomial interpolation w.r.t t , similarly
DPM-Solver (Lu et al., 2022a) approximate ϵ̂θ(x̂λ, λ) w.r.t λ (equation 7, left) and DPM-Solver++
(Lu et al., 2022b) approximate x̂θ(x̂λ, λ) w.r.t λ (equation 7, right). UniPC (Zhao et al., 2023)
introduces a correcting strategy and various scale functions. And AMED-Solver (Zhou et al., 2024)
adopts an approximate mean value method instead polynomial interpolation.

2.4 EFFICIENT SAMPLER SEARCH AND DISTILLATION

Recently, several frameworks have incorporated a search phase to enhance the efficiency of sam-
plers. The time step schedule is a commonly explored aspect (Chen et al., 2024; Sabour et al., 2024;
Li et al., 2023; Watson et al., 2022; Liu et al., 2023a). Moreover, DPM-Solver-v3 (Zheng et al.,
2023) aims to optimize the parameterization mode beyond noise prediction and data prediction.
USF (Liu et al., 2023b) strives to identify the most suitable solver for each time step.

Bespoke solver (Shaul et al., 2024) is also a type of solver distillation method, but it only uses the
final output to adjust hyperparameters, with a deep and complex computation graph that hinders
effective hyperparameter tuning. Zhang et al. (2024) proposed a method that utilizes local mean
squared error (MSE) to refine existing solvers, which incurs minimal cost but yields limited effec-
tiveness. We actively use intermediate values in the trajectory and judiciously stop unnecessary
gradient backpropagation, greatly enhancing the effectiveness of solver distillation method.

3 METHODOLOGY

In this section, we present our method to solve the PF-ODE (4). We start with the discussion
about the optimal linear multistep prediction strategy. And then we introduce how to achieve the
optimal solver with an adaptive time schedule and time scaling factors. Finally, we introduce some
practical techniques to further improve performance. A comparison with related work is provided
in Appendix A.

3.1 TOWARDS OPTIMAL LINEAR MULTISTEP SOLVER

Given a time schedule {tn}Nn=0 decreasing from t0 = T to tN = 0, the solvers are trying to
predict the ground truth trajectory {xG

tn}
N
n=0 with a numerical simulation trajectory {xS

tn}
N
n=0 with
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xS
t0 = xG

t0 . Linear multistep solvers aim to predict each local intermediate xG
tn , n ≥ 1 by leveraging

the linear combination of p previous outputs from the denoising network. Take the data prediction
type (equation 7, right) for example, the prediction formula can be expressed as:

Dn =

p∑
k=1

akxθ(x
S
tn−k

, sn−ktn−k),

p∑
k=1

ak = 1 (8)

xS
tn =

σtn

σtn−1

xS
tn−1
− αtn(e

λtn−1
−λtn − 1)Dn (9)

where {ak}pk=1 are the prediction coefficients and the time scaling factors {sn}Nn=0 are usually set to
1. This implies that the candidate xS

tn lies in a p-dimensional hyperplane and hence the theoretically
optimal xS

tn is the linear projection of xG
tn onto the hyperplane.

It is worth noting that for each trajectory {xG
tn}

N
n=0 and for each step n the optimal coefficients

{a∗k}
p
k=1 are different. Nevertheless, some studies have shown that the ODE trajectories from diffu-

sive models have similar properties(Chen et al., 2024), so it is possible to design a unified {ak}pk=1
that works well on all trajectories just as in most of previous works, but we consider this to be a
suboptimal choice.

As mentioned in the previous paragraph, we aim to assign distinct coefficients for each trajectory
and step. To achieve this, we establish a mapping g : (xS

tn−1
, tn−1, n − 1) 7−→ {ak}pk=1. Draw-

ing inspiration from Zhou et al. (2024) we utilize the bottleneck feature htn−1
obtained from the

pretrained denoising model instead of xS
tn−1

to circumvent additional computational costs. Subse-
quently, we employ an extremely lightweight designer network with approximately 9k parameters,
denoted as gϕ(htn−1

, tn−1, n − 1), to generate the coefficients {ak}pk=1. The network architecture
is shown in Fig. 2.

