
Under review as a conference paper at ICLR 2022

EXACT: SCALABLE GRAPH NEURAL NETWORKS
TRAINING VIA EXTREME ACTIVATION COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Graph Neural Networks (GNNs) on large graphs is a fundamental chal-
lenge due to the high memory usage, which is mainly occupied by activations
(e.g., node embeddings). Previous works usually focus on reducing the number
of nodes retained in memory. In parallel, unlike what has been developed for
other types of neural networks, training with compressed activation maps is less
explored for GNNs. This extension is notoriously difficult to implement due to
the miss of necessary tools in common graph learning packages. To unleash the
potential of this direction, we provide a optimized GPU implementation which
supports training GNNs with compressed activations. Based on the implementa-
tion, we propose a memory-efficient framework called “EXACT”, which for the
first time demonstrate the potential and evaluate the feasibility of training GNNs
with compressed activations. We systematically analyze the trade-off among the
memory saving, time overhead, and accuracy drop. In practice, EXACT can re-
duce the memory footprint of activations by up to 32× with 0.2-0.5% accuracy
drop and 10-25% time overhead across different models and datasets. In addi-
tion, EXACT can trim down the hardware requirement of training a three-layer
full-batch GraphSAGE on ogbn-products from a 48GB GPU to a 12GB GPU.

1 INTRODUCTION

Despite Graph Neural Networks (GNNs) have achieved great success across different graph-related
tasks, training GNNs on large graphs is a long-standing challenge due to its extensive memory
requirement (Kipf & Welling, 2017; Zhang & Chen, 2018; Cai et al., 2021). The extensive memory
consumption of GNN stems from its recursive neighborhood aggregation scheme, where each node
aggregates embeddings of its neighbors to update its new embedding at each layer. Thus, training
an L-layer GNN requires storing all L layers’ intermediate node embeddings in GPU memory for
computing the gradients, and this typically adds several times more memory than holding the node
feature matrix (see Algorithm 1 for a detailed analysis). Hence, storing these node embeddings is
the major memory bottleneck for training GNNs on large graphs.

Most of the existing works towards this problem can be roughly divided into two categories. First,
some works propose to train GNNs with sampled subgraphs instead of the whole graph at each
step. In this way, only node embeddings that are present in the current subgraph will be retained
in memory (Chiang et al., 2019; Hamilton et al., 2017; Zeng et al., 2020; Zou et al., 2019; Chen
et al., 2018; Huang et al., 2018). Second, another line of work tries to decouple the neighborhood
aggregation from prediction, either as a preprocessing step (Wu et al., 2019; Klicpera et al., 2018;
Yu et al., 2020) or post-processing step (Huang et al., 2020), where the model is simplified as the
Multi-Layer Perceptron (MLP) that can be trained with mini-batch data.

In parallel, another orthogonal direction is to store only the compressed node embeddings (i.e.,
activations) in memory for computing the gradients. Recent works propose to quantize the activa-
tions in lower numerical precision (e.g., using 8-bit integer) during the forward pass (Chakrabarti
& Moseley, 2019; Fu et al., 2020; Chen et al., 2021a). This framework successfully trims down
the memory requirement for training Convolutional Neural Networks (CNNs) by a large margin, at
the cost of additional time overhead and loss of accuracy. Ideally, the real-world usage requires the
training method should achieve a balanced trade-off among the following three aspects: 1. Space.
It should enable to train GNNs on large graphs using off-the-shelf hardwares, such as GPUs and

1

Under review as a conference paper at ICLR 2022

CPUs; 2. Speed. The time overhead should be acceptable, ideally as small as possible; 3. Model
Performance. The loss of accuracy should be acceptable, ideally as small as possible.

Although storing the compressed activations successfully saves the memory for CNNs, up to our
knowledge, there is no existing work extends this direction to GNNs and evaluates the mentioned
trade-off for analyzing its feasibility. Despite the extension is conceptually straightforward, this di-
rection is less-explored since it can be notoriously difficult to implement to fully leverage hardware
potentials. This dilemma stems from the fact that the necessary tools for supporting this direction
is usually missed in common graph learning packages. For example, operations in popular graph
learning packages only support casting tensors down to 8-bit integer on GPUs, significantly limiting
the memory saving (Paszke et al., 2019; Fey & Lenssen, 2019; Wang et al., 2019). As a result,
previous GNN quantization works either emulates inference-time quantization via “simulated quan-
tization” (Tailor et al., 2021; Zhao et al., 2020), or is impractical to use GPUs for accelerating (Feng
et al., 2020). To unleash the potential of this direction, we provide a space-efficient GPU implemen-
tation for supporting common operations in GNNs with compressed activations. Equipped with our
implementation, this paper asks the following open question:

To what extent can we compress the activations with both acceptable loss in accuracy and time
overhead, for scalable GNN training?

To answer the open question, we first explore two different types of compression methods. Namely,
one is “quantization” that compresses the activations into lower numerical precision. The other one
is called “random projection” (Achlioptas, 2001) that projects the activations into low-dimensional
space. Both these two simple strategies can achieve near-lossless accuracy at a non-trivial com-
pression ratio. For example, the loss in accuracy is negligible (0.2%) even under the vanilla 2-bit
quantization. However, we cannot further push forward the memory saving by these two methods,
e.g., we cannot use a numerical precision below 1-bit. Considering that the real-world graphs often
contain hundreds of millions of nodes, our main goal is to trim down the memory consumption to
the maximum extent among the three aspects, as long as the other two are acceptable. We then nat-
urally explore the direction of combining random projection and quantization, dubbed “EXACT”,
to aggressively maximize the memory saving. EXACT is essentially applies random projection and
quantization sequentially for compressing activations. Despite the superior memory saving, another
following question is that, whether the combination bring significantly worse model performance
and larger time overhead? Following the questions, we make three major contributions as follows:

• We provide a space-efficient GPU implementation for training GNNs with compressed activations
as an extension for Pytorch. Based on our implementation, we are the first one training GNNs
with compressed activations and demonstrating its potential for real-world usage. EXACT can
complement the existing studies, as it can be integrated with most of existing solutions.

• We propose EXACT, a simple-yet-effective framework which applies random projection and
quantization sequentially on activation for scalable GNN training. We theoretically and exper-
imentally show that applying random projection and quantization sequentially have an “inter-
action” effect. Namely, from the model performance aspect, after random projection, applying
quantization only has a limited impact on the model performance. From the time aspect, EXACT
runs comparable or even faster than quantization only.

• Despite the simplicity, EXACT achieves non-trivial memory saving with both acceptable time
overhead and loss in accuracy: EXACT can reduce the memory footprint of activations by up to
32× with roughly 0.5% loss in accuracy and 10− 25% time overhead across models and datasets.
Noteworthily, EXACT trims down the hardware requirement of training a full-batch GraphSAGE
(Hamilton et al., 2017) on ogbn-products (Hu et al., 2020) from a 48GB GPU to a 12GB GPU,
which is affordable to most research labs.

2 THE MEMORY CONSUMPTION OF GNNS

Background. Let G = (V, E) be an undirected graph with V = (v1, · · · , v|V|) and E =

(e1, · · · , e|E|) being the set of nodes and edges, respectively. Let X ∈ R|V|×d be the node fea-
ture matrix of the whole graph. The graph structure can be represented by an adjacency matrix
A ∈ R|V|×|V|, where Ai,j = 1 if (vi, vj) ∈ E else Ai,j = 0. In this work, we are mostly interested
in the task of node classification, where the goal is to learn the representation hv for all v ∈ V such

2

Under review as a conference paper at ICLR 2022

that the label yv can be easily predicted. To obtain such a representation, GNNs follow the neigh-
borhood aggregation scheme. Specifically, GNNs recursively update the representation of a node
by aggregating representations of its neighbors. Formally, the lth layer of a GNN can be written

as h
(l+1)
v = UPDATE

(
h
(l)
v ,
⊕

u∈N (v) MSG
(
h
(l)
u ,h

(l)
v

))
, where h

(l)
v is the representation of node

v at the lth layer. N (v) denotes the neighboring nodes of node v, not including v itself. The full
table of notations can be found in Appendix A Table 5. For node v, messages from its neighbors are
calculated by MSG(·). Then these messages are aggregated using a permutation-invariant aggrega-
tion function

⊕
. The aggregated features at v are updated by UPDATE(·). For example, the Graph

Convolutional Network (GCN) (Kipf & Welling, 2017) layer can be defined as

H(l+1) = ReLU(ÂH(l)Θ(l)), (1)

where H(l) is the node embedding matrix consisting of all nodes’ embeddings at the lth layer
and H(0) = X . Θ(l) is the weight matrix of the lth GCN layer. Â = D̃−

1
2AD̃−

1
2 is

the normalized adjacency matrix, where D̃ is the degree matrix of A + I . We note that Â is
usually stored using the sparse matrix format. For GCN layers, the message and the aggrega-
tion function are fused into a Sparse-Dense Matrix Multiplication (SPMM 1) operation. Namely,
ÂH(l)Θ(l) = SPMM(Â,H(l)Θ(l)). Thus, the computation graph of Equation 1 can be written as

H(l+1) = ReLU

(
SPMM

(
Â,MM(H(l),Θ(l))

))
, (2)

where MM(·, ·) is the normal Dense-Dense Matrix Multiplication. Equation 2 resembles how GCNs
are implemented in popular packages (Fey & Lenssen, 2019; Wang et al., 2019).

Here we analyze the memory consumption for the forward pass of GCN since most of the memory
is occupied during the forward pass. For the memory usage of the backward pass, a detailed analysis
is given in Appendix C. Specifically, for an L layer GCN, suppose the hidden dimensions of layer
0, · · · , L − 1 are the same, which are denoted as D. The forward pass of GCN layers is shown in
Appendix C Algorithm 1. For layer l, it saves the following four variables in memory. (1) the weight
matrix Θ(l) ∈ RD×D whose shape is independent to the graph size and is generally negligible. (2)
the normalized adjacency matrix Â (in CSR format) whose space complexity is O(|V|+ |E|). Note
that there only needs to store one Â in memory which can be accessed by different layers. Thus,
the memory consumption of Â is independent of the number of layers and is not the main memory
bottleneck. (3) the intermediate result J (l) = MM(H(l),Θ(l)) ∈ R|V|×D. For an L layer GCN, stor-
ing {J (0), · · ·J (L−1)} has a O(L|V|D) space complexity, which is the main memory bottleneck.
(4) the node embedding matrix H(l) ∈ R|V|×D. For a L layer GCN, storing {H(0), · · ·H(L−1)}
has a O(L|V|D) space complexity, which is the also main memory bottleneck. In this paper, we
use the term “activation maps” to encompass H , J , and activation maps of other commonly used
layers/operations such as BatchNorm, ReLU and Dropout.

