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This document provides more details of our approach and additional experimental results, organized
as follows:

* § Section [T} Details of optimization objective of GCD.

* § Section 2} Details of Maximum Manifold Capacity Representation.

* § Section[3} Theoretically necessary of MTMC.

* § Section[4} Proofs of Theorem.

* § Section[5} More Analysis.

LIRS Section@ More Experimental Results.

1 DETAILS OF OPTIMIZATION OBJECTIVE OF GCD

The existing GCD proposals are all proposed for compact clustering. Summarizing the optimiza-
tion objectives of mainstream schemes GCD (Vaze et al. 2022), CMS (Choi et al., 2024) and
SimGCD (Wen et al.| [2023)), it can be observed that they are based on contrastive learning or proto-
type learning to significantly reduce the distance between potentially similar samples in the feature
space.

1.1 GCD

The pioneering work (Vaze et al, [2022) divided the mini-batch B into labelled B
and unlabeled B*, using supervised (Khosla et al) [2020) contrastive learning UGCD =
ZTZ/v T .

_ﬁ EieBl ﬁ ZjeBl(i) log %, and self-supervised (Chen et al., |2020) con-
: : w 1 exp(z; z}/7)
trastive learnlng ‘CGCD = _E ZiGB log m
A: Loep = (1 — A)LEp + AL cp, where B (i) represents the collection of samples with the same

label as 7. The z and z" are augmented from two different views, and the 7 is the temperature.

and balancing them using coefficients

1.2 CMS

CMS (Choi et al.|[2024) and GCD adopt similar supervised and self-supervised contrastive learning.
The difference is that CMS introduced mean-shift into unsupervised learning. For the i-th sample,

CMS collects the feature set V = {zi}f\il of training samples and calculates the k-nearest neigh-
bours NV (z;) = {z; }U argmax’;j ¢y Zi - Z;, where argmax”_ ¢ (-) returns a subset of the top- items.

By aggregating neighbor embeddings with weight kernel ¢(+), it obtains the new embedded repre-
2 N (ay) P25 —21)%,

sentation of samples after mean-shift: z; = H ( ) H Lems and Lgep are formally
7 €N (z;) P\EIT2i)%]

approximate.
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1.3 SiMGCD

SimGCD (Wen et al., [2023) constructs a prototype classifier C = {c1, - , Cxypunt Ko | TOI bOth
(k) cxp(h;rck)/'r . ‘il

. = m 1n a sumilar

way to FixMatch and uses cross-entropy loss £k cp = ‘B—lll > icn £ (yi, pi) on labeled samples.

known and unknown classes. It obtains the posterior probability p

Self-distillation and entropy regularization £% ccp = ﬁg (PisPi) — AeH (ﬁ >ies (Pi+ D7)
are performed using augmented samples with probability pj.

2 DETAILS OF MAXIMUM MANIFOLD CAPACITY REPRESENTATION

Manifold Capacity Theory (Yerxa et al., 2023} [Schaeffer et al., 2024; |Isik et al.,[2023)) is a theoretical
framework used to evaluate the efficiency of neural representation coding. Its core idea is to map the
complex structures in high-dimensional datasets to low-dimensional manifolds. These manifolds
represent different objects or categories in the feature space. The following formulas can illustrate
some key concepts in Manifold Capacity Theory:

2.1 MANIFOLD RADIUS

Ry = 4/ % Zil A2. )\ represents the eigenvalues of the covariance matrix of points on the

manifold, and P denotes the number of points on the manifold. The manifold radius measures the
size of the manifold relative to its centroid.

2.2  MANIFOLD DIMENSIONALITY

Pt o S . .
Dy = % This is a general participation rate that quantifies the extent of expansion of the

2.3 MANIFOLD CAPACITY

ac = ¢ (R uvD M). @(+) is a monotonically decreasing function with respect to its parameters.
The manifold capacity ac can be understood as the maximum number of manifolds that can be
linearly separable in a given feature space.

Manifold capacity is evaluated based on the manifold radius and dimension to determine the maxi-
mum number of distinguishable categories in high-dimensional space. Optimizing Manifold Capac-
ity aims to improve the coding efficiency of representations by optimizing the geometric properties
of the manifold. Formally, it can be represented as Z* = argming ||GZ||,, where G is a sym-
metric matrix that encodes the semantic relationship between different augmented views, and Z is
an embedding matrix that contains the representation vectors of all augmented views. The optimal
embedding Z* is the one that minimizes the nuclear norm of GZ.

