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ABSTRACT

In robotic tasks, changes of reference frames do not affect the underlying physics
of the problem. Isometric transformations, including translations, rotations, and
reflections, collectively form the Euclidean group. In this work, we study rein-
forcement learning and planning tasks that have Euclidean group symmetry. We
show that MDPs with continuous symmetries have linear approximations that sat-
isfy steerable kernel constraints, which are widely studied in equivariant machine
learning. Guided by our theory, we propose an equivariant model-based RL algo-
rithm algorithm, which is based on sampling-based MPPI for continuous action
spaces. We test our proposed equivariant TD-MPC algorithm on a set of standard
RL benchmark tasks. Our work shows that equivariant methods can give a great
boost in performance on control tasks with continuous symmetry.

1 INTRODUCTION

Robot decision-making tasks often involve the movement of robots in two or three-dimensional
Euclidean space. Different reference frames can be used to model the robot and environment, but
the underlying physics of the system must be independent of the choice of reference frame (Einstein,
1905). The set of all such reference frame transformations is called the Euclidean group E(d). In this
work, we show that utilizing the Euclidean frame symmetry inherent in many robotic planning and
control problems allows for the design of more efficient learning algorithms. The use of symmetry
in decision-making has been studied in model-free and model-based reinforcement learning (RL),
planning, optimal control, and other related fields (Ravindran & Barto, 2004; Zinkevich & Balch,
2001; van der Pol et al., 2020a; Mondal et al., 2020; Wang et al., 2021; Zhao et al., 2022b). Despite
this, there is no unified theory of how symmetry can be utilized to develop better RL or planning
algorithms for robotics applications.

In many problems in robotics, we are interested in the Markov Decision Process (MDP) that de-
scribes a robot moving in 2D or 3D space. Motivated by the study of geometric graphs and ge-
ometric deep learning (Bronstein et al., 2021), we define Geometric MDPs as the class of MDPs
that correspond to the decision process of a robot moving in Euclidean space. The question that we
aim to answer is: Can Euclidean symmetry guarantee benefits in (model-based) RL algorithms? To
answer it, we aim to first formally describe what “benefits” mean and how symmetry enables them,
then show a model-based RL algorithm that is developed with the guidance of the theory.

To begin, we present a theoretical framework that studies the linearized dynamics of geometric
MDPs and shows that the matrices that appear in linearized dynamics are G-steerable kernels (Cohen
& Welling, 2016d). Using recent results on parameterizations of steerable kernels (Lang & Weiler,
2020b), we show that the steerable kernel solution significantly reduces the number of parameters
needed to specify the linearized dynamics. We can use it to predict parameter reduction for tasks
with geometric structure. The reduction is infinite for continuous tasks with continuous symmetry,
such as moving 2D particle.

Inspired by the theoretical results which show that equivariant versions of linearized model-based
approaches contain a smaller number of parameters than general models, we propose an equivariant
sampling-based model-based RL algorithm for Geometric MDPs. It is based on Model Predictive
Path Integral (MPPI); we propose a strategy that enforces symmetry on the sampling process: if the
input state is rotated, the output action should be rotated accordingly, as demonstrated in Figure 1.
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Figure 1: Illustration of equivariance in the proposed sampling-based planning algorithm a0 = plan(s0): if
the input state is rotated, the output action should be rotated accordingly. This requires the learned functions
are G-equivariant or G-invariant networks and a special sampling strategy, introduced in our method.

Our method extends the prior work from (1) planning on 2D grids with value-based planning (Zhao
et al., 2022b) and (2) model-free equivariant RL (van der Pol et al., 2020b; Wang et al., 2021) to
continuous state and action spaces. We take inspiration from geometric deep learning (Bronstein
et al., 2021) and consider the features in neural networks to transform under Euclidean symmetry.
Our algorithm is constructed to be equivariant with respect to changes of the reference frame, which
is usually known beforehand. We evaluate the proposed algorithm on DeepMind Control suite
and MetaWorld continuous-control tasks and show its sample efficiency against non-equivariant
methods, which demonstrates the benefits of equivariance in model-based RL with sampling-based
planning (MPPI) and the value of our theory.

Our contributions can be summarized as follows: (i) We define a class of MDPs that correspond
to the movement of a physical agent in two or three dimensional Euclidean space (“Geometric
MDPs”). (ii) By analyzing the linearization of Geometric MDPs, our theory shows a reduction in
the number of free parameters in the ground-truth linearized dynamics and optimal control policy.
(iii) Motivated by our theory, we propose a sampling-based model-based RL algorithm that leverages
Euclidean symmetry for Geometric MDPs. (iv) Our empirical results demonstrate the effectiveness
of our method in solving MDPs on control tasks with continuous symmetries.

2 PROBLEM STATEMENT: SYMMETRY AND CHOICE OF REFERENCE FRAME

To theoretically study how symmetry benefits in solving MDPs, we describe the source of symmetry
and define a class of MDPs that has symmetry constraints and can be linearized.

2.1 GEOMETRIC STRUCTURE IN MDP

The set of all isometric changes of reference frame form the Euclidean symmetry group E(d) (Bron-
stein et al., 2021; Weiler & Cesa, 2021; Lang & Weiler, 2020b). Any subgroup of E(d) can be
expressed in semi-direct product form as

(
Rd,+

)
⋊ G, where G is the stabilizer group of ori-

gin and the action on a vector x includes a translation part t and rotation/reflection part g, i.e.,
x 7→ (tg) · x := gx+ t (Lang & Weiler, 2020b).

To transform an MDP (to a different reference frame), we require the MDP to have the group G-
action on both the state and action space (Zhao et al., 2022b; Wang et al., 2021; van der Pol et al.,
2020b). This definition unifies different types of prior work and allows the state and actions spaces
to be a any spaces equipped with a G-action (van der Pol et al., 2020b; Wang et al., 2021; Zhao
et al., 2022b; Teng et al., 2023). The compact group G ≤ GL(d) can be any group, including the
group of proper 3D transformations SO(3) or finite subgroups like the icosahedral group or cyclic
groups (Brandstetter et al., 2021). We define a class of MDPs with geometric structure, extending a
previously studied discrete case (Zhao et al., 2022b).

Definition 1 (Geometric MDP) A Geometric MDP (GMDP) M is an MDP with a (compact)
symmetry group G ≤ GL(d) that acts on the state and action space. It is written as a tuple
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Figure 2: Illustration of MDPs with underlying geometric structure, e.g., a 2D particle moving or a path
planing problem, which have 2D rotation groups G that have G-action on the MDP state and action space.

⟨S,A, P,R, γ,G, ρS , ρA⟩. The state and action spaces S,A have (continuous) group actions that
transform them, defined by ρS and ρA.