3 METHODOLOGY

From the above analysis, the memory consumption of GCNs can be significantly reduced by stor-
ing only the compressed activations. As shown in Figure 1, due to the simplicity and small time
overhead of quantization (Section 3.1) and random projection (Section 3.2), we first explore these
two methods for compressing the activations of GNNs. We show that these two simple methods
can bring moderate compression ratio with negligible loss in accuracy. However, the highest com-
pression rates of these two methods are either limited by hardwares or limited by the accuracy drop.
Motivated by GNN’s endless demand on memory, we then explore the direction of combining quan-
tization with random projection into one framework termed “EXACT”, to aggressively maximize
the memory saving (Section 3.3). We show that random projection and quantization have an “in-
teraction” effect. Namely, from the model performance aspect, after random projection, applying
quantization only has a limited impact on the model performance. From the time aspect, EXACT
runs comparable or even faster than quantization only.

1We note that the output of SPMM(·, ·) is a dense matrix.

3

Under review as a conference paper at ICLR 2022

(a) GCN layers with quantized activations. (b) GCN layers with randomly projected activations.

Figure 1: The training procedure of GCN layers, where only compressed activations are stored in
memory. For illustration convenience, ReLU is ignored. During the forward pass, each layer’s
accurate activations (H(l)) is used to compute those for the subsequent layer. Then the accurate
activations will be compressed into the compressed activations (H(l)

INT and H
(l)
proj), which overwrites

the the accurate activations and is retained in the memory. During the backward pass, we recover
the compressed activations back to decompressed activation (Ĥ(l)) for computing the gradient.

3.1 STORING QUANTIZED ACTIVATIONS

Inspired by ActNN (Chen et al., 2021a), as shown in Figure 1a, we first explore the direction of
compressing activation maps in lower numerical precision. Specifically, during the forward pass,
each layer’s accurate activations (e.g., J (l) and H(l)) is used to compute those for the subsequent
layer. Then the accurate activations will be quantized into the compressed activations (e.g., H(l)

INT

and J
(l)
INT) with lower numerical precision, which overwrites the the accurate activations and is re-

tained in the memory. During the backward pass, we dequantize the compressed activations back
to full-precision (e.g., Ĥ(l) and Ĵ (l)). Then the gradients are computed based on the dequantized
activations. We note that all operations (e.g., MM and SPMM) are done in full-precision since most of
the GPUs do not support operands with bit-width other than full-precision and half-precision. For
convenience, we use the term “precision” to present “numerical precision” in the following of
this paper. Below we introduce the technical details of (de)quantization.

Specifically, each node embedding vector h(l)
v will be quantized and stored using b-bit integers. Let

B = 2b − 1 be the number of quantization bins. The integer quantization can be expressed as

h(l)
vINT

= Quant(h(l)
v) = bh

(l)
v − Z(l)

v

r
(l)
v

Be, (3)

where Z(l)
v = min{h(l)

v } is the zero-point, r(l)v = max{h(l)
v }−min{h(l)

v } is the range for h(l)
v , and

b·e is the stochastic rounding operation (Courbariaux et al., 2015). H(l)
INT in Figure 1a is the matrix

containing all quantized h
(l)
vINT . During the backward pass, each h

(l)
vINT will be dequantized as

ĥ(l)
v = Dequant(h(l)

vINT
) = r(l)v h(l)

vINT
/B + Z(l)

v . (4)

Ĥ(l) in Figure 1a is the matrix containing all dequantized embeddings ĥ(l)
v . The following proposi-

tion characterizes the effect of quantization, which is adopted from Chen et al. (2021a).

Proposition 1 (Details in Appendix E) The above quantization and dequantization are unbiased

operations, i.e., E[ĥ
(l)
v] = E[Dequant(Quant(h

(l)
v))] = h

(l)
v and Var(ĥ

(l)
v) =

D[r(l)v]2

6B2 .

From the unbiased nature of quantization illustrated in Proposition 1, the calculated gradient is also
unbiased. The approach imposes extra noise (i.e., the variance term in Proposition 1) to the gradient
during the backward pass. From Proposition 1, the noise effect is inversely-correlated with the
number of quantization bins B. To evaluate how the noise affects the model performance, we train
three popular GNN models, namely, GCN, GraphSAGE, and GAT, on the ogbn-arxiv dataset (Hu

4

Under review as a conference paper at ICLR 2022

Table 1: The test accuracy of GCN, GraphSAGE, and GAT trained on the ogbn-arxiv dataset with
compressed activations storing in different precision. All results are averaged over ten random trials.

Model FP32 (Baseline) INT8 INT4 INT2 INT1
GCN 72.07±0.16 72.06±0.29 71.96±0.26 71.93±0.20 71.68±0.17

GraphSAGE 71.85±0.24 71.83±0.15 71.85±0.27 71.58±0.22 71.34±0.24
GAT 72.35±0.12 72.39±0.14 72.34±0.12 72.35±0.12 72.17±0.12

et al., 2020) with different precision (Table 1). The detailed experiment setting is elaborated in
Appendix G.2. Here we emphasize that all these three models are trained with full-batch data.

Observations. For all three models, the loss in accuracy is negligible (≈ 0.2%) even using the
vanilla 2-bit quantization. In contrast, for CNNs, adopting the vanilla INT1 or INT2 quantization,
will cause a significant accuracy drop (usually > 5%) (Chen et al., 2021a; 2020a). This observation
can be explained by the following mechanism. We show in Appendix E.4 that the approximation
error will compound layer-by-layer during the backward pass. The layer-depth of GNNs is much
smaller than CNNs due to the over-smoothing problem. And hence GNNs is much more noise-
tolerant than CNNs. Our observation suggests that in practical scenarios, there is no need for an
expensive sophisticated quantization approach (e.g., mixed precision quantization) as considered in
previous works (Chen et al., 2021a; Fu et al., 2020).

3.2 STORING RANDOMLY PROJECTED ACTIVATIONS

Here we explore the direction of random projection. The key idea is to project the activation maps
into a low-dimensional space that keeps the original information as much as possible. In this way,
similar to the framework in Section 3.1, we only need to store the dimension reduced activation
maps in memory. Figure 1b illustrates the workflow of GCN layers. During the forward pass, each
layer’s accurate activations (e.g., h(l)

v) are used to compute those for the subsequent layer. Then the
accurate activations will be projected into low-dimensional space, which can be expressed as:

h(l)
vproj

= RP(h(l)
v) = h(l)

v R, (5)

where R ∈ RD×R is a random matrix (R < D) which satisfies E[RR>] = I . H(l)
proj ∈ R|V|×R is

the matrix containing all projected node embeddings h(l)
vproj . In this paper, R is set as the normalized

Rademacher random matrix (Achlioptas, 2001) due to its low sampling cost (detailed introduction
in Appendix D). After projection, we store only H

(l)
proj in memory and hence the compression ratio

is D
R . During the backward pass, the projected node embeddings are inversely transformed by

ĥ(l)
v = IRP(h(l)

vproj
) = h(l)

vproj
R>, (6)

where IRP(·) is the inverse projection operation. Ĥ(l) = H
(l)
projRR> ∈ R|V|×D is the recovered

activation map containing all ĥ(l)
v . The following proposition shows the effect of random projection.

Proposition 2 (Proof in Appendix E) The above RP and IRP are unbiased operations, i.e.,
E[Ĥ(l)] = E[IRP(RP(H(l)))] = H(l). For each ĥ

(l)
v in Ĥ(l), we have Var(ĥ

(l)
v) = D−1

R ||h
(l)
v ||22.

From the unbiased nature of random projection illustrated in Proposition 2, the calculated gradient is
also unbiased. The approach here also only imposes extra variance to the calculated gradient, where
the variance linearly scales with the D

R ratio. To quantitatively study the effect of the extra variance
in scenarios of practical interest, following the same setting in Section 3.1, we show the performance
of GCN, GraphSAGE, and GAT trained on the ogbn-arxiv dataset with different DR ratio in Table 2.

Observations. We make two main observations: (1) For all three models, the loss in accuracy
tends to range from negligible (≈ 0.2%) to moderate (≈ 0.5%) when D

R ≤ 8. (2) Under the same
compression ratio, the quantization is better than random projection in terms of the loss in accuracy
(e.g., compare the D

R = 16 result in Table 2 with the INT2 result in Table 1).

5

Under review as a conference paper at ICLR 2022

Table 2: The test accuracy of GCN, GraphSAGE, and GAT trained on the ogbn-arxiv dataset with
randomly projected activations. All results are averaged over ten random trials.

Model Full-Dimension (Baseline) D
R

= 2 D
R

= 4 D
R

= 8 D
R

= 16
GCN 72.07±0.16 71.87±0.15 71.72±0.18 71.71±0.22 71.55±0.13

GraphSAGE 71.85±0.24 71.58±0.28 71.46±0.28 71.29±0.25 71.13±0.28
GAT 72.35±0.12 72.18±0.14 72.15±0.10 72.02±0.12 71.89±0.12

3.3 EXACT: COMBINING RANDOM PROJECTION AND QUANTIZATION

We experimentally show that GNNs are noise-tolerant to inaccurate activations compressed by quan-
tization and random projection. However, the highest compression ratio of these two methods is
limited. Namely, the precision cannot be less than 1-bit for quantization and D

R cannot surpass eight
for random projection due to a large accuracy drop. However, GNN’s demand on memory is endless
since real-world graphs can contain hundreds of millions of nodes and the graph size is ever growing.
Motivated by this fact, we try to further push forward the memory saving as long as the loss of ac-
curacy and the time overhead are both acceptable. We explore the direction of combining these two
methods into one framework termed “EXACT” to maximize the memory saving. Specifically, we
compress the activations and store only the h̃(l)

v = Quant(RP(h
(l)
v)) in memory during the forward

pass. During the backward pass, the node embedding is recovered as ĥ(l)
v = IRP(Dequant(h̃

(l)
v)).

