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This document provides more details of our approach and additional experimental results, organized
as follows:

• § Section 1: Details of optimization objective of GCD.

• § Section 2: Details of Maximum Manifold Capacity Representation.

• § Section 3: Theoretically necessary of MTMC.

• § Section 4: Proofs of Theorem.

• § Section 5: More Analysis.

• § Section 6: More Experimental Results.

1 DETAILS OF OPTIMIZATION OBJECTIVE OF GCD

The existing GCD proposals are all proposed for compact clustering. Summarizing the optimiza-
tion objectives of mainstream schemes GCD (Vaze et al., 2022), CMS (Choi et al., 2024) and
SimGCD (Wen et al., 2023), it can be observed that they are based on contrastive learning or proto-
type learning to significantly reduce the distance between potentially similar samples in the feature
space.

1.1 GCD

The pioneering work (Vaze et al., 2022) divided the mini-batch B into labelled Bl

and unlabeled Bu, using supervised (Khosla et al., 2020) contrastive learning Ll
GCD =

− 1
|Bl|

∑
i∈Bl

1
|Bl(i)|

∑
j∈Bl(i) log

exp(z⊤
i z′

j/τ)∑
n̸=i exp(z

⊤
i z′

n/τ)
, and self-supervised (Chen et al., 2020) con-

trastive learning Lu
GCD = − 1

|B|
∑

i∈B log
exp(z⊤

i z′
i/τ)∑

n ̸=i exp(z
⊤
i z′

n/τ)
and balancing them using coefficients

λ: LGCD = (1− λ)Lu
GCD + λLl

GCD, where Bl(i) represents the collection of samples with the same
label as i. The z and z′ are augmented from two different views, and the τ is the temperature.

1.2 CMS

CMS (Choi et al., 2024) and GCD adopt similar supervised and self-supervised contrastive learning.
The difference is that CMS introduced mean-shift into unsupervised learning. For the i-th sample,
CMS collects the feature set V = {zi}Ni=1 of training samples and calculates the k-nearest neigh-
bours N (zi) = {zi}∪argmaxkzj∈V zi ·zj , where argmaxks∈S(·) returns a subset of the top-k items.
By aggregating neighbor embeddings with weight kernel φ(·), it obtains the new embedded repre-

sentation of samples after mean-shift: ẑi =
∑

zj∈N(zi)
φ(zj−zi)zj∥∥∥∑zj∈N(zi)
φ(zj−zi)zj

∥∥∥ . LCMS and LGCD are formally

approximate.
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1.3 SIMGCD

SimGCD (Wen et al., 2023) constructs a prototype classifier C = {c1, · · · , cKknown+Knovel} for both

known and unknown classes. It obtains the posterior probability p
(k)
i =

exp(h⊤
i ck)/τ∑

k′ exp(h⊤
i c′

k)/τ
in a similar

way to FixMatch and uses cross-entropy loss Ll
SimGCD = 1

|Bl|
∑

i∈Bl ℓ (yi,pi) on labeled samples.
Self-distillation and entropy regularization Lu

SimGCD = 1
|B|ℓ (p

′
i,pi) − λeH( 1

2|B|
∑

i∈B (pi + p′
i))

are performed using augmented samples with probability p′
i.

2 DETAILS OF MAXIMUM MANIFOLD CAPACITY REPRESENTATION

Manifold Capacity Theory (Yerxa et al., 2023; Schaeffer et al., 2024; Isik et al., 2023) is a theoretical
framework used to evaluate the efficiency of neural representation coding. Its core idea is to map the
complex structures in high-dimensional datasets to low-dimensional manifolds. These manifolds
represent different objects or categories in the feature space. The following formulas can illustrate
some key concepts in Manifold Capacity Theory:

2.1 MANIFOLD RADIUS

RM =
√

1
P

∑P
i=1 λ

2
i . λi represents the eigenvalues of the covariance matrix of points on the

manifold, and P denotes the number of points on the manifold. The manifold radius measures the
size of the manifold relative to its centroid.