Given the availability of the ground truth trajectory {xG
tn}

N
n=0, we can establish the optimal solver by

minimizing the square distance d(xS
tn ,x

G
tn) where the prediction xS

tn is computed using equations
(8) and (9) with {ak}pk=1 = gϕ(htn−1 , tn−1, n− 1).

In practical terms, we utilize a numerical ground truth trajectory xT
tn generated by a teacher solver

Φt such as DPM-Solver++ with M interpolation time steps between tn−1 and tn, which we denote
as xT

tn = Φt(x
T
tn−1

, tn−1, tn,M).

3.2 ADAPTIVE TIME SCHEDULE

Adaptive time schedule is a class of approaches that can significantly improve the efficiency of
various solvers. Some previous works (Xia et al., 2024; Zhou et al., 2024) also show that adjusting
the time scaling factors {sn}Nk=1 properly can improve the accuracy of the solution. In Sec. 3.1, we
described how to get the distilled solver for a fixed time schedule {tn}Nn=0. In this section, we show
how to use our distillation framework to get adaptive time schedules.

When adjusting the prediction coefficients {ak}pk=1 in Sec. 3.1, we chose xS
tn−1

at time tn−1 as
the starting point to predict xG

tn . Now, we aim to incorporate tn−1 and sn−1 into the design space.
Therefore, we modify the starting point to be xS

tn−2
at time tn−2. To ensure each trajectory has an

independent adaptive time schedule rather than a unified schedule, we include the time schedules
{tn}Nn=0 and {sn}Nn=0 in the output of gϕ. This is achieved by setting {ak}pk=1, tn−1, sn−1 =
gϕ(htn−2 , tn−2, n − 2) for n ≥ 2. Let Q denote the buffer list that collects outputs xθ(x

S
tn , sntn).

We write the prediction formula (8, 9) as:

xS
n = Φ(xS

n−1, tn−1, tn, {ak}pk=1, Q). (10)

Thus, the distillation phase can be summarized by Algorithm 1. After the distillation phase, Algo-
rithm 2 shows the sampling process with a trained designer network gϕ.

It is worth noting that we have employed the stop gradient operation multiple times in Algorithm
1, which is crucial for the proper functioning of the algorithm. When using the state xS

tn−2
at time

tn−2 to predict xT
tn at time tn, retaining the gradients of tn−2, tn,x

S
tn−2

,xT
tn will lead to two issues:
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Algorithm 1 Linear Multistep Solver Distillation
Require: Designer network gϕ, teacher solver Φt, number of time steps N , number of interpolation

time steps M , initial timestep T , max order p.
1: repeat
2: Sample initial value xS

t0 = xT
t0 ∼ N (0, σ̃2I)

3: t0 ← T, s0 ← 1. Initialize an empty buffer Q.
4: Set the parameter gradient of ϕ to 0

5: Q
buffer←− xθ(x

S
t0 , s0t0)

6: Extract the bottleneck feature ht0
7: for n = 2 to N do
8: {ak}max(n−1,p)

k=1 , tn−1, sn−1 ← gϕ(htn−2
, tn−2, n− 2)

9: xS
tn−1

← Φ(xS
n−2, tn−2, tn−1, {ak}max(n−1,p)

k=1 , Q) ▷ Generate prediction xS
tn−1

.

10: Q
buffer←− xθ(x

S
tn−1

, sn−1tn−1)
11: Extract the bottleneck feature htn−1

12: {ak}max(n,p)
k=1 , tn, sn ← gϕ(htn−1

, tn−1, n− 1)
13: tn ← sg(tn) ▷ Stop the gradient of tn.
14: xS

tn ← Φ(xS
n−1, tn−1, tn, {ak}max(n,p)

k=1 , Q) ▷ Generate prediction xS
tn .

15: if n=2 then
16: xT

tn−1
← sg(Φt(x

T
tn−2

, tn−2, tn−1,M))
17: end if
18: xT

tn ← sg(Φt(x
T
tn−1

, tn−1, tn,M)) ▷ Solve the numerical ground truth xT
tn .

19: Ln(ϕ)← d(xS
tn ,x

T
tn) ▷ Calculate the prediction error at time tn.