EXACT can achieve a superior compression ratio, e.g., the compression ratio of EXACT is roughly
128× if DR = 8 and the precision is INT2.

However, one practical question is that, will the variance explode, leading to significantly worse per-
formance when applying random projection and quantization sequentially? Here we try to answer
the above question both theoretically and experimentally. Below we first theoretically show that
after applying random projection, the quantization range of projected node embeddings is bounded.

Proposition 3 (Proof in Appendix E) For each projected node embedding h
(l)
vproj = RP(h

(l)
v) =

h
(l)
v R, for ∀ε > 0, by choosing s = ||h(l)

v ||2
√

2ln(2R/ε)
R , we have P (||h(l)

vproj ||∞ ≤ s) ≥ 1− ε.

From Proposition 3, after projection, the maximal absolute value among weights in h
(l)
vproj is bounded.

Following the fact that the quantization range r(l)vproj = max{h(l)
vproj} − min{h(l)

vproj} ≤ 2||h(l)
vproj ||∞,

r
(l)
vproj is also bounded. Recall that the variance of quantization scales with

[r(l)vproj
]2

B2 (Proposition 1),
applying random projection and quantization sequentially will not lead to the variance explosion.

Figure 2: The performance of EXACT is mainly
determined by the D

R ratio of random projection.

We also experimentally visualize the in-
finity norm of projected embeddings in
Appendix E Figure 4. The infinity norm of pro-
jected embeddings may be even less than those
of original embeddings when R is larger than
a threshold (R = 0.5D in Figure 4). Thus,
the extra variance is expected to be dominated
by the random projection, and hence the loss in
accuracy is largely determined by the D

R ratio.
We also experimentally investigate the effect of
EXACT by plotting the test accuracy against
each of quantization precision and the D

R ratio.
Due to the page limit, we only present one representative result in Figure 2, namely, training GCNs
on ogbn-arxiv with EXACT. More similar results can be found in Appendix I.1 Here we do not
consider INT1 precision since its model performance drop is already near 0.5%. We summarize
two main observations. First, the performance of EXACT is largely determined by the D

R ratio of
random projection. Second, when D

R ≤ 8, the loss in accuracy generally ranges from ≈ 0.2% to
≈ 0.5%, regardless of the quantization precision.

System Implementation. In EXACT, each operations (e.g., SPMM , ReLU, and BatchNorm) is re-
implemented with different configurations using CUDA kernels. For example, BatchNorm only sup-

6

Under review as a conference paper at ICLR 2022

ports quantization, while the random projection is not applicable to it. Since Pytorch only supports
precision down to INT8, we convert quantized tensors into bit-streams by CUDA kernels to maximize
the memory saving. The configuration and implementation details are given in Appendix F.

4 RELATED WORK AND DISCUSSION

Due to the page limit, we briefly review and discuss the relationship between existing works and
EXACT. A more comprehensive discussion can be found in Appendix B. Existing works can be
roughly divided into scalable/efficient GNN inference and scalable GNN training according to the
problem they try to solve. Almost all previous GNN quantization works try to solve the first problem,
which is much simpler than the second problem that EXACT tries to address. Specifically, most
of them try to enable the usage of low precision integer arithmetic during inference (Tailor et al.,
2021; Zhao et al., 2020) by simulating the quantization effect, which may even increase the memory
consumption during training. Feng et al. (2020) tries to address the second problem by proposing
a heterogeneous quantization framework which assigns different bits to node embeddings in each
layer. However, this framework is impractical on off-the-shell hardwares. For scalable GNN training
methods, EXACT is orthogonal to most of them, including distributed training (Zheng et al., 2020b;
Jia et al., 2020; Zhu et al., 2019; Wan et al., 2021), subgraph sampling (Hamilton et al., 2017; Zeng
et al., 2020; Chiang et al., 2019), and historical embedding-based methods (Fey et al., 2021). We
discuss the potential benefit of integrating EXACT with them in Appendix B.

5 EXPERIMENTS

The experiments are designed to answer the following research questions. RQ1: How effective is
EXACT in terms of model performance at different compression rates (Section 5.1)? RQ2: Is the
training process of deeper GNNs also robust to the noise introduced by EXACT (Section 5.1)? RQ3:
How sensitive is EXACT to its key hyperparameters (Appendix I.3)? RQ4: What is the running time
overhead of EXACT (Section 5.2)? RQ5: Is the convergence speed of GNNs impacted by EXACT
(Appendix I.2)? RQ6: To what extent can EXACT reduce the hardware requirement for training
GNNs on large graphs (Section 5.3)?

Datasets and Models: To evaluate the scalability of EXACT, we adopt five common large scale
graph benchmark datasets from different domains. Namely, Reddit, Flickr, Yelp, ogbn-arxiv, and
ogbn-products. We evaluate EXACT under both the mini-batch training and full-batch training
setting. For the mini-batch training setting, we integrate EXACT with two state-of-the-art sub-
graph sampling methods, namely, Cluster-GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al.,
2020). For the full-batch training setting, we integrate EXACT with three popular models: two
commonly used shallow models, namely, GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton
et al., 2017), and one deep model GCNII (Chen et al., 2020b). To avoid creating confusions, GCN,
GraphSAGE, and GCNII are both trained with the whole graph at each step. For a fair com-
parison, we use the mean aggregator for GraphSAGE, Cluster-GCN, and GraphSAINT throughout
the paper. Details about the hyperparameters of models and datasets can be found in Appendix G.

Hyperparameter Settings: From Section 3.3, we show that the performance of EXACT is largely
determined by the D

R ratio of random projection, and the model performance drop with INT2 quan-
tization is negligible. Thus, to balance the accuracy drop and memory saving ratio, we adopt INT2
precision with different DR ratio for EXACT. Specifically, EXACT (INT2) indicates it only applies 2-
bit quantization to the activation maps of all applicable operations (see Table 6). EXACT(RP+INT2)
indicates it applies the random projection following by a 2-bit quantization to the activations of all
applicable operations. We perform a grid search for DR ratio from {2, 4, 8}. Detailed D

R configuration
for EXACT(RP+INT2) can be found in Table 10.

5.1 TRADE-OFF BETWEEN SPACE AND MODEL PERFORMANCE

To answer RQ1 and RQ2, we first analyze the trade-off between the model performance and mem-
ory saving. Table 3 summarizes the model performance and the memory footprint of the activation
maps. Besides the memory usage of activation maps, a detailed analysis about the memory usage of
other parts (e.g., input data) is provided in Appendix H. We make two main observations.

7

Under review as a conference paper at ICLR 2022

Table 3: Comparison on the test accuracy/F1-micro and memory saving on five datasets. The hard-
ware here is a single RTX 3090 (24GB). “Act Mem.” is the memory (MB) occupied by activation
maps. “OOM” indicates the out-of-memory error. Bold faces indicates the loss in accuracy is negli-
gible (≈ 0.2%) or the result is better compared to the baseline.Underline numbers indicates the loss
in accuracy is moderate (≈ 0.5%). All reported results are averaged over ten random trials.

nodes
edges

230K
11.6M

89K
450K

717K
7.9M

169K
1.2M

2.4M
61.9M

Model Methods Reddit Flickr Yelp ogbn-
arxiv

ogbn-
products

Acc. Act
Mem. Acc. Act

Mem. F1-micro Act
Mem. Acc. Act

Mem. Acc. Act
Mem.

Cluster-
GCN

Baseline 95.62±0.10 14.5 (1×) 49.61±0.47 16.5 (1×) 63.98±0.14 29.3 (1×) — — 78.62±0.26 35.2 (1×)
EXACT(INT2) 95.58±0.09 2 (7.3×) 49.69±0.20 1.5 (11×) 63.90±0.15 4 (7.3×) — — 78.47±0.40 2.5 (14×)

EXACT(RP+INT2) 95.32±0.07 1.4 (10.4×) 49.31±0.21 0.9 (18.3×) 63.61±0.21 3 (9.8×) — — 77.86±0.28 2.2 (16×)

Graph-
SAINT

Baseline 96.02±0.08 44.3 (1×) 51.11±0.28 88.7 (1×) 63.78±0.12 33.5 (1×) 71.49±0.20 270 (1×) 79.03±0.23 516 (1×)
EXACT(INT2) 95.96±0.05 6.6 (6.7×) 50.86±0.32 7.8 (11.4×) 63.77±0.14 4.3 (7.8×) 71.76±0.15 20 (13.5×) 78.94±0.28 40.5 (12.7×)

EXACT(RP+INT2) 95.69±0.06 3.6 (12.3×) 50.65±0.17 3.4 (26×) 63.41±0.19 3.3 (10.2×) 71.44±0.16 10.8 (25×) 78.50±0.41 29.5 (17.5×)

GCN
Baseline 95.39±0.04 1029 (1×) 53.08±0.14 378.8 (1×) 40.22±0.47 6429 (1×) 72.07±0.16 729.4(1×) — —

EXACT(INT2) 95.36±0.03 122.8 (8.4×) 52.92±0.20 37 (10.2×) 40.20±0.38 640 (10×) 72.04±0.21 54.5 (13.4×) — —
EXACT(RP+INT2) 95.30±0.03 67 (15.4×) 52.90±0.22 17.8 (21.3×) 39.89±0.56 427 (15×) 71.67±0.16 30.2 (24.1×) — —

Graph-
SAGE

Baseline 96.44±0.04 1527.4 (1×) 51.74±0.13 546.9 (1×) 62.05±0.14 6976 (1×) 71.85±0.24 786.2(1×) 78.782±0.19 OOM
EXACT(INT2) 96.40±0.05 155.5 (9.8×) 51.97±0.22 49.3 (11.1×) 61.95±0.12 680 (10.3×) 71.71±0.38 60.8 (12.9×) 78.79±0.12 1144

EXACT(RP+INT2) 96.34±0.03 71.7 (21.3×) 51.83±0.21 20.4 (26.8×) 61.59±0.12 466.5 (15×) 71.32±0.26 30.5 (25.8×) 78.76±0.13 572

GCNII
Baseline 96.71±0.07 5850 (1×) 54.23±0.77 4067 (1×) OOM OOM 72.85±0.27 14409 (1×) — —

EXACT(INT2) 96.65±0.06 388 (15×) 54.55±0.47 256.4 (15.9×) 64.79±0.09 2236 72.85±0.43 899 (16×) — —
EXACT(RP+INT2) 96.51±0.09 197.8 (29.6×) 53.96±0.58 127.6 (31.9×) 64.01±0.17 1649 72.67±0.45 451.2 (32×) — —

First, EXACT aggressively reduces the memory footprint with ≤ 0.5% loss in accuracy. From
Table 3, EXACT (INT2) reduces the memory footprint of activation maps from 7× to 16×, with
negligible loss in accuracy (≈ 0.2%) in almost all experiments. EXACT (RP+INT2) generally
reduces the memory footprint of activation maps from 10× to 32×, and the loss in accuracy tends to
range from lossless (0.0%) to moderate (≈ 0.5%). Although EXACT can aggressively compress the
memory usage of activations associated with MM and SPMM by up to 128×, the compression ratio for
other operations usually cannot surpass 32× (e.g., the activation maps of ReLU and Dropout take
exact one bit to store, see Appendix F). As a result, the overall compress ratio is pulled down. We
show in Appendix H that the measured compression ratio is consistent with the theoretical one.