The symmetry properties in MDPs are specified by equivariance and invariance of the transition
and reward functions respectively (Zinkevich & Balch, 2001; Ravindran & Barto, 2004; van der Pol
et al., 2020a; Wang et al., 2021; Zhao et al., 2022b; 2023a):

∀g ∈ G,∀s, a, s′, P (s′ | s, a) = P (g · s′ | g · s, g · a) (1)
∀g ∈ G,∀s, a, R(s, a) = R(g · s, g · a) (2)

where g acts on the state and action spaces by group representations ρS and ρA respectively. For
example, the standard representation ρstd(g) of SO(2) assigns each rotation g ∈ SO(2) a 2D rotation
matrix R2×2, while the trivial representation ρtri(g) assigns identity 11×1 to all g.

Continuous G-action. Compared to prior work, we additionally require continuous group action
·G : G × X → X and find it gives promising theoretical results, which is optional for implemen-
tation. If the G-actions on S and A are continuous1, there is an interesting geometric interpretation
based on fiber bundle theory (Husemöller, 2013). The linearized dynamics of a system are much
more constrained2 (i.e., have fewer free parameters) when the system has continuous G-action. See
Appendix D for more detail.

Examples. We list some examples in the Table 1 to demonstrate that the definition covers previous
work (a homogeneous space, a group, or any other space as long as equipped with a G-action
(van der Pol et al., 2020b; Wang et al., 2021; Zhao et al., 2022b; Teng et al., 2023)) and what
symmetry could bring. We list the symmetry group G, the state and action spaces S, A, and provide
how symmetry G reduces the space via quotient S/G and how “large” a group G can relate different
states in that MDP via orbit Gx. We provide detailed explanation in Appendix B.4.

2.2 RELATED TOPICS

We discuss geometric graphs and the use of symmetry in reinforcement learning. For further dis-
cussion, please see Appendix B.

Geometric graphs. Our definition of GMDP is closely related to the concept of geometric graphs
(Bronstein et al., 2021; Brandstetter et al., 2021), which model MDPs as state-action connectivity
graphs. Previous works studied algorithmic alignments and dynamic programming on geometric
graphs (Xu et al., 2019; Dudzik & Veličković, 2022). We propose extending this concept to include
additional geometric structures by embedding the MDP into a geometric space such as R2 or R3. In
discussion of GMDP, we focus on 2D and 3D Euclidean symmetry (Lang & Weiler, 2020b; Brand-
stetter et al., 2021; Weiler & Cesa, 2021), with the corresponding symmetry groups of E(2) and
E(3), respectively. The relation between equivariant message passing and dynamic programming /
value iteration on geometric MDPs is discussed in Section 3.

Symmetry in MDPs. Symmetry in decision-making tasks has been explored in previous works on
MDPs and control, with research on symmetry in MDPs with no function approximation (Ravindran
& Barto, 2004; Ravindran & Barto; Zinkevich & Balch, 2001) and symmetry in model-free (deep)

1If the group G is additionally a compact Lie group, there exists a map p : S × A 7→ B that projects
the state-action space S × A to a lower dimensional base space B (Cohen et al., 2020b). The existence and
smoothness of the projection p can be established using principal bundle theory.

2Continuous symmetries correspond to conservation laws, while discrete (non-differentiable) symmetries
do not have corresponding conservation laws (Zee, 2016).
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Table 1: Examples of geometric MDPs. G denotes the MDP symmetry group. S denotes the MDP
state space. A denotes the MDP action space. We can quantitatively measure the savings obtained
by exploiting equivariance. “Images” refers to panoramic egocentric images Z2 → RH×W×3. ◦
denotes group element composition. We list the quotient space S/G to give intuition on savings. The
Gx = {g · x | g ∈ G} column shows the G-orbit space of S ( ∼= denotes isomorphic equivalence).

ID G S A S/G Gx Task

1 C4 Z2 C4 Z2/C4 C4 2D Path Planning (Tamar et al., 2016)
2 C4 Images C4 Z2/C4 C4 2D Visual Navigation (Zhao et al., 2022b)

3 SO(2) R2 R2 R+ S1 2D Continuous Navigation
4 SO(3) R3 × R3 R3 R+ × R3 S2 3D Free particle (with velocity)
5 SO(3) R3 ⋊ SO(3) R3 × R3 R+ × R3 S2 Moving 3D Rigid Body
6 SO(2) SO(2) R2 {e} S1 Free Particle on SO(2) ∼= S1 manifold
7 SO(3) SO(3) R3 {e} S2 Free Particle on SO(3) (Teng et al., 2023)
8 SO(2) SE(2) SE(2) R2 S1 Top-down grasping (Zhu et al., 2022)
9 SO(2) (S1)2 × (R2)2 R2 S1 × (R2)2 S1 Two-arm manipulation (Tassa et al., 2018)

RL using equivariant policy networks (van der Pol et al., 2020a; Mondal et al., 2020; Wang et al.,
2021). Additionally, the use of symmetry in value-based planning on a 2D grid is analyzed by Zhao
et al. (2022b). We extend this line of work by focusing on MDPs with continuous state and action
spaces and sampling-based planning/control algorithms.

3 THEORY: WHY IS SYMMETRY USEFUL IN GEOMETRIC MDPS?

The goal of this section is to provide theoretical guidance on assessing the potential benefits of
symmetry in a Geometric MDP for a Reinforcement Learning (RL) algorithm, particularly when
planning using learned dynamic models.

3.1 PROPERTIES OF GEOMETRIC MDPS

In RL, the optimal policy mapping is G-equivariant (Ravindran & Barto, 2004). To incorporate
symmetry constraints, a strategy is to constrain the entire policy mappingto be equivariant: at =
policy(st) (van der Pol et al., 2020b; Wang et al., 2021; Zhao et al., 2022b; 2023a), as shown
in Figure 1. Many model-based RL algorithms rely on iteratively applying Bellman operations
(Sutton & Barto, 2018). Thus, we first show that symmetry G in a Geometric MDP (GMDP) results
in G-equivariant Bellman operator, which indicates that we can constrain the iterative process in
model-based RL algorithms to be G-equivariant to exploit symmetry. Additionally, for GMDPs3,
a specific instance of DP-based algorithm, value iteration, can be connected with geometric graph
neural network (Bronstein et al., 2021). These properties do not require linearization and do not
require continuous group actions.

Theorem 1 The Bellman operator of a GMDP is equivariant under Euclidean group E(d).

Theorem 2 For a GMDP, value iteration resembles E(d)-equivariant geometric message passing.

We provide proofs and derivation in Appendix D. This is an extension to the theorems in (Zhao et al.,
2022b) on 2D discrete groups, where they showed that value iteration is equivariant under discrete
subgroups of the Euclidean group: discrete translations, rotations, and reflections. We generalize
this result to groups of the form of

(
Rd,+

)
⋊G, where G is continuous4.

3.2 LINEARIZING GEOMETRIC MDPS: G-STEERABLE KERNEL CONSTRAINTS

3For non-geometric graphs, Dudzik & Veličković (2022) show the equivalence between dynamic program-
ming on a (general non-geometric) MDP and a message-passing GNN.