2.2 MANIFOLD DIMENSIONALITY

DM =
(
∑P

i−1 λi)
2∑P

i−1 λ2
i

. This is a general participation rate that quantifies the extent of expansion of the

manifold along its major directions.

2.3 MANIFOLD CAPACITY

αC = ϕ
(
RM

√
DM

)
. ϕ(·) is a monotonically decreasing function with respect to its parameters.

The manifold capacity αC can be understood as the maximum number of manifolds that can be
linearly separable in a given feature space.

Manifold capacity is evaluated based on the manifold radius and dimension to determine the maxi-
mum number of distinguishable categories in high-dimensional space. Optimizing Manifold Capac-
ity aims to improve the coding efficiency of representations by optimizing the geometric properties
of the manifold. Formally, it can be represented as Z∗ = argminZ ∥GZ∥∗, where G is a sym-
metric matrix that encodes the semantic relationship between different augmented views, and Z is
an embedding matrix that contains the representation vectors of all augmented views. The optimal
embedding Z∗ is the one that minimizes the nuclear norm of GZ.

3 THEORETICALLY NECESSARY OF MTMC

GCD is a semi-supervised learning scheme and MTMC is theoretically necessary for GCD. We
conduct a comprehensive analysis and derivation from High-Dimensional Probability perspectives
(with special consideration given to the more general cases where the number of points P is large
and the dimension D is high):

GCD aims to cluster the embeddings of samples from the same category as closely as possible,
regardless of whether they are from known or unknown classes. That is each cluster center lies
on the hypersphere, and the distribution of the centers on the hypersphere is made as uniform as
possible. More formally, this goal can be replaced by two definitions in previous studies (Gálvez
et al., 2023; Wang & Isola, 2020):

Definition 1 (Perfect Reconstruction). A network fθ is Perfect Reconstruction if ∀x ∈
X ,∀t(1), t(2) ∈ T , z(1) = fθ

(
t(1)(x)

)
= fθ

(
t(2)(x)

)
= z(2), where T is a set of data aug-

2
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mentations such as color jittering, cropping, flipping, etc. The dataset is x1:P with P samples, and
the set after applying 1 : K augmentation methods is t(1) (xp) , . . . , t

(K) (xp).

Definition 2 (Perfect Uniformity). p(Z) is the distribution over the network representations induced
by the data and transformation sampling distributions. If p(Z) is a uniform distribution on the
hypersphere, then the network fθ achieves Perfect Uniformity.

Intuitively, perfect reconstruction means that the network maps all views of the same data to the same
embedding, while perfect uniformity means that these embeddings are uniformly distributed on the
hypersphere. For brevity, we denote the centroid embedding of the class token representing the p-th
sample under different augmentations as zp. We prove the following: A network that simultaneously
achieves perfect reconstruction and perfect uniformity achieves a lower bound of what MTMC has,
that is, it provides the lowest probability of LMTMC .

Proposition 1. Suppose that, ∀p ∈ [P ], cTp cp ≤ 1. Then, 0 ≤ ∥C∥∗ ≤
√
P min(P,D).

Proof. Let σ1, . . . , σmin(P,D) denote the singular values of C, so that ∥C∥∗ =
∑min(P,D)

i=1 σi. The
lower bound follows by the fact that singular values are nonnegative. For the upper bound, we have

min(P,D)∑
i=1

σ2
i = Tr

[
CCT

]
=

P∑
n=1

cTp cp ≤ P (1)

Then, by Cauchy-Schwarz on the sequences (1, . . . , 1) and
(
σ1, . . . , σmin(P,D)

)
, we get

min(P,D)∑
i=1

σi ≤

√√√√√
min(P,D)∑

i=1

1

min(P,D)∑
i=1

σ2
i

 ≤
√
min(P,D)P . (2)

Proposition 2. Let fθ achieve perfect reconstruction. Then, ∥cp∥2 = 1∀n.