Second, the training process of deeper models is also robust to extremely compressed acti-
vations. As we analyzed in Appendix E.4, the vanilla quantization and random projection obtain
unreasonable good performance might because the commonly used GNNs are shallow. Thus, one
open question is that, to what extent can deeper GNNs robust to extremely compressed activation
maps (RQ2)? The ablation study of GCNII in Table 3 tries to experimentally answer this question.
Namely, the training process of deeper GNNs (up to 16-layer, see Table 15) is also robust to the
noise introduced by the extremely compressed activations, with up to 32× less memory footprint
of activation maps. We note that building deeper GNNs is still an open direction due to the over-
smoothing and the extensive memory consumption problem (Oono & Suzuki, 2019; Li et al., 2021;
Chen et al., 2020b). From the practical usage perspective, our GCNII ablation study indicates that
EXACT may enable to train deeper GNNs on large graphs with minimal loss in performance.

To answer RQ3, we present the sensitivity study of EXACT (RP+INT2) to D
R ratio in Appendix I.3.

In general, the model performance drop of EXACT (RP+INT2) increases with the D
R ratio. In

summary, when D
R = 8, the loss in accuracy of EXACT (RP+INT2) is ≤ 0.5% in roughly two-third

of experiments and ≤ 1% in almost all experiments.

5.2 TRADE-OFFS BETWEEN SPACE AND SPEED

To answer RQ4, we compare the training throughout of EXACT with the baseline using a single
RTX 3090 (24GB) GPU. Figure 3 shows the results among EXACT with different configurations
and the baseline (see Table 7 for detailed package information). We make two main observations.

First, the overhead of EXACT (INT2) is roughly 12% ∼ 25%. The overhead of EXACT (INT2)
comes entirely from quantization. We note that EXACT (INT2) adopts vanilla integer quantization
with negligible loss in accuracy, which has the lowest overhead among all quantization methods. So-
phisticated quantization strategies (e.g., mixed precision quantization and non-uniform quantization)
further increase the time overhead, because they require an extra search process to find precision or

2The regular training raises OOM error. The result is obtained using the automated mixed-precision training
(torch.cuda.amp).

8

Under review as a conference paper at ICLR 2022

Figure 3: Training throughout comparison on a single RTX 3090 (24GB) GPU (higher is better).
The time overhead of EXACT is roughly 12% ∼ 25%.

quantization step for each layer/sample (Chakrabarti & Moseley, 2019; Fu et al., 2020; Chen et al.,
2021a). From Table 3, the overhead of EXACT (INT2) is roughly 12% ∼ 25%.

Second, the running speed of EXACT (RP+INT2) is comparable or even faster than quantiza-
tion only. The above counter-intuitive observation can be explained by the following mechanism.
Although random projection introduces two extra matrix multiplication operations, the total num-
ber of elements to be quantized is D

R times less than directly quantizing the activations. Considering
that quantization is the main bottleneck, compared to EXACT (INT2), EXACT (RP+INT2) achieves
roughly twice overall compression ratios with a comparable or even smaller time overhead.

RQ4 focuses on the actual running speed measured by the hardware throughout. Here we inves-
tigate the convergence speed from the optimization perspective (RQ5). To answer RQ5, due to
the page limit, we present the training curve of models trained on Reddit dataset with EXACT in
Appendix I.2. The converge speed here is measured by the number of epochs it takes to reach a
certain validation accuracy. In summary, the convergence speed of EXACT is slightly slower than
the baseline, with limited impact on final accuracy.

5.3 ABLATION STUDIES

Train full-batch GraphSAGE on ogbn-products using a GPU with 11GB memory.

Table 4: The test accuracy of full-batch
GraphSAGE trained on ogbn-products
using a single GTX 1080 Ti (11GB).

Methods Accuracy
AMP OOM

EXACT(RP+INT2) + AMP 78.28±0.18

Table 3 shows that EXACT reduces the memory foot-
print of activation maps by up to 32×. However, as an-
alyzed in Appendix H, besides the activation maps, in-
put data (including feature matricesX , adjacency matrix
A, and labels), activation gradients also occupy mem-
ory in the full-batch training. For ogbn-products, the
input data occupies 4.7GB (see Appendix H). From the
OGB leader-board, training a full-batch GraphSAGE re-
quires GPUs with at least 48GB memory. We note that EXACT can be integrated with AMP (see
Appendix F) to further squeeze out the memory. To answer RQ6, by integrating AMP and EXACT
(RP+INT2) with D

R = 4, we successfully train a full-batch GraphSAGE on ogbn-products on a
single GTX 1080 Ti with 11GB memory, with moderate loss (≈ 0.5%) in accuracy (Table 4).

6 CONCLUSION AND FUTURE WORK

In this paper, we propose EXACT, a simple-yet-effective framework for training GNNs with com-
pressed activations. EXACT essentially applies random projection and quantization sequentially on
activations, which can be plugged into any training method to save memory. We demonstrate the
potential of EXACT for the real-world usage by systematically evaluating the trade-off among the
memory-saving, time overhead, and accuracy drop. Specifically, EXACT achieves non-trivial mem-
ory saving with 0.2-0.5% accuracy drop and 10-25% time overhead across five models and five large
scale graph datasets. We show that EXACT is orthogonal to almost all of existing scalable GNN
training methods. We discuss in detail that how EXACT can be integrated with existing solutions in
Appendix B. Future work includes (1) evaluating EXACT under multi-GPU settings for distributed
training; (2) combining EXACT with historical embedding-based method; (3) combining EXACT
with memory-efficient training system, such as gradient checkpointing and swapping.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 274–281, 2001.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, pp. 1204–1215. PMLR, 2021.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. Advances in Neural Information Processing Systems, 32:2429–2438,
2019.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International conference on machine learning. PMLR, 2017.

Jianfei Chen, Yu Gai, Zhewei Yao, Michael W Mahoney, and Joseph E Gonzalez. A statistical
framework for low-bitwidth training of deep neural networks. arXiv preprint arXiv:2010.14298,
2020a.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W Mahoney, and
Joseph E Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning. PMLR, 2021a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020b.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
pp. 1695–1706. PMLR, 2021b.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost.(2016). arXiv preprint arXiv:1604.06174, 2016.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sgquant: Squeezing the
last bit on graph neural networks with specialized quantization. In 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 1044–1052. IEEE, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings. In International conference on machine
learning, 2021.

10

Under review as a conference paper at ICLR 2022

Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, and Bin Cui. Don’t
waste your bits! squeeze activations and gradients for deep neural networks via tinyscript. In
International Conference on Machine Learning, pp. 3304–3314. PMLR, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label
propagation and simple models out-performs graph neural networks. In International Conference
on Learning Representations, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in Neural Information Processing Systems, 2018.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica,
and Joseph E Gonzalez. Checkmate: Breaking the memory wall with optimal tensor rematerial-
ization. arXiv preprint arXiv:1910.02653, 2019.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy, scala-
bility, and performance of graph neural networks with roc. Proceedings of Machine Learning and
Systems, 2:187–198, 2020.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=SJU4ayYgl.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization. arXiv preprint
arXiv:2006.09616, 2020.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. arXiv preprint arXiv:2106.07476, 2021.

Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Sgcn: A
graph sparsifier based on graph convolutional networks. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 275–287. Springer, 2020.

Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija,
Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. Graph traversal with tensor functionals: A
meta-algorithm for scalable learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6DOZ8XNNfGN.

Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training deeper models by gpu
memory optimization on tensorflow. In Proc. of ML Systems Workshop in NIPS, 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=6DOZ8XNNfGN

Under review as a conference paper at ICLR 2022

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, and Philipp Krähenbühl.
Memory optimization for deep networks. arXiv preprint arXiv:2010.14501, 2020.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=NSBrFgJAHg.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2017.

Cheng Wan, Youjie Li, Nam Sung Kim, and Yingyan Lin. {BDS}-{gcn}: Efficient full-graph
training of graph convolutional nets with partition-parallelism and boundary sampling, 2021. URL
https://openreview.net/forum?id=uFA24r7v4wL.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural networks for hetero-
geneous graphs. arXiv preprint arXiv:2011.09679, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in Neural
Information Processing Systems, 31:5165–5175, 2018.

Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro Lio. Learned low
precision graph neural networks. arXiv preprint arXiv:2009.09232, 2020.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020a.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,
and George Karypis. Distdgl: distributed graph neural network training for billion-scale graphs. In
2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3),
pp. 36–44. IEEE, 2020b.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: a comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730,
2019.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. arXiv preprint
arXiv:1911.07323, 2019.

12

https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=uFA24r7v4wL
https://openreview.net/forum?id=BJe8pkHFwS

Under review as a conference paper at ICLR 2022

A NOTATIONS

Table 5: Table of Notations.