4For the translation part, one may use relative/normalized positions or induced representations (Cohen et al.,
2020b; Lang & Weiler, 2020b).
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The dynamics function in GMDPs is generally nonlinear. In this subsection5, we derive the iterative
linearization of dynamics of GMDPs to get G-equivariant linear maps. We focus on the lineariza-
tion for two reasons: (1) if infinitesimal group actions on state-action space exists, the symmetry
of the nonlinear GMDP is equivalent to G-steerable constraints of the linear dynamics, (2) the lin-
earized dynamics is connected to LQR and is easier to analyze, such as the dimensions of the (linear)
dynamics function, policy function, and more.

Iterative Linearization. We assume the dynamics is deterministic f : S × A → S and iteratively
linearize f at each step. It is naturally connected to time-varying iterative Linear Quadratic Regula-
tor (iLQR). We highlight the linearization procedure of f(st,at), where matrices A and B depend
arbitrarily on time step t. Later, we assume that it only depends on state and action (st,at).

Original: st+1 = f(st,at) → Linearized at step t: st+1 = At · st +Bt · at (3)

Theorem 3 If a Geometric MDP has an infinitesimal G-action on the state-action space S ×A, the
linearized dynamics is also G-equivariant: the matrix-valued functions A : S × A → RdS×dS and
B : S ×A → RdS×dA satisfy G-steerable kernel constraints.

Under infinitesimal symmetry transformation g ≈ 1G ∈ G, the state and action spaces transform as
s 7→ ρS(g) · s,a 7→ ρA(g) · a where ρS and ρA are representations of the group G. Additionally,
the dynamics must satisfy,

ρS(g) · f(s,a) = f(ρS(g) · s, ρA(g) · a) (4)
Let us consider the linearized problem at point p = (s0,a0). Assuming that the state and control
do not change too drastically over a short period of time and that the time-varying A and B only
depend on the linearization point p but not other factors, we can approximate the true dynamics as

st+1 = A(p) · st +B(p) · at, A : S ×A → RdS×dS , B : S ×A → RdS×dA . (5)
Now, linearizing f and using the symmetry constraint, the matrix-valued functions A(p) and B(p)
must satisfy the constraints

∀g ∈ G, A(g · p) = ρS(g)A(p)ρS(g
−1), B(g · p) = ρS(g)B(p)ρA(g

−1) (6)

Figure 3: A schematic showing how a matrix-valued
kernel A : X → R2×2 is constrained by the SO(2)-
steerable kernel constraints on a set of orbits A(g ·
p) = ρout(g)A(p)ρin(g

−1). This example is further
explained in Appendix D.

so that A is a G-steerable kernel with input and
output representation ρS , and B has input type
ρS and output type ρA. The kernel constraints
relate A(p) and B(p) at different points. We use
the Figure 3 to demonstrat the idea. On each orbit
(left), the constraints can be solved exactly: the
matrices on same orbits (same colors) are related
and have explicit parameterization given in Lang
& Weiler (2020a). Thus, these matrices can be
spanned on a basis (denoted by K) and live in a
smaller “base” space B = X/G with a certain
form A↓ : B → R2×2.

Benefits for control. Symmetry further enables better control. We can further show that the policy
and value function can be parameterized with fewer parameters based on the discrete algebraic
Riccati equation (DARE) for time-varying LQR problem.

Theorem 4 The LQR feedback matrix in a⋆t = −K(p)st and value matrix in V = s⊤t P (p)st are
G-steerable kernels, or matrix-valued functions: K : S×A → RdA×dS and P : S×A → RdS×dS .

What tasks are suitable for Euclidean equivariance? We find tasks that have dominated global
Euclidean symmetry (change of reference frame) and less local symmetry can have relatively better
parameter reduction, shown in Table 1. Tasks with more kinematic constraints make them harder to
exploit Euclidean equivariance. For examples, for kinematic chains, it inherently has local coordi-
nates, which makes it harder to use Euclidean symmetry w.r.t. the global reference frame. To better
exploit symmetry there, it needs to explicitly consider constraints, such as the case in position-based
(Tsai, 2017) or particle-based dynamics (Han et al., 2022).

5For simplicity, the theory omits an encoder from the state to latent space enc : S → Z in TD-MPC and
MuZero style algorithms. In implementation, we follow TD-MPC that uses a learned encoder, which, when
paired with an equivariant downstream network, helps learn symmetric representations. (Park et al., 2022).
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Interpretation and Examples. The theory means that the linearized dynamics must satisfy a
more restrictive set of conditions to be G-equivariant compared to the full, non-linear dynamics. It
gives us a theoretical estimation of free parameters for each task, as well as improvement of sample
efficiency when using (Jedra & Proutiere, 2021). We discuss further examples and computation
of reduced dimensions in Appendix D. A toy example that illustrates how symmetry reduces the
number of free parameters is moving a 3D particle (3D PointMass, Example 4 in Table 1): the
matrix A(p) (for p ∈ S × A) will have dimension 6 × 6 but can be decomposed to 2 × 2 blocks
of 3 × 3 sub-matrices, each only with 3 free parameters. Thus, for each orbit p, A(p) and B(p)
only have 4 × 3 = 12 free parameters. Additionally, on a given orbit, A(p) and B(p) have explicit
forms as shown in Figure 3. In summary, G-equivariance constrains the number of parameters in
the dynamics and policy functions, enabling more sample-efficient learning.

4 SYMMETRY IN SAMPLING-BASED MODEL-BASED RL ALGORITHMS

In this section, after confirming the effectiveness of symmetry in planning, we develop an equivariant
model-based RL algorithm for continuous action spaces to exploit continuous symmetry. To plan
in continuous spaces, we require sampling-based methods such as MPPI (Williams et al., 2015;
2017b), extending them to preserve equivariance. We build on prior work (Zhao et al., 2022b) that
used value-based planning on a discrete state space Z2 and discrete group D4, extending this work
to the continuous case. The idea is to ensure that the algorithm at = plan(st) produces the same
actions up to transformations, i.e., it is G-equivariant: g · at ≡ g · plan(st) = plan(g · st), as
shown in Figure 1. The principle is applicable for MDPs with other symmetry groups.

4.1 COMPONENTS

We use TD-MPC (Hansen et al., 2022) as the backbone of our implementation and introduce their
procedure and demonstrate how to incorporate symmetry into sampling-based planning algorithms.

• Planning with learned models. We use the MPPI (Model Predictive Path Integral) control method
(Williams et al., 2015; 2016; 2017a;b), as adopted in TD-MPC (Hansen et al., 2022). We sample
N trajectories with horizon H using the learned dynamics model, with actions from a learned
policy, and estimate the expectation of total return.

• Training models. The learnable components in equivariant TD-MPC include: an encoder that
processes input observation, dynamics and reward networks that simulate the MDP, and
value and policy networks that guide the planning process.

• Loss. The only requirement is that loss is G-invariant. The loss terms in TD-MPC include value-
prediction MSE loss and dynamics/reward-consistency MSE loss, which all satisfy invariance.