20: Perform backpropagation for Ln(ϕ).
21: Q← sg(Q), tn−1 ← sg(tn−1) ▷ Stop the gradient of buffers and tn−1

22: end for
23: Update the parameter ϕ
24: until convergence

Algorithm 2 Distilled Solver Sampling
Require: Designer network gϕ, number of time steps N , initial timestep T , max order p.

1: Sample initial value xS
t0 ∼ N (0, σ̃2I)

2: t0 ← T, s0 ← 1. Initialize an empty buffer Q.
3: for n = 1 to N do
4: Q

buffer←− xθ(x
S
tn−1

, sn−1tn−1)
5: Extract the bottleneck feature htn−1

6: {ak}max(n,p)
k=1 , tn, sn ← gϕ(htn−1

, tn−1, n− 1)

7: xS
tn ← Φ(xS

n−1, tn−1, tn, {ak}max(n,p)
k=1 , Q)

8: end for
9: return xS

tN

• Firstly, the gradients from past time steps will not be removed from the computation graph,
resulting in a linear increase in memory usage with each step n.

• Secondly, tn will move towards tn−2 to ease the prediction difficulty, ultimately resulting
in the collapse of the entire time schedule. This is not an ideal outcome.

In addition, we find it necessary to adopt data prediction type (equation 7, right). We believe this is
because the data prediction type can automatically align the noise intensity with the time step t, thus
stabilizing the prediction error for the solvers.

3.3 PRACTICAL TECHNIQUES

In this section, we introduce several practical techniques to further improve the performance of
DLMS.
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High-order initialization. Since the prediction formula (8, 9) covers almost all linear multi-step
solvers with exponential integrators such as DDIM (Song et al., 2021a), PLMS (iPNDM) (Zhang
& Chen, 2022; Liu et al., 2022), DPM-Solver++ (Lu et al., 2022b), UniP-p (Zhao et al., 2023) and
DEIS (Zhang & Chen, 2022). We can initialize with these pre-designed solvers by setting the output
biases of the designer network gϕ. Therefore, DLMS has a theoretical accuracy that is at least on
par with the aforementioned methods. Thus, we still refer to the number of history outputs p used
in each step as the “order”. Although our framework still works with DDIM (Song et al., 2021a)
initialization, using higher-order solvers allows the distillation phase to be completed more quickly
with fewer generated trajectories. In our experiments, initializing with any higher-order methods
did not show significant differences; for simplicity, we recommend PLMS (Zhang & Chen, 2022;
Liu et al., 2022) as the initial solving strategy.

Analytical First Step (AFS). In Algorithm 1, the initial time step t0 = T and time scaling factor
s0 = 1 are excluded from the design space. Instead, we can treat t0 = T as a virtual initial step.
Specifically, we set xθ(x

S
t0 , s0t0) = 0 and ht0 = 0, without employing the denoising network. This

approach ensures that t1 is the actual first time step at which the diffusion model is engaged, while
t1 and s1 remain in the design space. This strategy is fundamentally equivalent to the analytical first
step (AFS) proposed by Dockhorn et al. (2022).

Exponential Moving Average (EMA). Due to NFE limitations, the student solver cannot fully
replicate the sampling trajectory generated by the teacher solver. This leads to a non-zero stochastic
gradient even at convergence. To reduce the impact of parameter oscillations on solver performance,
we introduce EMA updates inspired by diffusion models. During solver distillation, we apply EMA
updates with half-lives of 1, 2, and 3 kimg, selecting the best-performing configuration from four
parameter sets.

Inception distance at the final step. Some search-based frameworks directly use Fréchet Inception
Distance (FID) (Heusel et al., 2017) as the optimization objective (Liu et al., 2023b; Watson et al.,
2022; Li et al., 2023). In contrast, our method employs square distance as the optimization target.
Since square distance is less sensitive to high-frequency information, we observe that optimizing
square distance does not always lead to better FID scores. Therefore, in experiments conducted in
pixel space, we replace the final step’s objective from pixel square distance to Inception Distance
(the square distance of features from the Inception network). We only make this replacement in
the final step because we find that Inception Distance does not effectively capture the differences
between noisy images. In latent space tasks, the issue of high-frequency information is not present.
To avoid unnecessary calls to the network modules, we do not perform this replacement in those
cases.