Notations Description
|V| The number of nodes
|E| The number of edges

A ∈ R|V|×|V| The adjacency matrix, which is stored in sparse matrix format
Â ∈ R|V|×|V| The normalized adjacency matrix, which is stored in sparse matrix format

X The input feature matrix
h

(l)
v The uncompressed node embedding at the lth layer corresponding to node v

H(l) The uncompressed node embedding matrix at the lth layer (each row is a node embedding h
(l)
v)

D The node embedding dimension
h

(l)
vINT The quantized node embedding at the lth layer corresponding to node v

H
(l)
INT The quantized node embedding matrix at the lth layer (each row is a h

(l)
vINT)

r
(l)
v The quantization range, where r

(l)
v = max{h(l)

v } −min{h(l)
v }

b The bit-width. In this paper, b must be chosen from {1, 2, 4, 8, 32}
h

(l)
vproj The randomly projected node embedding at the lth layer corresponding to node v

H
(l)
proj The randomly projected node embedding matrix at the lth layer (each row is a h

(l)
vproj)

R The dimension of projected node embeddings

ĥ
(l)
v

The recovered node embedding at the lth layer corresponding to node v
(either compressed by quantization or random projection)

Ĥ(l) The recovered node embedding matrix at the lth layer (each row is a ĥ
(l)
v)

Var(h) The variance of the vector h, where Var(h) = E[h>h]− (E[h])>(E[h])
|h||2 The 2-norm of vector h, where |h||2 =

√
h>h

|h||∞ The infinity norm of vector h, where |h||∞ = max |h|

B RELATED WORK AND DISCUSSION

Due to the page limit, we discuss the relationship between EXACT and existing works in detail here.
GNN is notoriously inefficient and non-scalable during both the training and inference phase. Pre-
vious works can be divided into two categories according to the problem they try to solve. Namely,
scalable/efficient GNN inference and scalable GNN training. Below we introduce and discuss the
relationship between them and EXACT.

B.1 SCALABLE/EFFICIENT GNN INFERENCE

Scalable GNN inference is an orthogonal direction to the problem that EXACT tries to address. Be-
low we introduces two popular directions for scalable GNN inference. Namely, GNN quantization
and graph sparsification.

GNN Quantization. Most of the previous GNN quantization works focus on enabling the usage of
low precision integer arithmetic during inference. Specifically, Tailor et al. (2021) proposes a Quan-
tization Aware Training method tailored for GNNs, which emulates inference-time quantization
during the training phase. Zhao et al. (2020) proposes to jointly search the quantization bit-width
and GNN architectures. Note that both of them do not actually convert the node embeddings into
lower numerical precision during training. Instead, they use full precision data type to simulate the
effect of real quantization. Feng et al. (2020) proposes a heterogeneous quantization framework
which assigns different bits to node embeddings in each layer while maintaining the weights at full
precision. However, due to the mismatch in operands’ bit-width, it is impractical to use in general
purpose hardwares, such as CPUs and GPUs.

Graph Sparsification. The adjacency matrices are usually stored as sparse matrices. When hard-
wares perform SPMM , the sparse matrix format leads to random memory accesses and limited data
reuse due to its irregular structure. Thus, GNNs have higher inference latency than other neural
networks. Graph sparsification can alleviate the issue by removing redundant edges from original
graphs. Zheng et al. (2020a) proposes a learning-based graph sparsification method which removes

13

Under review as a conference paper at ICLR 2022

potentially task-irrelevant edges from input graphs Li et al. (2020) formulates the graph sparsifica-
tion problem as an optimization objective which can be solved by alternating direction method of
multipliers (ADMM). Chen et al. (2021b) proposes to co-simplify the input graph and GNN model
by extending the iterative magnitude pruning to graph areas.

B.2 SCALABLE GNN TRAINING

In this subsection, we introduce previous works that try to train GNNs on large graphs. We conclude
that EXACT are parallel to most of the previous works.

Subgraph Sampling/Mini-Batch Training. As we introduced in the main body, most of the pre-
vious scalable GNN training methods fall into this category. The key idea is to train GNNs with
sampled subgraphs instead of the whole graph at each step. In this way, only node embeddings
that are present in the current subgraph will be retained in memory. Based on this idea, various
sampling techniques have been proposed, including the node-wise sampling (Hamilton et al., 2017;
Chen et al., 2017; Markowitz et al., 2021), layer-wise sampling (Zou et al., 2019; Chen et al., 2018;
Huang et al., 2018), and subgraph sampling (Chiang et al., 2019; Zeng et al., 2020). Generally,
methods in this category are orthogonal to EXACT, and they can certainly be combined. Similar
to EXACT, subgraph sampling also introduce the gradient noise during the training process. How-
ever, the gradient noise does not necessarily result in the model performance drop. In contrast,
many previous works experimentally show that subgraph sampling based methods may even yield
better performance than the whole graph training (Zeng et al., 2020; Hu et al., 2020). Our experi-
ment results also exhibit a similar phenomenon that EXACT may achieve better performance than
the original one. This observation can be explained by the regularization effect introduced by the
gradient noise (Hu et al., 2020).

In this paper, we show in experiments that EXACT can be combined with subgraph-sampling based
methods with only limited accuracy drop. From the practical usage perspective, EXACT can enlarge
the maximal subgraph size for subgraph training-based method. As a result, the error introduced by
EXACT can be compensated by using larger subgraphs, which previously cannot fit into GPUs. We
leave it as one future direction.

GNNAutoScale (Fey et al., 2021). GNNAutoScale follows the idea of utilizing historical embed-
dings from prior training iterations (Fey et al., 2021). Specifically, it stores a historical embedding
for each node as an offline storage in CPU memory. At each training step, it first samples a mini-
batch of nodes. Then for out-of-mini-batch nodes, GNNAutoScale swaps their historical embed-
dings from CPU memory to GPU memory and utilizes their non-trainable historical embeddings for
propagation. In this way, only the node embeddings inside the current mini-batch and those of their
direct 1-hop neighbors are retained in memory. The time overhead of GNNAutoScale is mainly from
the swapping step. EXACT is orthogonal to GNNAutoScale. It would be interesting to store node
embeddings compressed by EXACT as historical embeddings for GNNAutoScale. Considering that
quantization is more time-efficient compared to swapping, the time overhead of GNNAutoScale can
be greatly reduced since the time cost of swapping scales with the total number of bits to be swapped.

Distributed Training. Unlike the data in other domains, the graph data cannot be trivially divided
into mini-batches due to its connectivity between samples. The graph distributed training methods
require to split the graph into mini-batches that minimizes the communication overhead. Specifi-
cally, AliGraph (Zhu et al., 2019) is a distributed GNN framework on CPU platforms, which does
not support GPUs acceleration. ROC (Jia et al., 2020) learns to optimize the graph partitioning by
predicting the execution time of performing a GNN operation on an input subgraph. Both BDS-
GCN (Wan et al., 2021) and DistDGL (Zheng et al., 2020b) leverage METIS (Karypis & Kumar,
1998) to performance the graph partitioning to minimize the communication cost. However, one
main drawback of applying METIS is that the ahead-of-training overhead of METIS is relatively
large on huge graphs. EXACT is also orthogonal to the distributed training methods and can be used
to decrease the hardware requirements. It would be interesting to investigate the trade-off among
the accuracy drop and the memory saving of EXACT under multi-GPU settings.

Memory efficient training system. Gradient checkpointing (Chen et al., 2016; Jain et al., 2019;
Kirisame et al., 2020; Shah et al., 2020) trades computation for memory by dropping some of the
activations in the forward pass and recomputing them in the backward pass. Swapping (Meng et al.,
2017) utilizes the huge amount of available CPU memory by swapping tensors between CPU and

14

Under review as a conference paper at ICLR 2022

Algorithm 1: Forward Pass of the lth GCN layer

Input: H(l), Θ(l), the total number of layers L.
Output: H(l+1)

1 ctx(l) ← {} /* the context which saves tensors for backward */

2 J (l) ← MM(H(l),Θ(l))

3 Add H(l) and Θ(l) to ctx(l) /* used for MM.backward */

4 H(l+1) ← SPMM(Â,J (l))

5 Add Â (in CSR format) and J (l) to ctx(l) /* used for SPMM.backward */
6 if l 6= L− 1 then
7 Add 1{H(l+1)>0} to ctx(l) /* used for ReLU.backward */

8 H(l+1) = ReLU(H(l+1))
9 end

10 return H(l+1)

GPU. EXACT is also parallel to both the gradient checkpointing and swapping. As a result, EXACT
can be combined with them to further squeeze out the memory, at the cost of larger time overhead.

C ANALYZING THE MEMORY CONSUMPTION OF GCNS

Generally, each training step contains a forward pass phase and a backward pass phase. During the
forward pass, activation maps of each operation are kept in memory for computing the gradients.
During the backward pass, the weight gradients and activation gradients are calculated and stored
in memory. For weight gradients, their memory usage is negligible since they share the same shape
with model weights. For activation gradients, their memory usage is dynamic and will eventually
be cleared to zero. In standard deep learning libraries, activation gradients will be deleted as soon
as their reference counting becomes zero (Paszke et al., 2019; Abadi et al., 2016). Thus, storing
activation maps take up most of the memory. The memory usage of activation maps in GCN layers
are given in Algorithm 1.

D RANDOM PROJECTION

In this paper, we use the normalized Rademacher random matrix (Achlioptas, 2001) for projecting
the activation maps. Specifically, for a D × R normalized Rademacher random matrix R, each
element in R is i.i.d. sampled from the following distribution:

Ri,j =

√
1

R
×

+1, with probability

1

2
,

−1, with probability
1

2
.

(7)

where
√

1
R is the normalize factor such that E[RR>] = I . From above, we can see that the

sampling cost of the normalized Rademacher random matrix is relatively low since sampling from
Bernoulli distribution is much cheaper than sampling from Gaussian distribution.

E THEORY

E.1 PROOF OF PROPOSITION 1

Proposition 1 (Details in Appendix E) The above quantization and dequantization are unbiased

operations, i.e., E[ĥ
(l)
v] = E[Dequant(Quant(h

(l)
v))] = h

(l)
v and Var(ĥ

(l)
v) =

D[r(l)v]2

6B2 .