3 THEORETICALLY NECESSARY OF MTMC

GCD is a semi-supervised learning scheme and MTMC is theoretically necessary for GCD. We
conduct a comprehensive analysis and derivation from High-Dimensional Probability perspectives
(with special consideration given to the more general cases where the number of points P is large
and the dimension D is high):

GCD aims to cluster the embeddings of samples from the same category as closely as possible,
regardless of whether they are from known or unknown classes. That is each cluster center lies
on the hypersphere, and the distribution of the centers on the hypersphere is made as uniform as
possible. More formally, this goal can be replaced by two definitions in previous studies (Galvez
et al., 2023 [Wang & Isolal 2020):

Definition 1 (Perfect Reconstruction). A network fy is Perfect Reconstruction if Vx €
X vt 12 e T2 = f (tW(x)) = fo (1P (x)) = 2z», where T is a set of data aug-
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mentations such as color jittering, cropping, flipping, etc. The dataset is x;.p with P samples, and
the set after applying 1 : K augmentation methods is t(V) (x,,) , ..., t5) (x,).

Definition 2 (Perfect Uniformity). p(Z) is the distribution over the network representations induced
by the data and transformation sampling distributions. If p(Z) is a uniform distribution on the
hypersphere, then the network fy achieves Perfect Uniformity.

Intuitively, perfect reconstruction means that the network maps all views of the same data to the same
embedding, while perfect uniformity means that these embeddings are uniformly distributed on the
hypersphere. For brevity, we denote the centroid embedding of the class token representing the p-th
sample under different augmentations as z,,. We prove the following: A network that simultaneously
achieves perfect reconstruction and perfect uniformity achieves a lower bound of what MTMC has,
that is, it provides the lowest probability of Ly/ryc.

Proposition 1. Suppose that, Vp € [P],cl'c, < 1. Then, 0 < ||C||, < /P min(P, D).

Proof. Let 01, ..., 0min(p,p) denote the singular values of C, so that ||C|[. = Zf;irf(P’D) oi. The
lower bound follows by the fact that singular values are nonnegative. For the upper bound, we have

min(P,D) P
Yo ol=Tx[CCT]=> e, <P (1)
i=1 n=1
Then, by Cauchy-Schwarz on the sequences (1,...,1) and (01, ..., Omin(p,n)). We get
min(P,D) min(P,D) min(P,D)

Z o; < Z 1 Z o2 | < /min(P, D)P. )

i=1 =1 =1

Proposition 2. Let fq achieve perfect reconstruction. Then, ||c,||, = 1Vn.

Proof. Because fy achieves perfect reconstruction, Vn,Vt(l),t(Q),zz(,l) = z,(,Q). Thus ¢, =

(1/K) >, zz(,k) = (1/K)>, zg)l) = zg)l), and since ‘ (M

Zp

‘ = 1, we have [lc, ||, = 1.
2

Theorem 1. Let fy : X — SP be a network that achieves perfect reconstruction and perfect
uniformity. Then fy achieves the lower bound of £;7 37 with high probability. Specifically:

Il = {P(l —O(P/D)) ifP<D 3)

VPD(1—O(D/P)) ifP>D
with high probability in min(P, D).

This demonstrates that the MTMC loss can be minimized by minimizing the distances of all embed-
dings corresponding to the same datum and maximizing the distances of all samples’ centers.

The above derivations and analyses based on High-Dimensional Probability demonstrate, the
theoretical strong correlation of MTMC and GCD (as a type of semi-supervised learning).

4 PROOFS OF THEOREM

Lemma 1 Given non-negative values p; such that Y . ,p; = 1, the entropy function
H(pi,...,pn) = — Y1y pilogp; is strictly concave. Furthermore, it is upper-bounded by logn,
as demonstrated by the inequality,

logn =H(1/n,....,1/n) > H(p1,....,pn) > 0. 4

Proof 4.1 Refer to Section D.1 in (Marshalll |1979).
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Lemma 2 The Kullback-Leibler (KL) divergence between two zero-mean, d-dimensional multivari-
ate Gaussian distributions can be formulated as follows,

DKL(N(07 EI)HN(O? 22))

1 _ |2] )
= |r(Z7',) - log =211 .
5 tr(X5°31) —d+log =

Proof 4.2 Refer to Section 9 in .
Theorem 1 For a given [cls] autocorrelation A = CLSTCLS/N € R™ of rank k (< d),

log (rank (A)) > H (A) (6)

where equality holds if the eigenvalues of A are uniformly distributed with szlx\j = 1/k and

V91N = 0.

Proof 4.3
log(rank(A)) = log(k) (N
> H(M1, ..., \) (by Lemmal[l)) 3
k
= —Z)\j log)\j (9)
j=1
d
== Alog; (10)
j=1
= H(A). (11)

According to Lemmal (I} the inequality equation @ attains equality if and only if \; = % for all
Jj = 1,2,..., k. Equation equation [I0] adheres to the convention that 0log0 = 0, as per the

definition in (Thomas & Joy, [20006)).