Proof. Because fθ achieves perfect reconstruction, ∀n, ∀t(1), t(2), z(1)p = z
(2)
p . Thus cp =

(1/K)
∑

k z
(k)
p = (1/K)

∑
k z

(1)
p = z

(1)
p , and since

∥∥∥z(1)p

∥∥∥
2
= 1, we have ∥cp∥2 = 1.

Theorem 1. Let fθ : X → SD be a network that achieves perfect reconstruction and perfect
uniformity. Then fθ achieves the lower bound of LMTMC with high probability. Specifically:

∥C∥∗ =

{
P (1−O(P/D)) if P ≤ D√

PD(1−O(D/P )) if P ≥ D
(3)

with high probability in min(P,D).

This demonstrates that the MTMC loss can be minimized by minimizing the distances of all embed-
dings corresponding to the same datum and maximizing the distances of all samples’ centers.

The above derivations and analyses based on High-Dimensional Probability demonstrate, the
theoretical strong correlation of MTMC and GCD (as a type of semi-supervised learning).

4 PROOFS OF THEOREM

Lemma 1 Given non-negative values pi such that
∑n

i=1 pi = 1, the entropy function
H(p1, . . . , pn) = −

∑n
i=1 pi log pi is strictly concave. Furthermore, it is upper-bounded by log n,

as demonstrated by the inequality,

log n = H(1/n, ..., 1/n) ≥ H(p1, ..., pn) ≥ 0. (4)

Proof 4.1 Refer to Section D.1 in (Marshall, 1979).

3
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Lemma 2 The Kullback-Leibler (KL) divergence between two zero-mean, d-dimensional multivari-
ate Gaussian distributions can be formulated as follows,

DKL(N (0,Σ1)∥N (0,Σ2))

=
1

2

[
tr(Σ−1

2 Σ1)− d+ log
|Σ2|
|Σ1|

]
.

(5)

Proof 4.2 Refer to Section 9 in (Duchi, 2007).

Theorem 1 For a given [cls] autocorrelation A = CLS⊤CLS/N ∈ Rd×d of rank k (≤ d),

log (rank (A)) ≥ Ĥ (A) (6)

where equality holds if the eigenvalues of A are uniformly distributed with ∀kj=1λj = 1/k and
∀dj=k+1λj = 0.

Proof 4.3

log(rank(A)) = log(k) (7)
≥ H(λ1, ..., λk) (by Lemma 1) (8)

= −
k∑

j=1

λj log λj (9)

= −
d∑

j=1

λj log λj (10)

= Ĥ(A). (11)

According to Lemma 1, the inequality equation 8 attains equality if and only if λj = 1
k for all

j = 1, 2, . . . , k. Equation equation 10 adheres to the convention that 0 log 0 = 0, as per the
definition in (Thomas & Joy, 2006).

More details about the definition of λ=1. Suppose we have a set of n normalized vectors
v1,v2, . . . ,vn, where the second-order norm (or length) of each vector is 1, that is, ∥vi∥ = 1
for all i. The autocorrelation matrix A of these vectors is defined as:

A =
1

n

n∑
i=1

viv
T
i (12)

Here, viv
T
i is the outer product of the vector vi with itself, which is a rank-1 matrix. The autocor-

relation matrix A is the average of these outer product matrices.

Next, we need to find the eigenvalues of A. Since vi is normalized, vT
i vi = 1. This means that

each vi is an eigenvector of A with the corresponding eigenvalue of 1
n . This is because:

Avi =
1

n

 n∑
j=1

vjv
T
j

vi =
1

n

n∑
j=1

vj(v
T
j vi) =

1

n
vi(v

T
i vi) =

1

n
vi · 1 =

1

n
vi (13)