Proposition 1 is adopted from the theoretical analysis in ActNN (Chen et al., 2021a). For complete-
ness, we prove it here with more details. The conclusion of E[ĥ

(l)
v] = h

(l)
v follows from the fact that

15

Under review as a conference paper at ICLR 2022

the stochastic rounding is an unbiased operation (Courbariaux et al., 2015). Specifically, ∀ scalar h,
the stochastic rounding can be expressed as

bhe =

{dhe, with probability h− bhc,
bhc, with probability 1− (h− bhc), (8)

where d·e is the ceil operation and b·c is the floor operation. First, we have E[bhe] = h because

E[bhe] = dhe(h− bhc) + bhc(1− h+ bhc)
= h (following the fact that dhe − bhc = 1)

Hence,

E[ĥ(l)
v] =

r
(l)
v

B
E[bh

(l)
v − Z(l)

v

r
(l)
v

Be] + Z(l)
v = h(l)

v .

Regarding the variance, let h̄ =
h(l)

v −Z
(l)
v

r
(l)
v

B = (h1, · · · , hD). Suppose ∀i, hi − bhic = σ ∼
Uniform(0, 1), we have.

Var(ĥ(l)
v) =

[r
(l)
v]2

B2
Var(bh̄e) = E[h̄>h̄]− (E[h̄])>(E[h̄])

=
[r

(l)
v]2

B2

D∑
i=1

dhie2(hi − bhic) + bhic2(1− hi + bhic)− h2i

=
[r

(l)
v]2D

B2

(
2bh1ch1 + h1 − bh1c2 − bh1c − h21

)
(substitute dh1e with bh1c+ 1)

=
[r

(l)
v]2D

B2

(
σ − σ2

)
(substitute bh1c with h1 − σ)

By taking expectation w.r.t. σ on the both side, we have Var(ĥ
(l)
v) =

[r(l)v]2D
6B2

�

E.2 PROOF OF PROPOSITION 2

Proposition 2 (Proof in Appendix E) The above RP and IRP are unbiased operations, i.e.,
E[Ĥ(l)] = E[IRP(RP(H(l)))] = H(l). For each ĥ

(l)
v in Ĥ(l), we have Var(ĥ

(l)
v) = D−1

R ||h
(l)
v ||22.

We can get E[Ĥ(l)] = E[IRP(RP(H(l)))] = H(l) directly following the fact that
E[IRP(RP(H(l)))] = E[H(l)RR>] = H(l)E[RR>] = H(l).

Regarding the variance, let P = RR> ∈ RD×D. For the sake of notation convenience, we ignore
the subscript and superscript in this subsection. Namely, we use the notation ĥ to represent ĥ(l)

v , and
use the notation h to represent h(l)

v . Also, we assume the shapes of ĥ and h are both 1×D in this
subsection. We have

Var(ĥ) = Var(hP)

= hE[PP>]h> − hh>

Next, we will characterize the distribution of PP>. Recall that P = RR>, thus,

Pi,j =

R∑
k=1

ai,kaj,k,

16

Under review as a conference paper at ICLR 2022

where each ai,j = ±
√

1
R with equal probability. Thus,

[PP>]i,j =

D∑
m=1

Pi,mPj,m

=

D∑
m=1

(
(

R∑
k=1

ai,kam,k)(

R∑
k=1

aj,kam,k)

)
. (9)

From Equation 9, it is easy to show that E[PP>] is a diagonal matrix. Namely, ∀i 6= j, we have
E[PP>]i,j = 0 following the fact that each ai,j are independent and E[ai,j] = 0. For elements on
the diagonal, we have

E[PP>]i,i = E[

D∑
m=1

Pi,mPi,m]

= E[

D∑
m=1

(

R∑
k=1

ai,kam,k)2]

= E[(

R∑
k=1

ai,kai,k)2] + E[
∑
m 6=i

(

R∑
k=1

ai,kam,k)2]

= 1 +
∑
m6=i

(R∑
k=1

E[(ai,kam,k)2] + 2
∑

p,q:p<q

E[ai,pam,pai,qam,q]

)

= 1 +
∑
m6=i

(R∑
k=1

E[(ai,kam,k)2]

)
= 1 +

D − 1

R
. (10)

Let h = (h1, · · ·hD), we have

Var(ĥ) = hE[PP>]h> − hh>

= h

1 + D−1
R

. . .
1 + D−1

R

h> − hh>

=

D∑
i=1

(1 +
D − 1

R
)h2i −

D∑
i=1

h2i

=
D − 1

R
||h||22. (11)

�

E.3 PROOF OF PROPOSITION 3

Proposition 3 (Proof in Appendix E) For each projected node embedding h
(l)
vproj = RP(h

(l)
v) =

h
(l)
v R, for ∀ε > 0, by choosing s = ||h(l)

v ||2
√

2ln(2R/ε)
R , we have P (||h(l)

vproj ||∞ ≤ s) ≥ 1− ε.

For the normalized Rademacher random matrix R ∈ RD×R, we have Ri,j = ± 1√
R

with equal

probability. Let h(l)
v = (h1, · · · , hD) and h

(l)
vproj = (u1, · · · , uR). Since h

(l)
vproj = h

(l)
v R, we have

u1 =
∑D
i=1 aihi, where ai = ± 1√

R
with equal probability.

17

Under review as a conference paper at ICLR 2022

Figure 4: The histogram of the projected node embeddings’ infinity norm at MM (the left figure) and
SPMM (the right figure) operation of the first GCN layer.

First, we have the following inequality:

E[etRu1] =

D∏
i=1

E[etRaihi]

=

D∏
i=1

et
√
Rhi + e−t

√
Rhi

2
=

D∏
i=1

cosh t
√
Rhi

≤
D∏
i=1

e
t2Rh2

i
2 (following the fact that coshx ≤ e x2

2)

= e
t2R||h(l)

v ||22
2 . (12)

For notation convenience, we use the notation “C” to represent the node embedding norm ||h(l)
v ||2.

For ∀s, q > 0, according to Chernoff bound, we have:

P (|ui| ≥ s) = 2P (ui ≥ s)
= 2P (equi ≥ eqs)

≤ 2
E[equi]

eqs
(by Chernoff bound)

≤ 2
E[e

sRui
C2]

e
s2R
C2

(by setting q =
sR

C2
)

≤ 2e−
s2R
2C2 (by Equation 12) (13)

Note that Equation 13 holds for ∀s > 0. Given a specific ε, by setting s = C
√

2 ln(2R/ε)
R , we have

P (|ui| ≥ s) ≤ ε
R . Also,

P (||h(l)
vproj
||∞ ≤ s) =

R∏
i=1

P (|ui| ≤ s)

= (1− P (|ui| ≥ s))R

≥ (1− ε

R
)R

≥ 1− ε

�

Here we also experimentally verify Proposition 3 by visualizing the infinity norm of projected node
embeddings in Figure 4. To avoid creating confusions, D

R = 1 in Figure 4 means we apply the

18

Under review as a conference paper at ICLR 2022

random projection with R = D on the activation maps. We can observe that in general, the infinity
norm increases with the compression ratio D

R . However, we note that the infinity norm of projected
embeddings may less than those of original embeddings when R is larger than a threshold. This sug-
gests that when R is below a certain threshold, quantizing projected embeddings only have limited
influence on model performance. This claim is also verified in the main body of this paper.

E.4 THE COMPOUND EFFECT OF APPROXIMATION ERRORS

The theoretical results in this subsection is adopted from Theorem 3 in ActNN (Chen et al., 2021a).
Let Ĉ(m) be the compressed context (either by quantization, random projection, or quantized ran-
dom projection). Let ∇Θ(l) and ∇H(l) be the gradient of Θ(l) and H(l), respectively. ∇̂Θ(l) and
∇̂H(l) are the calculated gradient using the compressed context, respectively. Further, we use the
notation G

(l∼m)
Θ (∇̂H(m), Ĉ(m)) to represent the variance introduced by utilizing the compressed

context Ĉ(m). Specifically, for a L layer GNN, we have

Var(∇̂Θ(l)) = Var(∇Θ(l)) +

L∑
m=l

E
[
Var
(
G

(l∼m)
Θ (∇̂H(m), Ĉ(m))|∇̂H(m)

)]
, (14)

where Var(·|∇̂H(m)) is the conditional variance, and Var(∇Θ(l)) is the variance is from the mini-
batch sampling variance. The key insights from Equation 14 are two folds. First, since the variances
introduced by compressed contexts at different layers will accumulate, it suggests that the noise
introduced by the compressed context is relatively small for shallow models. Considering that most
of GNNs are usually less than four layers, this may explain why the loss in accuracy is negligible
when using the vanilla INT2 quantization and a relatively large D

R ratio. Second, under the subgraph
training setting, the extra variance introduced by quantization can be compensated when using larger
batch size (i.e., the size of subgraph in the graph learning).

F SYSTEM IMPLEMENTATION OF EXACT

F.1 INDIVIDUAL LAYERS CONFIGURATIONS OF EXACT

Table 6: The Operation configurations of EXACT.

Operations Quantization? Random Projection? Extra Errors?
Linear (MM) 3 3 3

SPMM 3 3 3
SPMM MEAN 3 3 3
SPMM MAX 3 3 3
SPMM MIN 3 3 3
BatchNorm 3 7 3

ReLU 3(fixed 1 bit) 7 7
Dropout 3(fixed 1 bit) 7 7

The operation configurations are shown in Table 6. For all graph convolution operations, EXACT
can apply both the quantization and random projection to their saved activation maps. In EXACT,
the SPMM and its variants (i.e., SPMM MAX , SPMM MEAN , and SPMM MIN) are implemented based
on those provided in Pytorch Sparse3, with extra supporting for compressing activation maps by
quantization and random projection.

For BatchNorm layers, we found that quantizating its saved activation maps only impact model per-
formance a little, which is experimentally verified in the experiments. However, we experimentally
found that randomly projecting its saved activation maps will lead to divergence. We note that this
observation is consistent with previous finding that BatchNorm is very sensitive to noise (Micikevi-
cius et al., 2017). Hence, EXACT only apply the quantization to BatchNorm layers.

3https://github.com/rusty1s/pytorch sparse/blob/master/torch sparse/matmul.py

19

Under review as a conference paper at ICLR 2022

Regarding ReLU operations, we have y = ReLU(x) = x1x>0 and ∇y = ∇y1x>0. Hence,
ReLU operations only need to store 1x>0 in the context for the backward pass, which takes a single
bit per element to store, without introducing any errors. Since standard deep learning framework
only support down to INT8 precision, here we convert the mask matrix into bit-stream and fuse this
process into the CUDA kernel of ReLU.forward to minimize the time overhead.