4.2 INTEGRATING SYMMETRY

Zhao et al. (2022b) consider how the Bellman operator transforms under symmetry transformation.
For sampling-based methods, one needs to consider how the sampling procedure changes under
symmetry transformation. Specifically, under a symmetry transformation, differently sampled tra-
jectories must transform equivariantly. This is shown in Figure 1. The equivariance of the transition
model in sampling-based approches to machine learning has also been studied in (Park et al., 2022).
There are several components that need G-equivariance, and we discuss them step-by-step and il-
lustrate them in Figure 1.

1. dynamics and reward model. In the definition of symmetry in Geometric MDPs (and sym-
metric MDPs (Ravindran & Barto, 2004; van der Pol et al., 2020b; Zhao et al., 2022b)) in Equa-
tion 1, the transition and reward functions are G-equivariant and G-invariant respectively. There-
fore, in implementation, the transition network is deterministic and uses a G-equivariant MLP,
and the reward network is constrained to be G-invariant. Additionally, in implementation, plan-
ning is typically performed in latent space, using a latent dynamics model f̄(z,a) = z′. To do
this, we require a G-equivariant encoder h : S → Z , satisfying ρZ(g) · h(s) = h(ρS(g) · s). We
omit the encoder in our description below for notational simplicity.
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2. value and policy model. The optimal value function produces a scalar for each state and
is G-invariant, while the optimal policy function is G-equivariant (Ravindran & Barto, 2004). If
we use G-equivariant transition and G-invariant reward networks in updating our value function
T [Vθ] =

∑
a Rθ(s,a)+γ

∑
s′ Pθ(s

′|s,a)Vθ(s
′), the learned value network Vθ will also satisfy

the symmetry constraint. Similarly, we can extract an optimal policy from the value network,
which is also G-equivariant (van der Pol et al., 2020b; Wang et al., 2021; Zhao et al., 2022b).

3. MPC procedure. We consider equivariance in the MPC procedure in two parts:
sample trajectories from the MDP using learned models, and compute their returns,
return(sample(s, θ)). We discuss the invariance and equivariance of it in the next subsection.

We list the equivariance or invariance conditions that each network needs to satisfy. Alternatively, for
scalar functions, we can also say they transform under trivial representation ρ0 and are thus invariant.
All modules are implemented via G-steerable equivariant MLPs: ρout(g) · y = ρout(g) · MLP(x) =
MLP(ρin(g) · x).

fθ : S ×A → S : ρS(g) · fθ(st,at) = fθ(ρS(g) · st, ρA(g) · at) (7)
Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (8)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (9)
πθ : S → A : ρA(g) · πθ(· | st) = πθ(· | ρS(g) · st) (10)

4.3 EQUIVARIANCE OF MPC

We analyze how to constrain the underlying MPC planner to be equivariant. We use MPPI
(Model Predictive Path Integral) (Williams et al., 2015; 2017a), which has been used in TD-
MPC for action selection. An MPPI procedure samples multiple H-horizon trajectories {τi}
from the current state st using the learned models. We use sample to refer to the procedure:
τi ≡ sample(st; fθ, Rθ, Qθ, πθ) = (st,at, st+1,at+1, . . . , st+H). Another procedure return
computes the accumulated return, evaluating the value of a trajectory for top-k trajectories:

return(τ) = Eτ

[
γHQθ (sH ,aH) +

H−1∑
t=0

γtRθ (st,at)

]
= Eτ [U(s1:H ,a1:H−1)] (11)

A trajectory is transformed element-wise by a transformation g: g · τi = (g · st, g · at, g · st+1, g ·
at+1, . . . , g · st+H). However, since µ and σ in action sampling are not state-dependent, the MPPI
sample does not exactly preserve equivariance: rotating the input does not deterministically guar-
antee a rotated output.

We propose a strategy to fix it. We consider the simplified case with a single time step, so the sam-
pling draws N actions from a random Gaussian distribution N (µ, σ2I), denoted as A = {ai}Ni=1.
The return is simply Q(s, a). Assuming we only select the best trajectory (K = 1), we require the
following procedure to be equivariant: a0 = argmaxa Q(s0, a). In other words, if we rotate state
g · s0, the selected action is also rotated g · a0. Thus, a simple strategy is to augment the action
sampling with G: GA = {g · ai | g ∈ G}Ni=1. We indicate that sampling strategy as G-sample.

Proposition 5 The return procedure is G-invariant, and the G-augmented G-sample proce-
dure that augment A using transformation in G is G-equivariant when K = 1.

We further explain in Appendix E. In summary, for sampling and computing return, they satisfy the
following conditions, indicating that the procedure return(G-sample(s, θ)) is invariant, i.e.,
not changed under group transformation for any g. We use return(τi) to indicate the return of a
specific trajectory τi and g · τi to denote group action on it.

G-sample : st, θ 7→ τi : g · τi ∼ G-sample(g · st; fθ, Rθ, Qθ, πθ) (12)
return : τi 7→ R : return(τi) = return(g · τi) (13)

5 EVALUATION: SAMPLING-BASED PLANNING

In this section, we present the setup and results for our proposed sampling-based planning algorithm:
equivariant version of TD-MPC. The additional details and results are available in Appendix F.
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Figure 4: Tasks used in experiments: (1) PointMass in 2D, (2) Reacher, (3) Customized 3D version of
PointMass with multiple particles to control, and (4) MetaWorld task to reach an object with gripper.
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Figure 5: Results on 2D PointMass, Reacher, and MetaWorld Reach task.

Tasks. We verify the algorithm on a few selected and customized tasks using DeepMind Control
suite (DMC) (Tassa et al., 2018), visualized in Figure 4. One task is 2D particle moving in R2,
PointMass. We customize tasks based on it: (1) 3D particle moving in R3 (disabled gravity),
and (2) 3D N -point moving that has several particles to control simutaneously. The goal is to move
particle(s) to a target position. We also experiment with tasks on a two-link arm, Reacher (easy
and hard), where the goal is to move the end-effector to a random position in a plane. Reacher
Easy and Hard are top-down where the goal is to reach a random 2D position. If we rotate the
MDP, the angle between the first and second links is not affected, i.e., it is G-invariant. The first joint
and the target position are transformed under rotation, so we set it to ρ1 standard representation (2D
rotation matrices). The complete state and action representations are given in Table 1. The system
has O(2) rotation and also reflection symmetry, hence we use D8 and D4 groups.

We also use MetaWorld tabletop manipulation (Yu et al., 2019). The action space is 3D gripper
movement (∆x,∆y,∆z) and 1D openness. The state space (1) gripper position, (2) 3D position
plus 4D quaternion of at most 2 relevant objects, (3) 3D randomized goal position, depending on
tasks. If we consider tasks with gravity, the MDP itself should exhibit SO(2) symmetry about the
gravity axis. We make the origin at workspace center and the gripper initialized at the origin, so the
task respects rotation equivariance around the origin.