So, the eigenvalue corresponding to each vi is 1
n . Since A is a rank-n matrix (assuming the vectors

v1,v2, . . . ,vn are linearly independent), it has n eigenvalues. We already know that n of the n
eigenvalues are 1

n . Therefore, the sum of all the eigenvalues of A is:

sum of eigenvalues =
1

n
+

1

n
+ · · ·+ 1

n
= n · 1

n
= 1 (14)
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5 MORE ANALYSIS

5.1 VISUALIZATION OF T-SNE

By maximizing the manifold capacity of the cls token, MTMC effectively enhances the high-
dimensional feature representations, making them more concrete and uniform within each category.
This approach mitigates potential dimensional collapse issues and improves the consistency of cat-
egory samples in feature space distribution. This enhancement is evident in the T-SNE visualization
of feature distribution (Figure 1), where the feature clustering using the embedded MTMC method
preserves consistent distances between category centers while ensuring a more uniform size for
each cluster. Consequently, the sample representations extracted by the model do not exhibit abrupt
divergences among categories due to the influence of ground truth labels.

(c) CMS (d) CMS + Ours(a) SimGCD (b) SimGCD + Ours

Figure 1: Visualizing the feature distributions of different methods under the CUB dataset.

(a) SimGCD/SimGCD + Ours (b) CMS/CMS + Ours

Figure 2: MTMC can improve the convergence speed of the model, which is specifically manifested
as a rapid increase in accuracy during the early stages of training.

The implementation of MTMC facilitates the maximization of cls token manifold capacity, enabling
high cls token manifold capacity within categories to more accurately occupy positions in feature
space during the initial training stages. This effectively reduces confusion arising from the singular-
ity of randomly sampled data during gradient descent and enhances the model’s training efficiency.
Consequently, employing the MTMC method leads to a substantial improvement in the speed of
accuracy enhancement (Figure 2).

6 MORE EXPERIMENTAL RESULTS

6.1 THE COMPARISON OF ACCURACY

In addition to the above-mentioned experimental content, we also provide experimental results on
other different datasets, divided into the fine-grained datasets (Figure 3) and the generic object recog-
nition datasets (Figure 4). It can be found that we perform more consistently on fine-grained datasets,
being able to steadily increase accuracy, while there may be a cliff-like decline in accuracy in CI-

5
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FAR100 and ImageNet100. This is because the CMS method may lack discriminability when the
dimensional features are too stable.

(a) Stanford Cars (b) FGVC Aircraft

Figure 3: Accuracy of different schemes in training the fine-grained datasets Stanford Cars and
FGVC Aircraft.

(a) CIFAR100 (b) ImageNet100

Figure 4: Accuracy of different schemes in training the generic object recognition datasets CI-
FAR100 and ImageNet100.

6.2 THE COMPARISON OF AGGLO

Agglo is an evaluation metric for the degree of feature aggregation. In the baseline method CMS,
the weight with the highest agglo score is selected as the best training result. A higher agglo score
usually indicates a better evaluation performance, that is, a strong correlation between the inference
results and the agglo score. Figures 5 and 6 show the impact of using MTMC on agglo in different
characteristic datasets.

(b) Stanford Cars (c) FGVC Aircraft(a) CUB

Figure 5: The variation of the metric agglo on the fine-grained datasets CUB, Stanford Cars and
FGVC Aircraft.

6.3 THE COMPARISON OF ESTIMATED K

When inferring without the ground true number of categories, the inference results will be divided
into different clusters based on the agglomeration situation, and the predict number of clusters is K.

6
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(b) ImageNet100(a) CIFAR100

Figure 6: The variation of the metric agglo on the generic object recognition datasets CIFAR100
and ImageNet100.

The closer the value of K is to the ground true number of categories, the model does not blindly
compress the feature space distribution of each category, making them gather as much as possible.
According to Figure 7, it can be observed that using MTMC can improve the evaluation performance
of K on most datasets.

(b) Stanford Cars (c) FGVC Aircraft(a) CUB

(e) ImageNet100(d) CIFAR100 (e) ImageNet100(d) CIFAR100

Figure 7: The impact of using MTMC on the predicted number of categories k when the actual
number of categories is unknown.
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