Regarding Dropout operations, let p be the dropout probability. During the training process, we have

y = Dropout(x, p) =
1

1− p
xg, ∇x =

1

1− p
∇yg, (15)

where g ∼ Bernoulli(1 − p) is a binary vector sharing the same shape as x. 1
1−p is the normal-

ization factor such that E[y] = x. Similarly, Dropout Operations also only need to store g in the
context for the backward pass, which takes a single bit per element to store, without introducing
any errors. Similarly, we convert g into bit-stream and fuse this process into the CUDA kernel of
Dropout.forward to minimize the time overhead..

To be clear, “fixed 1 bit” in Table 6 means the activation maps of ReLU and Dropout operations take
only 1 bit per element to store. And the bit-width of all other operations can be adjusted.

F.2 IMPLEMENTATION DETAILS

We provide simple API for converting modules in Pytorch Geometric and Pytorch to its corre-
sponding version in EXACT. For example, replacing torch geometric.nn.GCNConv with
exact.GCNConv and replacing torch.dropout with exact.dropout. Currently, EXACT
only support Pytorch Geometric and Pytorch. In future we will try to integrate EXACT with other
popular graph learning packages, such as DGL.

Following ActNN (Chen et al., 2021a), to obtain the highest compression ratio, the quantization
range r(l)v and the zero point Z(l)

v are stored in the bfloat16 data type 4. The quantization and de-
quantization modules are both implemented using CUDA kernels. We note that Pytorch only support
data types down to INT8. To obtain highest compression ratio, the quantized data is compressed
into bit streams such that it can be decoded later during the dequantization process.

All CUDA kernels in EXACT support both full-precision and half-precision (i.e., bfloat16 and
float16). Thus, EXACT can also be integrated with the automated mixed precision training, i.e.,
AMP5, to further decrease the memory consumption.

G EXPERIMENT SETTINGS

G.1 DATASETS, FRAMEWORKS, AND HARDWARES

We give the detailed statistics and the download URLs for all datasets used in our experiments in
Table 8. We follow the standard data splits and all datasets are directly downloaded from Pytorch
Geometric or the protocol of OGB (Hu et al., 2020). We implement all models based on Pytorch
and Pytorch Geometric. Almost all experiments are done on a single NVIDIA GeForce RTX 3090
with 24GB GPU memory. During our experiments, we found that the version of Pytorch, Pytorch
Sparse, and Pytorch Scatter can significantly impact the running speed of the baseline. Here
we list the details of our used packages in all experiments in Table 7.

20

Under review as a conference paper at ICLR 2022

Table 7: Package configurations of our experiments.

Package Version
CUDA 11.1

pytorch sparse 0.6.12
pytorch scatter 2.0.8

pytorch geometric 1.7.2
pytorch 1.9.0
OGB 1.3.1

Table 8: Dataset Statistics.

Dataset Task Nodes Edges Features Classes Label Rates
Reddit6 multi-class 232,965 11,606,919 602 41 65.86%
Flickr 7 multi-class 89,250 449,878 500 7 50.00%
Yelp 8 multi-label 716,847 6,977,409 300 100 75.00%

ogbn-arxiv 9 multi-class 169,343 1,157,799 128 40 53.70%
ogbn-products 10 multi-class 2,449,029 61,859,076 100 47 8.03%

Table 9: Training configuration of Full-Batch GCN, GraphSAGE, and GAT in Table 1 and Table 2.

Model Training Architecture
Learning

Rates Epochs Dropout Gradient
Clipping BatchNorm Layers Hidden

Dimension Heads

GCN 0.01 500 0.5 0.0 Yes 3 128 -
GraphSAGE 0.01 500 0.5 0.0 Yes 3 128 -

GAT 0.002 2000. 0.75 0.0 Yes 3 128 3

G.2 MODEL HYPERPARAMETER CONFIGURATIONS OF TABLE 1 AND TABLE 2

We adopt three popular GNNs. Namely, GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), and GAT (Veličković et al., 2017) in Table 1 and Table 2. We follow the hyperparameter
configurations and codebases provided on the OGB (Hu et al., 2020) leader-board. Specifically, the
hyperparameter configuration is given in Table 9. The optimizer is Adam (Kingma & Ba, 2014)
for GCN and GraphSAGE, while the optimizer is RMSprop for GAT. All methods terminate after a
fixed number of epochs. We report the test accuracy associated with the highest validation score. The
“Gradient Clipping” in Table 9 indicate the maximum norm for gradients. “Gradient Clipping= 0.0”
means we do not clip the gradients in that experiment.

G.3 HYPERPARAMETER CONFIGURATIONS OF EXACT (RP+INT2)

The EXACT (RP+INT2) has only one hyperparameter, namely, DR . The D
R configuration of EXACT

(RP+INT2) can be found in Table 10.

G.4 MODEL HYPERPARAMETER CONFIGURATIONS IN SECTION 5

The optimizer used in all experiments in Section 5 is Adam (Kingma & Ba, 2014). We use the default
hyperparameters for Adam optimizer, except for the learning rate. All methods terminate after a
fixed number of epochs. We report the test accuracy/F1-micro associated with the highest validation
score. Regarding Reddit, Flickr, and Yelp dataset, we follow the hyperparameter configurations
reported in the respective papers as closely as possible. We clips the gradient during training. The

4https://pytorch.org/docs/stable/generated/torch.Tensor.bfloat16.html
5https://pytorch.org/docs/stable/amp.html
6https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch geometric.datasets.Reddit
7https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch geometric.datasets.Flickr
8https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch geometric.datasets.Yelp
9https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

10https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

21

Under review as a conference paper at ICLR 2022

Table 10: The D
R configuration of EXACT (RP+INT2) in Table 3

Reddit Flickr Yelp ogbn-
arxiv

ogbn-
products

Cluster-GCN 8 8 4 - 2
GraphSAINT 8 8 8 8 2

GCN 8 8 8 8 -
GraphSAGE 8 8 4 8 4

GCNII 8 8 2 8 -

“Gradient Clipping” in below tables indicate the maximum norm for gradients. “Gradient Clipping=
0.0” means we do not clip the gradients in that experiment.

Regarding ogbn-arxiv and ogbn-products dataset, we follow the hyperparameter configurations and
codebases provided on the OGB (Hu et al., 2020) leader-board. Please refer to the OGB website for
more details. Table 11 and Table 12 summarize the hyperparameter configuration of Cluster-GCN
and GraphSAINT, respectively. Table 13, Table 14, and Table 15 summarize the hyperparameter
configuration of full-Batch GCN, full-Batch GraphSAGE, and full-batch GCNII, respectively.

Table 11: Training configuration of Cluster-GCN in Table 3.

Dataset
Cluster
Sampler Training Archtecture

#partitions #Cluster
per batch

Learning
Rates Epochs Dropout Gradient

Clipping BatchNorm Layers Hidden
Dimension

Reddit 1500 20 0.01 40 0.1 0.5 Yes 2 128
Flickr 1000 30 0.01 15 0.2 0.5 Yes 2 256
Yelp 5000 20 0.01 75 0.1 0.5 Yes 2 512
ogbn-

products 15000 32 0.001 50 0.5 0.0 No 3 256

Table 12: Training configuration of GraphSAINT in Table 3.

Dataset
RandomWalk

Sampler Training Archtecture

Walk length Roots Learning
Rates Epochs Dropout Gradient

Clipping BatchNorm Layers Hidden
Dimension

Reddit 4 2000 0.01 40 0.1 0.5 Yes 2 128
Flickr 2 6000 0.01 15 0.2 0.5 Yes 2 256
Yelp 2 1250 0.01 75 0.1 0.5 Yes 2 512
ogbn-
arxiv 3 10000 0.01 500 0.5 0.5 Yes 3 256

ogbn-
products 3 20000 0.01 20 0.5 0.0 No 3 256

Table 13: Training configuration of Full-Batch GCN in Table 3.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Gradient
Clipping BatchNorm Layers Hidden

Dimension
Reddit 0.01 400 0.5 0.5 Yes 2 256
Flickr 0.01 400 0.3 0.5 Yes 2 256
Yelp 0.01 500 0.1 0.5 Yes 2 512
ogbn-
arxiv 0.01 500 0.5 0.5 Yes 3 128

H ANALYZING THE MEMORY USAGE

H.1 ANALYZING THE MEMORY USAGE

We use torch.cuda.memory allocated for the memory measurement. As we mentioned
in Table 3, “Act Mem.” is the memory occupied by activation maps. Besides activation maps, the
model, optimizer, input data, weight gradients, and activation gradients also occupy GPU memory.
We will analyze each of them below. First, the memory occupied by the model, optimizer, and

22

Under review as a conference paper at ICLR 2022

Table 14: Training configuration of Full-Batch GraphSAGE in Table 3.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Gradient
Clipping BatchNorm Layers Hidden

Dimension
Reddit 0.01 400 0.5 0.5 Yes 2 256
Flickr 0.01 400 0.3 0.5 Yes 2 256
Yelp 0.01 500 0.1 0.5 Yes 2 512
ogbn-
arxiv 0.01 500 0.5 0.5 Yes 3 128

ogbn-
products 0.002 500 0.5 0.5 No 3 256

Table 15: Training configuration of Full-Batch GCNII in Table 3.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Gradient
Clipping BatchNorm Layers Hidden

Dimension
Reddit 0.01 400 0.5 0.5 Yes 4 256
Flickr 0.01 400 0.5 0.5 Yes 8 256
Yelp 0.01 500 0.1 0.5 Yes 4 512
ogbn-
arxiv 0.001 1000 0.1 0.1 Yes 16 256

weight gradients is negligible because the number of parameters in most of GNNs is very small.
Second, the memory occupied by the input data depends on the graph size and often cannot be
compressed. This part can take up a lot of memory when the graph is large. Third, the memory
occupied by activation gradients is dynamic and hard to estimate, since these tensors are temporarily
stored in GPUs. For standard deep learning library, they will be deleted as soon as their reference
counting becomes zero (Abadi et al., 2016; Paszke et al., 2019). EXACT cannot compress activation
gradients. However, the memory occupied by activation gradients can be compressed using AMP,
because activation gradients are stored in float16 data type under AMP. As illustrated in Appendix
F.2, we note that our EXACT framework can be integrated with AMP.