Experimental setup. We compare against the non-equivariant version of TD-MPC (Hansen et al.,
2022). Here, we by default make all components equivariant as described in the algorithm section.
In Sec F.3, we include ablation studies for disabling or enabling each equivariant component. The
training procedure follows TD-MPC (Hansen et al., 2022). We use the state as input and for equiv-
ariant TD-MPC, we divide the orignal hidden dimension by

√
N , where N is the group order, to

keep the number of parameters roughly equal between the equivariant and non-equivariant versions.
We mostly follow the original hyperparameters except for seed_steps. We use 5 random seeds
for each method.

Algorithm setup: equivariance. We use discretized subgroups in implementing G-equivariant
MLPs with the escnn package (Weiler & Cesa, 2021), which are more stable and easier to imple-
ment than continuous equivariance. For the 2D case, we use O(2) subgroups: dihedral groups D4

and D8 (4 or 8 rotation components), or rotation group C8 (45◦ rotations). For the 3D case, we use
the Icosahedral and Octahedral groups, which are finite subgroups of SO(3) with orders 60 and 24
respectively.

Results. In Figures 5 and 6, we show the reward curves and demonstrate that our equivariant meth-
ods can reach near-optimal performance 2x or 3x faster in terms of training interaction steps for
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Figure 6: Results on a set of customized 3D N -ball PointMass tasks, with N = 1, 2, 3, and customized a
3D PointMass with smaller target.

several tasks. Recall the examples of Geometric MDPs, our theory not only motivates the algorithm
design, but also gives an estimation of what tasks can benefit from (continuous) symmetry. The
results justify the theoretical estimation on improvement of sample efficiency: less free parameters
result in better regret bound and faster learning, as shown for LQR (Jedra & Proutiere, 2021).

In terms of the actual results, the default PointMass 2D version seems easy to solve, while the
D8-equivariant version learns slightly faster. For Reacher, as shown in Figure 5, D8 outperforms
the non-equivariant TD-MPC by noticeable margins, especially on the Hard domain. D4 is slightly
worse than D8 but still better than the baseline. The rightmost subfigure shows a MetaWorld task
Reach, which is to reach a button on a desk using the parallel gripper. We add SO(2) equivariance
to the algorithm about the gravity axis and evaluate the C8 and D8-equivariant versions, which both
give more efficient learning.

On Reacher tasks, we also compare against a planning-free baseline by removing MPPI planning
with the learned model and only keep policy learning, shown in Fig 11, which is effectively similar
to the DDPG algorithm (Lillicrap et al., 2016).

We design a set of harder 3D versions of PointMass and use SO(3) subgroups to implement 3D
equivariant versions of TD-MPC, using Icosahedral- and Octahedral-equivariant MLPs. Figure 6
shows N = 1, 2, 3 balls in 3D PointMass, and the rightmost figure shows 1-ball 3D version with
smaller target (0.02 compared to 0.03 in N -ball version). We find the Icosahedral (order 60) equiv-
ariant TD-MPC always learns faster and uses fewer samples to achieve best rewards, compared to
the non-equivariant version. The Octahedral (order 24) equivariant version also performs similarly.
The best absolute rewards in the 1-ball case is interestingly lower than 2- and 3-ball casees, which
may be caused by higher possible return due to the presence of 2 or 3 balls that can reach the goal.

With higher-order 2D discrete subgroups, the performance plateaus but computational costs in-
crease, so we use up to D8. We also find TD-MPC is especially sensitive to a hyperparameter
seed_steps that controls the number of warmup trajectories. In contrast, our equivariant version
is robust to it and sometimes learn better with less warmup. In the shown curves, we do not use
warmup across non-equivariant and equivariant ones and present additional results in Appendix F.

6 CONCLUSION AND DISCUSSION

In conclusion, we underscore the value of Euclidean symmetry in model-based RL algorithms. We
define a subclass of MDPs, Geometric MDPs, prevalent in robotics, which exhibit additional struc-
ture. The linearized approximation of these MDPs adheres to steerable kernel constraints, substan-
tially reducing parameter space. Drawing from this, we developed a model-based RL algorithm,
utilizing Euclidean symmetry, that outperforms standard techniques in common RL benchmarks.
This is the first method considering the importance of equivariance in sampling-based RL methods.
It contributes to a deeper understanding of symmetry in RL algorithms and offers insights for future
research. However, our theory and experience also show that while Euclidean symmetry can bring
significant savings in parameters, it does not always offer practical benefits for some tasks with lo-
cal coordinates. For instance, locomotion tasks do not greatly benefit from it. Also, our approach
assumes the symmetry group is known, typically determined by the robot workspace dimension,
usually 3D.
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A OUTLINE

The appendix is organized as follows: (1) additional discussion, including related work and theoret-
ical background, (2) theory, derivation, and proofs, (3) implementation details and further empirical
results, and (4) additional mathematical background.

B ADDITIONAL DISCUSSION

B.1 DISCUSSION: SYMMETRY IN DECISION-MAKING

In this work, we study the Euclidean symmetry E(d) from geometric transformations between refer-
ence frames. This is a specific set of symmetries that an MDP can have – isometric transformations
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of Euclidean space Rd, such as the distance is preserved. This can be viewed as a special case un-
der the framework of MDP homomorphism, where symmetries relate two different MDPs via MDP
homomorphism (or more strictly, isomorphism). We refer the readers to (Ravindran & Barto, 2004)
for more details. We also discuss symmetry in other related fields.

Classic planning algorithms and model checking have leveraged the use of symmetry properties,
(Fox & Long, 1999; 2002; Pochter et al., 2011; Domshlak et al.; Shleyfman et al., 2015; Sievers
et al., 2015; Sievers; Sievers et al., 2019; Fiser et al., 2019) as evident from previous research. In
particular, Zinkevich & Balch (2001) demonstrate that the value function of an MDP is invariant
when symmetry is present. However, the utilization of symmetries in these algorithms presents
a fundamental problem since they involve constructing equivalence classes for symmetric states,
which is difficult to maintain and incompatible with differentiable pipelines for representation learn-
ing. Narayanamurthy & Ravindran (2008) prove that maintaining symmetries in trajectory rollout
and forward search is intractable (NP-hard). To address the issue, recent research has focused on
state abstraction methods such as the coarsest state abstraction that aggregates symmetric states into
equivalence classes studied in MDP homomorphisms and bisimulation (Ravindran & Barto, 2004;
Ferns et al., 2004; Li et al., 2006). However, the challenge lies in that these methods typically require
perfect MDP knowledge and do not scale well due to the complexity of constructing and maintain-
ing abstraction mappings (van der Pol et al., 2020a). To deal with the difficulties of symmetry in
forward search, recent studies have integrated symmetry into reinforcement learning based on MDP
homomorphisms (Ravindran & Barto, 2004), including van der Pol et al. (2020a) that integrate sym-
metry through an equivariant policy network. Furthermore, Mondal et al. (2020) previously applied
a similar idea without using MDP homomorphisms. Park et al. (2022) learn equivariant transition
models, but do not consider planning, and Zhao et al. (2022a) focuses on permutation symmetry in
object-oriented transition models. Recent research by (Zhao et al., 2022b; 2023b) on 2D discrete
symmetry on 2D grids has used a value-based planning approach.