4 EXPERIMENTS

In this section, we demonstrate that DLMS exhibits significant advantages in both unconditional and
conditional sampling with pixel-space and latent-space diffusion models. We conducted experiments
across multiple datasets with resolutions ranging from 32 to 512 and compared our approach with
current state-of-the-art both handcrafted and search-based solvers. Then, we showcase the benefits
from adaptive time steps and time scales, as well as ablation studies of the practical techniques we
provided. Finally, we visualize the adaptive time schedules and the samples generated by DLMS.

4.1 SETTINGS

In our experiments, we uniformly use the noise schedule αt = 1, σt = t from Karras et al. (2022).
We initialized the prediction coefficients with PLMS (Zhang & Chen, 2022; Liu et al., 2022), using
a uniform time schedule (Ho et al., 2020) and time scaling factors of 1. We use DPM-Solver++ (Lu
et al., 2022b) to generate ground truth trajectories. The designer network gϕ consists of a two-layer
MLP with a total parameter count of only 9k. We use Adam as the optimizer with a learning rate of
5 × 10−3. To ensure fairness, we use the same random seed to evaluate the FID score. For details,
see Appendix B.
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4.2 MAIN RESULTS

We select the current state-of-the-art artificially designed solvers as baseline methods, including
DEIS Zhang & Chen (2022), DPM-Solver++ (Lu et al., 2022b), and UniPC (Zhao et al., 2023).
All results are obtained from an open-source toolbox1, utilizing the recommended settings from the
original papers. Detailed results can be found in the Appendix C.
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Figure 3: Comparison of FID↓ scores between DLMS and handcrafted solvers. DLMS demonstrates
a significant advantage over handcrafted methods.

Fig. 3 presents a comparison of FID scores between DLMS and previous handcrafted methods.
As shown in Fig. 3, handcrafted solvers based on polynomial interpolation exhibit a sharp decline
in performance as NFE decreases. In contrast, our proposed DLMS maintains high-quality sam-
pling, demonstrating a significant advantage over baseline methods. In text-to-image generation
with Stable-Diffusion (Rombach et al., 2022), DLMS achieves an FID of 12.52 with only 5 NFEs,
while the baseline methods require more than 10 NFEs for comparable performance, resulting in a
2× acceleration ratio.

We further compare our method with other search frameworks. The methods include in the compar-
ison are the reinforcement learning-based framework USF (Liu et al., 2023b), the parameterization-
focused DPM-Solver-v3 (Zheng et al., 2023). Additionally, we include GITS (Chen et al., 2024),
an outstanding adaptive time scheduling method, and AMED-Plugin (Zhou et al., 2024), a closely
related work. As shown in Tab. 1, DLMS still stands out among various search frameworks.

Table 1: Comparison of FID↓ on CIFAR10 between DLMS and search-based solvers.

Solver NFE
4 5 6 7 8 9 10

DPM-Solver-v3 - 12.21 8.56 - 3.50 - 2.51
USF 11.50 6.86 5.18 3.81 3.41 3.02 2.69

AMED-Plugin - 6.61 - 3.65 - 2.63 -
GITS 10.11 6.77 4.29 3.43 2.70 2.42 2.28

DLMS 4.52 3.23 2.81 2.53 2.43 2.37 2.24

1https://github.com/zju-pi/diff-sampler.
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In Tab. 2, we compare the total GPU hours required for a 7 NFE solver with USF and DPM-Solver-
v3. Due to limitations in code availability, the reported time costs are sourced from original papers
and measured on different devices. Nevertheless, our method demonstrates a significant order-of-
magnitude advantage, achieving a 10× increase in search efficiency.

Table 2: Comparison of total GPU hours for search phase. DLMS demonstrates a significant order-
of-magnitude advantage.

Solver CIFAR10 MS-COCO Device
DPM-Solver-v3 28 88 NVIDIA A40

USF 12.15 106.64 NVIDIA 3090/A100
DLMS 0.7 10 NVIDIA V100

4.3 ABLATION STUDY

Tab. 3 demonstrates the ablation effects of each component in the DLMS framework. As shown
in the results, the time step-related time schedule and time scaling contribute the most significant
improvements.