The memory usage of the model weights plus optimizer is about 2MB. For the memory usage of the
input data and activation maps, we provided a detailed analysis in Table 16. We can observe that the
memory usage is dominated by activation maps in most cases.

Table 16: The detailed analysis about the memory usage of input data and activation maps. “Data
Mem” is the memory usage of input data (including the input feature matrix X , adjacency matrices
A, and labels). “Act Mem” is the memory usage of activation maps. “Ratio (%)” here equals

Act Mem
Data Mem+Act Mem .

Reddit Flickr Yelp ogbn-
arxiv

ogbn-
products

Data
Mem

Act
Mem. Ratio (%) Data

Mem
Act

Mem Ratio (%) Data
Mem

Act
Mem Ratio (%) Data

Mem
Act

Mem Ratio (%) Data
Mem

Act
Mem Ratio (%)

Cluster-GCN 8.8 15 63.0 5.5 16.5 75.0 5.3 29.3 84.6 - - - 4.9 35.2 87.8
GraphSAINT 27.6 44 61.5 31.2 88.7 74.0 5.8 33.5 85.2 21.9 270 92.5 57 516 90.1

GCN 1350 1029 43.3 208 379 64.6 1544 6429 80.6 175.7 729.4 80.6 - - -
GraphSAGE 1350 1527 53.0 208 547 72.4 1544 6976 81.9 175.7 786.2 81.7 4811 14758 75.4

GCNII 1350 5850 81.2 208 4067 95.5 1544 33540 95.6 175.7 14409 98.8 - - -

H.2 ANALYZING THE MEMORY COMPRESSION RATIO

Below we analyze the compress ratio in Table 3. We take a three-layer, 128-dimensional GCNs
trained on ogbn-arxiv for example. The computational graph of the baseline in Table 3 is:

Total bits =0(MM) + 32(SPMM) + 32(BN) + 0(ReLU) + 8(Dropout) + (the first layer)
32(MM) + 32(SPMM) + 32(BN) + 0(ReLU) + 8(Dropout) + (the second layer)
32(MM) + 32(SPMM) (the third layer)

Hence the baseline costs totally 240 bit per element. The first MM in the first layer does not cost extra
bits because its activation map is exactly the input feature matrix X , which has been stored in GPU
memory (recall that we need to first move the input data to GPU memory before training). Pytorch

23

Under review as a conference paper at ICLR 2022

will save this part of memory via the “pass by reference” mechanism. The official ReLU operation
in Pytorch does not need the extra space for saving activation maps (they can reuse the activation
maps saved by the previous layer via passing by reference). Regarding Dropout operation, Pytorch
stores the mask matrix using UINT8 data type, which costs 8 bit per element.

The computational graph of “EXACT (INT2)” in Table 3 is:

Total bits =2.25(MM) + 2.25(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the first layer)
2.25(MM) + 2.25(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the second layer)
2.25(MM) + 2.25(SPMM) (the third layer)

The 2.25 bit of MM , SPMM , and BN is from 2 (quantized activation maps) + 0.125 (the zero point
tensor) + 0.125 (the range tensor), where 0.125 = 16 (the bit-width of bfloat16)

128 (the dimension is 128) (See Appendix F.2 for
details). Also for EXACT, we cannot leverage the “pass by reference” mechanism to save memory
for ReLU since the exact activation maps of previous operation is replaced by the compressed one.
Hence in EXACT, the 1-bit masks of ReLU and Dropout is converted into bit-streams using CUDA
kernels, which cost 1 bit per element to store.

Hence the “EXACT (INT2)” costs totally 22 bit per element. And the theoretical compression ratio
is 240

22 = 10.9. The empirical compression ratio in Table 3 may have a small gap with the theoretical
one. This is because the attributes of the sparse tensor (adjacency matrix) in pytorch sparse is lazily
initialized, i.e., it may be generated during the forward pass and be account for the memory of
activation maps.

The computational graph of “EXACT (RP+INT2)” with D
R = 8 (see Table 10) in Table 3 is:

Total bits =0.28(MM) + 0.28(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the first layer)
0.28(MM) + 0.28(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the second layer)
0.28(MM) + 0.28(SPMM) (the third layer)

The 0.28 bit of MM and SPMM is from 2
8 + 16

8×128 + 16
8×128 = 0.28125. We note that EXACT

does not apply random projection for BatchNorm layers (see Appendix F.2). Hence the “EXACT
(RP+INT2)” costs totally 10.18 bit per element. And the theoretical compression ratio is 240

10.18 =
23.57. Again, there exists gap between the empirical compression ratio and the theoretical one
because the lazy initialization mechanism, the existence of temporary tensors, and the neglect of the
memory usage of these random projection matrices.

We emphasize that the compression ratio also depends on the number of input features of the
dataset. (because the mentioned “input feature matrix X is passed by reference” mechanism). For
the above example, the number of input features and the hidden dimension are both 128 and hence
it is easy to be analyzed. Hence, the theoretical compression ratio may vary for different datasets.

I ADDITIONAL EXPERIMENT RESULTS

I.1 MORE RESULTS ON ACCURACY AGAINST THE PRECISION AND D
R

To support the claim that “the performance of EXACT is mainly determined by the D
R ratio of

random projection”, we present more results on the test accuracy against the precision and D
R ratio

here. In Figure 5, we show the results of two models trained with EXACT using full-batch data on
the ogbn-arxiv dataset. In Figure 6, we show the results of two models trained with EXACT using
mini-batch data on Yelp dataset.

I.2 THE TRAINING CURVES OF EXACT

From the optimization theory, common convergence speed bounds (measured by the number of it-
erations) in stochastic optimization improve with smaller gradient variance (Bottou et al., 2018).
EXACT essentially trades the gradient variance in return for reduced memory. Here we experimen-
tally examine how EXACT affects the convergence speed. Figure 7 shows the training curves of
GNNs trained with EXACT using different configurations on Reddit dataset. We make two main

24

Under review as a conference paper at ICLR 2022

Figure 5: The performance of EXACT is mainly determined by the D
R ratio of random projection.

The dataset here is ogbn-arxiv. All reported results are averaged over ten random trials.

Figure 6: The performance of EXACT is mainly determined by the D
R ratio of random projection.

The dataset here is Yelp. All reported results are averaged over ten random trials.

Figure 7: Validation Accuracy on Reddit dataset using EXACT with different configurations.

observations. First, EXACT with smaller DR typically converges faster per iteration. This is consis-
tent with the mentioned optimization theory. Second, when increasing the D

R ratio, the difference in
the convergence speed is very small, where the convergence speed is measured by the gap in valida-
tion accuracy between consecutive epochs. In practical scenarios, EXACT hence only have limited
impact on the model performance.

I.3 HYPERPARAMETER SENSITIVITY EXPERIMENT

As we analyzed in the main body, INT2 is a suitable precision and we only vary the D
R ratio for

EXACT. In this section, we investigate the sensitivity of EXACT (RP+INT2) to the D
R ratio. Table

10 shows the configuration of EXACT (RP+INT2) in the experiment in the main body. Here we
present a comprehensive hyperparameter sensitivity study for EXACT. Specifically, the sensitivity
studies of EXACT with GraphSAINT, ClusterGCN, GCN, GraphSAGE, and GCNII are shown in
Figure 8, Figure 9, Figure 10, Figure 11, and Figure 12, respectively. Here we summarize some key
observations. First, the model performance drop generally increases with the D

R ratio. Second, when
D
R = 8, the loss in accuracy of EXACT (RP+INT2) is below 0.5% on two third of experiments.
To be concrete, in Table 3, we totally adopt 22 combinations of different datasets and models. As
shown in Table 3 and Table 6, for 15 of the 22 experiments, the loss of accuracy is below or near
0.5% when D

R = 8. Third, when D
R = 8, the loss in accuracy is below 1% in almost all experiments,

excepting for two experiments. Namely, ClusterGCN with ogbn-products and GraphSAINT with
ogbn-products.

25

Under review as a conference paper at ICLR 2022

Figure 8: The sensitivity study of EXACT (RP+INT2) to the D
R ratio, where the model is Graph-

SAINT. All reported results are averaged over ten random trials.

Figure 9: The sensitivity study of EXACT (RP+INT2) to the D
R ratio, where the model is Clus-

terGCN. All reported results are averaged over ten random trials.

26

Under review as a conference paper at ICLR 2022

Figure 10: The sensitivity study of EXACT (RP+INT2) to the D
R ratio, where the model is GCN.

All reported results are averaged over ten random trials.

Figure 11: The sensitivity study of EXACT (RP+INT2) to the D
R ratio, where the model is Graph-

SAGE. All reported results are averaged over ten random trials.

27

Under review as a conference paper at ICLR 2022

Figure 12: The sensitivity study of EXACT (RP+INT2) to the D
R ratio, where the model is GCNII.

All reported results are averaged over ten random trials.

28

	Introduction
	The memory consumption of GNNs
	Methodology
	Storing Quantized Activations
	Storing Randomly Projected Activations
	EXACT: Combining random projection and quantization

	Related Work and Discussion
	Experiments
	Trade-Off between Space and Model Performance
	Trade-Offs between Space and Speed
	Ablation Studies

	Conclusion and Future Work
	Notations
	Related Work and Discussion
	Scalable/Efficient GNN Inference
	Scalable GNN Training

	Analyzing the memory consumption of GCNs
	Random Projection
	Theory
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	The Compound Effect of Approximation Errors

	System Implementation of EXACT
	Individual Layers Configurations of EXACT
	Implementation Details

	Experiment Settings
	Datasets, Frameworks, and Hardwares
	Model Hyperparameter Configurations of Table 1 and Table 2
	Hyperparameter Configurations of EXACT (RP+INT2)
	Model Hyperparameter Configurations in Section 5

	Analyzing the Memory Usage
	Analyzing the Memory Usage
	Analyzing the Memory Compression Ratio

	Additional Experiment Results
	More results on Accuracy against the Precision and DR
	The Training Curves of EXACT
	Hyperparameter Sensitivity Experiment