There are some benefits of explicitly considering symmetry in continuous control. The possibility of
hitting orbits is negligible, so there is no need for orbit-search on symmetric states in forward search
in continuous control. Additionally, the planning algorithm implicitly plans in a smaller continuous
MDP M/G (Ravindran & Barto, 2004). Furthermore, from equivariant network literature (Elesedy
& Zaidi, 2021), the generalization gap for learned equivariant policy and value networks are smaller,
which allows them to generalize better.

B.2 ADDITIONAL RELATED WORK

Geometric deep learning and equivariant networks. Geometric deep learning is a field that
examines how to maintain geometric properties, such as symmetry and curvature, in data analysis
(Bronstein et al., 2021). To preserve symmetries in data, researchers have developed equivariant
neural networks. For instance, Cohen & Welling (2016c) introduced G-CNNs, followed by Steer-
able CNNs (Cohen & Welling, 2016d), which generalize scalar feature fields to vector fields and
the induced representations. Moreover, Kondor & Trivedi (2018); Cohen et al. (2020b) have stud-
ied the theory on equivariant maps and convolutions for scalar fields through trivial representations
and vector fields through induced representations, respectively. Furthermore, Weiler & Cesa (2021)
propose E(2)-CNN, a method for solving kernel constraints for E(2) and its subgroups, by decom-
posing into irreducible representations. Researchers have also explored how to use steerable features
to maintain symmetries in deep learning models. For example, Brandstetter et al. (2022) developed
steerable message-passing GNNs that use equivariant steerable features, while Satorras et al. (2021)
use only invariant scalar features to build E(n)-equivariant graph networks. The idea of steerable
features is further developed in Brandstetter et al. (2022), who propose steerable message passing
graph networks for 3D space.

Learned dynamics model for interactive system. A framework for learning interaction dynam-
ics between objects in a scene was proposed by Battaglia et al. (2016). This approach is based on
relational inductive biases that consider the relationships among objects. Battaglia et al. (2018) later
expanded on this framework by introducing relational networks that learn the dynamics between
objects within a graph-based representation. Similarly, Sanchez-Gonzalez et al. (2018) developed
a graph neural network model for physics simulation to learn dynamics in a graph-based represen-
tation. Furthermore, Li et al. (2019) introduced a particle-based dynamics network that focuses on
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Table 2: (Copied from main text) Examples of geometric MDPs. G denotes the MDP symmetry
group. S denotes the MDP state space. A denotes the MDP action space. We can quantitatively mea-
sure the saving of equivariance. "Images" refers to panoramic egocentric images Z2 → RH×W×3.
◦ denotes group element composition. We list the quotient space S/G to give intuition on saving.
Gx = {g · x | g ∈ G} column shows the G-orbit space of S ( ∼= denotes isomorphic to).

ID G S A S/G Gx Task

1 C4 Z2 C4 Z2/C4 C4 2D Path Planning (Tamar et al., 2016)
2 C4 Images C4 Z2/C4 C4 2D Visual Navigation (Zhao et al., 2022b)

3 SO(2) R2 R2 R+ S1 2D Continuous Navigation
4 SO(3) R3 × R3 R3 R+ × R3 S2 3D Free particle (with velocity)
5 SO(3) R3 ⋊ SO(3) R3 × R3 R+ × R3 S2 Moving 3D Rigid Body
6 SO(2) SO(2) R2 {e} S1 Free Particle on SO(2) ∼= S1 manifold
7 SO(3) SO(3) R3 {e} S2 Free Particle on SO(3) (Teng et al., 2023)
8 SO(2) SE(2) SE(2) R2 S1 Top-down grasping (Zhu et al., 2022)
9 SO(2) (S1)2 × (R2)2 R2 S1 × (R2)2 S1 Two-arm manipulation (Tassa et al., 2018)

the physical interactions between particles in a simulation. This approach enables the generation of
realistic animations and predictions of future states.

B.3 LIMITATIONS AND FUTURE WORK

Although Euclidean symmetry group is infinite and seems huge, it does not guarantee significant
performance gain in all cases. Our theory helps us understand when such Euclidean symmetry
may not be very beneficial The key issue is that when a robot has kinematic constraints, Euclidean
symmetry does not change those features, which means that equivariant constraints cannot share
parameters and reduce dimensions. We empirically show this on using local vs. global reference
frame in the additional experiment in Sec F. For further work, one possibility is to explicit consider
constraints while keep using global positions.

B.4 ILLUSTRATION AND EXAMPLES OF GEOMETRIC MDPS

In Figure 2, we present visual examples of Geometric MDPs and non-geometric MDPs in both
discrete and continuous cases. Geometric MDP examples include moving a point robot in a 2D
continuous space (R2, Example 3 in Table 2) or a discrete space (Z2, Example 1 (Tamar et al.,
2016)), which is the abstraction of 2D discrete or continuous navigation. Table 2 includes more
relevant examples. We use visual navigation over a 2D grid (Z2 ⋊ C4, Example 2 (Lee et al., 2018;
Zhao et al., 2022b)) as another example of a Geometric MDP. In this example, each position in Z2

and orientation in C4 has an image in RH×W×3, which is a feature map Z2 ⋊ C4 → RH×W×3.
The agent only navigates on the 2D grid Z2 (potentially with an orientation of C4), but not the raw
pixel space. Example (4) extends to the continuous 3D space and also include linear velocity R3.
Alternatively, we can consider (5) moving a rigid body with SO(3) rotation. In (6) and (7), we
consider moving free particle positions on SO(2),SO(3), which are examples of optimal control
on manifold in (Lu et al., 2023; Teng et al., 2023). Here, G = SO(3) acts on S = SO(3) by
group composition. (8) top-down grasping needs to predict SE(2) action on grasping an object on
plane with SE(2) pose. It additionally has translation symmetry, so the state space is technically
SE(2)/SE(2) = {e}. (9) is the Reacher task that we studies later, which controls a two-joint arm.
It is easy to see that because two links are connected, kinematic constraints come in and equivariance
does not save so much. Additionally, Example (3) is later implemented as PointMass, which is
(8) top-down grasping without SO(2) rotation.

B.5 CONTINUOUS GROUP ACTIONS FOR GEOMETRIC MDPS

If the G-actions on S and A are continuous, there is an interesting geometric interpretation based
on fiber bundle theory (Husemöller, 2013). This requirement is not mandatory for implementation
but allows for more rigorous theoretical results. Continuous symmetries correspond to conservation
laws, while discrete (non-differentiable) symmetries do not have corresponding conservation laws
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(Zee, 2016). The linearized dynamics of a system are much more constrained (i.e., have fewer free
parameters) when the system has continuous G-actions. If the group G is a compact Lie group and
has continuous G-actions, there exists a map p : S × A 7→ B that projects the state-action space
S ×A to a lower dimensional base space B (Cohen et al., 2020b). The existence and smoothness of
the projection p can be established using principal bundle theory. See Appendix D for more detail.