Table 3: FID results of ablation study on CIFAR10. The time step-related time schedule and time
scaling contribute the most significant improvements.

NFE 4 6 8 10

DLMS 4.52 2.81 2.43 2.24
w/o AFS 6.48 3.30 2.42 2.30

w/o bottleneck feature 4.71 3.40 2.46 2.25
w/o high-order initialization 4.92 3.25 2.94 2.44

w/o Inception distance 6.67 3.77 3.10 2.80
w/o time scaling 7.75 3.86 3.07 2.41

w/o adaptive time schedule 10.41 6.18 3.17 3.03
Handcrafted (best) 25.66 9.40 3.99 2.89

Another finding is that DLMS performance does not always improve as the number of interpolation
time steps M increases. In fact, the fitting capacity of student solvers is limited. When the teacher
solver is significantly superior to the student, side effects can arise due to fitting difficulties. Espe-
cially for models in the latent space, setting M = 1, meaning the teacher has about twice NFEs of
the student, yields the best results. The table below illustrates the effects of increasing M on the
LSUN-Bedroom dataset.

Table 4: The sensitivity of M on LSUN-Bedroom. Setting M = 1 yields the best results on latent
diffusion models.

NFE 4 6 8 10

M=1 8.20 4.44 3.89 3.50
M=2 8.86 4.56 4.51 3.69
M=3 11.07 4.88 4.54 3.81

4.4 VISUALIZATIONS

Visual Quality. We present qualitative comparisons in Fig. 1. Handcrafted solvers struggle to gen-
erate vegetation and accurately colored bears with 5 NFEs. In contrast, DLMS effectively learns the
generation results of the teacher solver with double NFEs. With 10 NFEs, DLMS is the only method
that successfully produces the correct lighting and head pose. Additional samples are provided in
Appendix D.
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Visualization of adaptive time schedule. Fig. 4 shows the adaptive time schedules (average of
different trajectories) obtained from DLMS with 10 NFE using AFS. By comparing these schedules
with handcrafted time schedules such as logSNR (Zheng et al., 2023; Lu et al., 2022b), polynomial
(Karras et al., 2022), time uniform (Ho et al., 2020) and time square (Zhang & Chen, 2022), we
uncover some intriguing findings. The adaptive time schedules exhibit striking differences across
various datasets. For the CIFAR10 and FFHQ datasets, the adaptive time schedules are similar to
the time square schedule. In contrast, for ImageNet-64 and LSUN-Bedroom, they resemble the time
uniform schedule. Notably, the schedule learned for the Stable-Diffusion model aligns closely with
the uniform logSNR schedule, except for the final step.

The observed differences may arise from several factors, including the solving strategy, image res-
olution, solving space, and guidance. For instance, in the EDM context, DPM-Solver++ (Lu et al.,
2022b) and UniPC (Zhao et al., 2023) perform better with logSNR, while DEIS (Zhang & Chen,
2022) demonstrates superior performance with the time square schedule. However, on other models,
all three solvers tend to prefer the time uniform schedule. This highlights the importance of simul-
taneously searching for both time schedules and solving strategies within our framework across
different datasets.
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Figure 4: Visualization of adaptive time schedule. We use dotted lines to represent handcrated time
schedules, and use solid lines to represent adaptive time schedules learned on each data set. DLMS
learns different adaptive schedules on different data sets.

5 CONCLUSION

We propose a linear multistep solver distillation framework. Our framework enables the student
solver to replicate the sampling trajectory of a teacher solver that utilizes more steps, facilitating
rapid adjustments and optimization of prediction coefficients, time step schedules, and time scal-
ing factors. Experiments demonstrate the effectiveness of our framework across various resolution
datasets, using both pixel-space and latent-space pre-trained diffusion models, and reveal a signifi-
cant improvement in sample quality with 4∼10 NFEs.