More details about the definition of A=1. Suppose we have a set of n normalized vectors
V1,Va,...,Vy,, Where the second-order norm (or length) of each vector is 1, that is, ||v;|| = 1
for all 7. The autocorrelation matrix A of these vectors is defined as:

1 n
A== T 12
n;vvz (12)

Here, viviT is the outer product of the vector v; with itself, which is a rank-1 matrix. The autocor-
relation matrix A is the average of these outer product matrices.

Next, we need to find the eigenvalues of A. Since v; is normalized, viTvi = 1. This means that
each v, is an eigenvector of A with the corresponding eigenvalue of % This is because:

1 [ - 1< - 1 7 1 1
Av; = - ;Vjvj Vi = ﬁ;"j("j Vi) = ﬁvi(vi vi) = Vi 1= Vi (13)

So, the eigenvalue corresponding to each v; is % Since A is a rank-n matrix (assuming the vectors
Vi,Va,...,V, are linearly independent), it has n eigenvalues. We already know that n of the n
eigenvalues are % Therefore, the sum of all the eigenvalues of A is:

1 1 1
sum of eigenvalues = —+ —+ - -+ —=n-— =1 (14)
n o on n n
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5 MORE ANALYSIS

5.1 VISUALIZATION OF T-SNE

By maximizing the manifold capacity of the cls token, MTMC effectively enhances the high-
dimensional feature representations, making them more concrete and uniform within each category.
This approach mitigates potential dimensional collapse issues and improves the consistency of cat-
egory samples in feature space distribution. This enhancement is evident in the T-SNE visualization
of feature distribution (Figure 1)), where the feature clustering using the embedded MTMC method
preserves consistent distances between category centers while ensuring a more uniform size for
each cluster. Consequently, the sample representations extracted by the model do not exhibit abrupt
divergences among categories due to the influence of ground truth labels.
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(a) SImGCD (b) SimGCD + Ours (c) CMS (d) CMS + Ours

Figure 1: Visualizing the feature distributions of different methods under the CUB dataset.
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(a) SImGCD/SimGCD + Ours (b) CMS/CMS + Ours

Figure 2: MTMC can improve the convergence speed of the model, which is specifically manifested
as a rapid increase in accuracy during the early stages of training.

The implementation of MTMC facilitates the maximization of cls token manifold capacity, enabling
high cls token manifold capacity within categories to more accurately occupy positions in feature
space during the initial training stages. This effectively reduces confusion arising from the singular-
ity of randomly sampled data during gradient descent and enhances the model’s training efficiency.
Consequently, employing the MTMC method leads to a substantial improvement in the speed of
accuracy enhancement (Figure [2)).

6 MORE EXPERIMENTAL RESULTS

6.1 THE COMPARISON OF ACCURACY

In addition to the above-mentioned experimental content, we also provide experimental results on
other different datasets, divided into the fine-grained datasets (Figure[3)) and the generic object recog-
nition datasets (Figure[d). It can be found that we perform more consistently on fine-grained datasets,
being able to steadily increase accuracy, while there may be a cliff-like decline in accuracy in CI-
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FAR100 and ImageNet100. This is because the CMS method may lack discriminability when the

dimensional features are too stable.

test/all
SIMGCD == CMS — CMS+C

— SimGCD + Ours
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Figure 3: Accuracy of different schemes in training the fine-grained datasets Stanford Cars and

FGVC Aircraft.
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Figure 4: Accuracy of different schemes in training the generic object recognition datasets CI-

FAR100 and ImageNet100.

6.2 THE COMPARISON OF AGGLO

Agglo is an evaluation metric for the degree of feature aggregation. In the baseline method CMS,
the weight with the highest agglo score is selected as the best training result. A higher agglo score
usually indicates a better evaluation performance, that is, a strong correlation between the inference
results and the agglo score. Figures[5]and [6]show the impact of using MTMC on agglo in different

characteristic datasets.
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Figure 5: The variation of the metric agglo on the fine-grained datasets CUB, Stanford Cars and

FGVC Aircraft.

6.3 THE COMPARISON OF ESTIMATED K

When inferring without the ground true number of categories, the inference results will be divided
into different clusters based on the agglomeration situation, and the predict number of clusters is K.
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Figure 6: The variation of the metric agglo on the generic object recognition datasets CIFAR100
and ImageNet100.

The closer the value of K is to the ground true number of categories, the model does not blindly
compress the feature space distribution of each category, making them gather as much as possible.

According to Figure[7} it can be observed that using MTMC can improve the evaluation performance
of K on most datasets.
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(d) CIFAR100 (e) ImageNet100

Figure 7: The impact of using MTMC on the predicted number of categories k when the actual
number of categories is unknown.
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