C MATHEMATICAL BACKGROUND

C.1 BACKGROUND FOR REPRESENTATION THEORY AND G-STEERABLE KERNELS

We establish some notation and review some elements of group theory and representation theory.
For a comprehensive review of group theory and representation theory, please see (Serre, 2005). The
identity element of any group G will be denoted as e. We will always work over the field R unless
otherwise specified.

C.2 GROUP DEFINITION

A group is a non-empty set equipped with an associative binary operation · : G × G → G where ·
satisfies

Existence of identity: ∃e ∈ G, s.t. ∀g ∈ G, e · g = g · e = g

Existence of inverse: ∀g ∈ G,∃g−1 ∈ G s.t. g · g−1 = g−1 · g = e

For a complete reference on group theory, please see Zee (2016).

C.2.1 GROUP REPRESENTATIONS

A group is an abstract object. Oftentimes, when working with groups, we are most interested in
group representations. Let V be a vector space over C. A representation (ρ, V ) of G is a map
ρ : G → Hom[V, V ] such that

∀g, g′ ∈ G, ∀v ∈ V, ρ(g · g′)v = ρ(g) · ρ(g′)v
Concisely, a group representation is a embedding of a group into a set of matrices. The matrix em-
bedding must obey the multiplication rule of the group. Over R and C all representations break down
into irreducible representations Serre (2005). We will denote the set of irreducible representations
of a group G and Ĝ.

C.2.2 GROUP ACTIONS

Let Ω be a set. A group action Φ of G on Ω is a map Φ : G× Ω → Ω which satisfies

Identity: ∀ω ∈ Ω, Φ(e, ω) = ω

Compositionality: ∀g1, g2 ∈ G, ∀ω ∈ Ω, Φ(g1g2, ω) = Φ(g1,Φ(g2, ω))

We will often suppress the Φ function and write Φ(g, ω) = g · ω.

Ω Ω′

Ω Ω′

Φ(g,·)

Ψ

Φ′(g,·)

Ψ

Figure 7: Commutative Diagram For G-equivariant function: Let Φ(g, ·) : G × Ω → Ω denote the
action of G on Ω. Let Φ′(g, ·) : G×Ω′ → Ω′ denote the action of G on Ω′ The map Ψ : Ω → Ω′ is
G-equivariant if and only if the following diagram is commutative for all g ∈ G.

Let G have group action Φ on Ω and group action Φ′ on Ω′. A mapping Ψ : Ω → Ω′ is said to be
G-equivariant if and only if

∀g ∈ G,∀ω ∈ Ω, Ψ(Φ(g, ω)) = Φ′(g,Ψ(ω)) (14)

Diagrammatically, Ψ is G-equivariant if and only if the diagram C.2.2 is commutative.
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G-Intertwiners Let (ρ, V ) and (σ,W ) be two G-representations. The set of all G-equivariant
linear maps between (ρ, V ) and (σ,W ) will be denoted as

HomG[(ρ, V ), (σ,W )] = {Φ | Φ : V → W, ∀g ∈ G, Φ(ρ(g)v) = σ(g)Φ(v)}
HomG is a vector space over C. When the linear maps are restricted to be real, HomG forms a vector
space over R. A linear map Φ ∈ HomG[(ρ, V ), (σ,W )] is said to intertwine the representations
(ρ, V ) and (σ,W ). An intertwiner Φ is a map that makes the diagram C.2.2 commutative.

(ρ, V ) (σ,W )

(ρ, V ) (σ,W )

ρ(g)

Φ

σ(g)

Φ

Figure 8: Commutative Diagram For G-intertwiner. The map Ψ :∈ HomG[(ρ, V ), (σ,W )] if and
only if the following diagram is commutative for all g ∈ G.

Computing a basis for the vector space HomG[(ρ, V ), (σ,W )] is an important procedure in the
theory of steerable kernels (Cohen & Welling, 2016a).

C.2.3 CLEBSCH-GORDON COEFFICIENTS

Let G be a compact group. Let Ĝ be the irreducible representations of G Let (ρ, V ) and (σ,W ) be
irreducible representations of G. The tensor product representation will not in general be irreducible
and

(ρ, V )⊗ (σ,W ) =
⊕
τ∈Ĝ

cτσ,ρ(τ, Vτ )

where cτσ,ρ are the Clebsch-Gordon multiplicities which count the number of copies of the irreducible
(τ, Vτ ) in the tensor product representation (ρ, V ) ⊗ (σ,W ). Clebsch-Gordon Coefficients Cτ

ρ1ρ2

are the coefficients of the representation (τ, Vτ ) in the tensor product basis. Specifically, let

|τiτ ⟩ =
d1∑

j1=1

d2∑
j2=1

⟨ρ1j1, ρ2j2|τiτ ⟩︸ ︷︷ ︸
(Cτ

ρ1ρ2
)iτ ,j1j2

|ρ1j1, ρ2j2⟩

Clebsch-Gordon coefficients are an integral part of the general solution to steerable kernel constraint
Lang & Weiler (2020a).

C.2.4 CHARACTERIZATION OF STEERABLE KERNELS ON HOMOGENEOUS SPACES

We briefly summarize the results of (Lang & Weiler, 2020a). Let X be a homogeneous space of a
compact group G. Let (σ, Vσ) ∈ Ĝ and (ρ, Vρ) ∈ Ĝ be two G-irreducibles. Consider the kernel
constraint

K(g · x) = σ(g)K(x)ρ(g−1)

where K : X → Hom[Vρ, Vσ]. Then, there exists a set of generalized spherical harmonics Y i
ρ,k :

X → R where ρ ∈ Ĝ is a G-irreducible and the index i ∈ {1, 2, ..., dρ} and k ∈ {1, 2, ...,mρ}
where mρ ≤ dρ is called the muplicity which satisfy the relation

∀g ∈ G, Y i
ρ,k(g

−1 · x) =
dρ∑

i′=1

ρii′(g)Y
i′

ρ,k(x)

The set of Y i
ρ,k form a basis for all square integrable functions on X .