Limitations and Future Work. Our framework is currently limited to ODE solvers, while in prac-
tice, stochastic samplers (Xue et al., 2024) often outperform deterministic samplers. Therefore,
extending our method to stochastic samplers is a promising direction. Additionally, integrating our
work with approaches such as Deepcache (Ma et al., 2024) and FreeU (Si et al., 2024) is also worth
exploring.
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A COMPARING WITH RELATED METHODS

Comparing with Progressive Distillation. Progressive distillation (Salimans & Ho, 2022) is a
distillation method for diffusion models that gradually distills the results of multi-step solvers into
fewer steps. In our framework, we also employ a multi-step teacher solver and aim to distill the
results into our student solver with fewer steps. However, our approach does not require training
the parameters of the diffusion model, while the parameter requirements and training duration for
progressive distillation (PD) are thousands of times greater than those of our framework.

Comparing with AMED-Plugin. AMED-Plugin (Zhou et al., 2024) is a method for selecting
intermediate time steps for existing solvers and time schedules. The designer network gϕ used in
our work is modified from AMED-Plugin. In contrast, the DLMS in this paper do not rely on
existing solvers or time schedules. AMED-Plugin can be seen as adjusting half of the time schedule,
while our proposed adaptive time schedule method is for full time schedule adjustment.

Comparing with USF. USF (Liu et al., 2023b) is a search framework based on reinforcement learn-
ing. The authors train a predictor network to estimate the FID performance of a solver with specific
hyperparameters, using this to guide an evolutionary search process for hyperparameter optimiza-
tion. The relationship between hyperparameters and performance is complex, making the training
of a predictor network both challenging and time-consuming.

In contrast, our framework leverages local prediction error to design an optimal solution strategy,
which aligns more closely with the iterative nature of the sampling process and the criteria for
manually designing solvers. Furthermore, while USF simply combines existing handcrafted solvers,
our approach utilizes prediction formulas (8, 9) to achieve a true unification of multiple solving
strategies. This enables us to develop new solving strategies by learning the prediction coefficients
{ak}pk=1.

Comparing with Bespoke solver. Bespoke solver (Shaul et al., 2024) is also a type of solver distil-
lation method, but it only uses the final output to adjust hyperparameters, with a deep and complex
computation graph that hinders effective hyperparameter tuning. We actively use intermediate val-
ues in the trajectory and judiciously stop unnecessary gradient backpropagation, greatly enhancing
the effectiveness of solver distillation method. For EDM trained on CIFAR10, our method achieved
an FID of 2.53 with 7 NFEs, outperforming their result of 2.75 with 20 NFEs.

B DETAILED SETTINGS

EDM on CIFAR10, FFHQ, ImageNet-64. The sampling on CIFAR10 (Krizhevsky et al., 2009)
32×32 , FFHQ (Karras et al., 2019) 64×64, ImageNet-64 (Deng et al., 2009) 64×64 is based on
the pretrained pixel-space diffusion model provided by EDM (Karras et al., 2022). Among these,
ImageNet-64 is for conditional sampling and CIFAR10, FFHQ are for unconditional Sampling. The
order p for student solver DLMS is set to 4. The number of interpolation time steps M is set
to 4. For each dataset, we conduct solver distillation on 20k trajectories. The distillation times
are approximately 40×NFE seconds, 80×NFE seconds, and 150×NFE seconds, respectively, on 8
NVIDIA V100 GPUs. We measure sample quality using the FID score calculated on 50k generated
images.

Latent-Diffusion on LSUN-Bedroom. The unconditional sampling on LSUN-Bedroom (Yu et al.,
2015) 256×256, is based on the pretrained latent-space diffusion model provided by Latent-
Diffusion (Rombach et al., 2022). The order p for student solver DLMS is set to 3. The number
of interpolation time steps M is set to 1. We conduct solver distillation on 10k trajectories. The
distillation times are approximately 3×NFE mins on 8 NVIDIA V100 GPUs. We measure sample
quality using the FID score calculated on 50k generated images.

Guided-Diffusion on ImageNet. The conditional sampling on ImageNet (Deng et al., 2009)
256×256, is based on the pretrained pixel-space diffusion model provided by Guided-Diffusion
(Dhariwal & Nichol, 2021). The order p for student solver DLMS is set to 3. The number of in-
terpolation time steps M is set to 3. We conduct solver distillation on 5k trajectories with default
guidance scale 2.0. The distillation times are approximately 6×NFE mins on 8 NVIDIA V100
GPUs. We measure sample quality using the FID score calculated on 10k generated images.
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Stable-Diffusion on MS-COCO prompts. The text-to-image sampling on MS-COCO (2014) (Lin
et al., 2014) 512×512, is based on the pretrained latent-space diffusion model provided by Stable-
Diffusion v1.5 (Rombach et al., 2022). The order p for student solver DLMS is set to 2. The number
of interpolation time steps M is set to 1. We conduct solver distillation on 5k trajectories with
default guidance scale 7.5. The distillation times are approximately 9×NFE mins on 8 NVIDIA
V100 GPUs. We measure sample quality using the FID score calculated on 30k generated images
generated by 30k prompts from the MS-COCO validation set.

C FID RESULTS FOR DLMS AND HANDCRAFTED SOLVERS.

Table 5: Comparison of FID↓ scores between DLMS and handcrafted solvers.

Dataset Solver NFE
4 5 6 7 8 9 10

CIFAR10

DEIS 25.66 14.39 9.40 6.94 5.55 4.68 4.09
DPM-Solver++ 46.52 24.97 11.99 6.74 4.54 3.42 3.00

UniPC 45.20 23.98 11.14 5.83 3.99 3.21 2.89
DLMS 4.52 3.23 2.81 2.53 2.43 2.37 2.24

FFHQ

DEIS 28.31 17.36 12.25 9.37 7.59 6.39 5.56
DPM-Solver++ 45.95 22.51 13.74 8.44 6.04 4.77 4.12

UniPC 44.78 21.40 12.85 7.44 5.50 4.47 3.84
DLMS 9.63 6.85 5.82 5.16 4.81 4.23 4.12

ImageNet-64

DEIS 23.53 14.75 12.57 8.20 6.84 5.97 5.34
DPM-Solver++ 56.63 25.49 15.06 10.14 7.84 6.48 5.67

UniPC 55.63 24.36 14.30 9.57 7.52 6.34 5.53
DLMS 10.07 7.16 7.08 6.31 5.93 4.57 4.30

LSUN-Bedroom

DEIS 12.89 6.83 5.35 4.78 4.43 4.25 4.05
DPM-Solver++ 48.49 18.44 8.39 5.18 4.12 3.77 3.60

UniPC 39.66 13.76 6.46 4.52 3.96 3.72 3.56
DLMS 8.20 5.44 4.44 3.99 3.89 3.70 3.50

ImageNet
DPM-Solver++ 26.30 17.08 13.06 11.08 9.95 9.25 8.72

UniPC 24.99 15.71 11.95 10.24 9.36 8.82 8.45
DLMS 19.74 13.83 10.90 9.66 9.07 8.89 8.22

MS-COCO

DEIS - 15.16 13.95 13.61 13.58 13.46 13.38
DPM-Solver++ - 17.40 15.78 15.08 14.77 14.43 14.18

UniPC - 17.33 15.70 15.06 14.74 14.44 14.28
DLMS - 12.52 11.87 11.65 11.63 11.52 11.45

D MORE QUALITATIVE RESULTS
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(a) DEIS, FID=25.66 (b) DLMS, FID=4.52

Figure 5: Uncurated samples on CIFAR10 32× 32 with 4 NFE.

(a) DEIS, FID=28.31 (b) DLMS, FID=9.63

Figure 6: Uncurated samples on FFHQ 64× 64 with 4 NFE.
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(a) DEIS, FID=14.75 (b) DLMS, FID=7.16

Figure 7: Uncurated samples on ImageNet-64 64× 64 with 5 NFE.

(a) DEIS, FID=12.89 (b) DLMS, FID=8.20

Figure 8: Uncurated samples on LSUN-Bedroom 256× 256 with 4 NFE.
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Table 6: Additional samples of Stable-Diffusion (Rombach et al., 2022) with a classifier-free guid-
ance scale 7.5, using only 10 NFE and selected text prompts.

Text Prompts DPM-Solver++
(FID=14.18)

DEIS
(FID=13.38)

DLMS
(FID=11.45)

“a sandwich on wheat bread sits on a plate”

“three big elephants walking across a wide
river”

“Air force jet in a take off position above the
tree line.”

“An empty bench next to a potted tree up
against a brick wall.”

“A star hangs upon a canopied bed in a bed-
room.”
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