Let us define

Kτks
σρ (x) =

dτ∑
iτ=1

dσ∑
jσ=1

dρ∑
iρ=1

|σjσ⟩ ⟨s, σjσ|τiτ , ρiρ⟩︸ ︷︷ ︸
Clebsch-Gordon

Y
iρ
ρ,k(x)︸ ︷︷ ︸

harmonics

⟨ρiρ|
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Then, using the main result of (Lang & Weiler, 2020a), the matrices Kτks
σρ (x) form a basis for the

space of G-steerable kernels with input representation ρ and output representation σ. Then, the
kernel K can be written in the form

Kσρ(x) =
∑
τ∈Ĝ

mρ∑
k=1

mσ∑
s=1

cτksKτks
σρ (x)

where cτks ∈ HomG[(σ, Vσ), (σ, Vσ)] is a (σ, Vσ)-endomorphism. The total number of free param-
eters in Kσρ is

dimKσρ = mρmσ

∑
τ∈Ĝ

Cσ
τρ × dimHomG[(σ, Vσ), (σ, Vσ)] ≤ 4mρmσ

∑
τ∈Ĝ

cστρ

which depends on both multiplicity mτ of the homogeneous space X and the Clebsch-Gordon
Coefficients cστρ of the group G.

D THEORY AND PROOFS

The section is organized as follows. We first give the proofs to Theorem 1 and 2. Then, we discuss
how we linearize dynamics of a Geometric MDP and G-steerable kernels in detail. The goal of
the theory is to show that, in linearized case, Euclidean symmetry can provably reduce number of
free parameters and the dimensions of the solution space. Under RL setup with unknown dynamics
(and cost) function, the Euclidean equivariance constraints then potentially bring significant benefit
because of less parameters.

D.1 THEOREM 1 AND 2: EQUIVARIANCE IN GEOMETRIC MDPS

Theorem 1 The Bellman operator of a GMDP is equivariant under Euclidean group E(d).

Proof. The Bellman (optimality) operator is defined as

T [V ](s) := max
a

R(s,a) +

∫
ds′P (s′ | s,a)V (s′), (15)

where the input and output of the Bellman operator are both value function V : S → R. The
theorem directly generalizes to Q-value function.

Under group transformation g, a feature map (field) f : X → Rcout is transformed as:

[Lgf ] (x) =
[
f ◦ g−1

]
(x) = ρout(g) · f

(
g−1x

)
, (16)

where ρout is the G-representation associated with output Rcout . For the scalar value map, ρout is
identity, or trivial representation.

For any group element g ∈ E(d) = Rd ⋊ O(d), we transform the Bellman (optimality) operator
step-by-step and show that it is equivariant under E(d):

Lg [T [V ]] (s)
(1)
= T [V ](g−1s) (17)
(2)
= max

a
R(g−1s,a) +

∫
ds′ · P (s′ | g−1s,a)V (s′) (18)

(3)
= max

ā
R(g−1s, g−1ā) +

∫
d(g−1s̄) · P (g−1s̄ | g−1s, g−1a)V (g−1s̄) (19)

(4)
= max

ā
R(s, ā) +

∫
d(g−1s̄) · P (s̄ | s,a)V (g−1s̄) (20)

(5)
= max

ā
R(s, ā) +

∫
ds̄ · P (s̄ | s,a)V (g−1s̄) (21)

(6)
= T [Lg[V ]](s) (22)

For each step:
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Figure 9: Demonstrate the idea of implementing value iteration with geometric message passing.

• (1) By definition of the (left) group action on the feature map V : S → R, such that
g · V (s) = ρ0(g)V (g−1s) = V (g−1s). Because V is a scalar feature map, the output
transforms under trivial representation ρ0(g) = Id.

• (2) Substitute in the definition of Bellman operator.

• (3) Substitute a = g−1(ga) = g−1ā. Also, substitute g−1s̄ = s′.

• (4) Use the symmetry properties of Geometric MDP: P (s′ | s,a) = P (g · s | g · s, g · a)
and R(s,a) = R(g · s, g · a).

• (5) Because g ∈ E(d) is isometric transformations (translations Rd, rotations and reflec-
tions O(d)) and the state space carries group action, the measure ds is a G-invariant mea-
sure d(gs) = ds. Thus, ds̄ = d(g−1s̄).

• (6) By the definition of the group action on V .

The proof requires the MDP to be a Geometric MDP with Euclidean symmetry and the state space
carries a group action of Euclidean group. Therefore, the Bellman operator of a Geometric MDP is
E(d)-equivariant. Additionally, we can also parameterize the dynamics and reward functions with
neural networks, and the learned Bellman operator is also equivariant.

The proof is analogous to the case in (Zhao et al., 2022b), where the symmetry group is p4m = Z2⋊
D4, which is a discretized subgroup of E(2). A similar statement can also be found in symmetric
MDP (Zinkevich & Balch, 2001), MDP homomorphism induced from symmetry group (Ravindran
& Barto, 2004), and later work on symmetry in deep RL (van der Pol et al., 2020b; Wang et al.,
2021).

Theorem 2 For a GMDP, value iteration is an E(d)-equivariant geometric message passing.

Proof. We prove by constructing value iteration with For a more rigorous account on the relationship
between dynamic programming (DP) and message passing on non-geometric MDPs, see (Dudzik &
Veličković, 2022).

Notice that they satisfy the following equivariance conditions:

Pθ : S ×A× S → R+ : Pθ(st+1 | st,at) = Pθ(ρS(g) · st+1 | ρS(g) · st, ρA(g) · at) (23)
Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (24)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (25)
Vθ : S → R : Vθ(st) = Vθ(ρS(g) · st) (26)

(27)

We construct geometric message passing such that it uses scalar messages and features and resem-
bles value iteration. The idea is visualized in Fig 9.

Then, we can use geometric message passing network to construct value iteration, which is to iter-
atively apply Bellman operators. We adopt the definition of geometric message passing based on
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(Brandstetter et al., 2021) as follows.

m̃ij = ϕm

(
f̃i, f̃j , ãij

)
(28)

f̃ ′i = ϕf

f̃i,
∑

j∈N (i)

m̃ij , ãi

 . (29)

The tilde means they are steerable under G transformations.

We want to construct value iteration:

Q(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)V (s′) (30)

V ′(s) =
∑
a

π(a|s)Q(s, a) (31)

To construct a geometric graph, we let vertices V be states s and edges E be state-action transition
(s,a) labelled by a. For the geometric features on the graph, there are node features and edge
features. Node features include maps/functions on the state space: S → RD, and edge features
include functions on the state-action space S ×A → RD.

For example, state value function V : S → R is (scalar) node feature, and Q-value function Qθ :
S × A → R and reward function Rθ : S × A → R are edge features. The message m̃ij is thus
a scalar for every edge: m̃ij = π(a|s)Q(s, a), and f̃ ′i is updated value function f̃ ′i = V ′(s). It
is possible to extend value iteration to vector form as in Symmetric Value Iteration Network and
Theorem 5.2 in (Zhao et al., 2022b), while we leave it for future work.

D.2 LINEAR-QUADRATIC CONTROL: LINEARIZING GEOMETRIC MDPS

Linear-Quadratic Regulator (LQR) is one of the most frequently used methods in optimal control
Tedrake (2023). LQR is a computationally efficient method for solving problems with linear dy-
namics and quadratic costs. LQR has various noise robustness and optimally guarantees. Even if
the dynamical system is nonlinear, linear-quadratic control methods have been used after iteratively
linearizing the dynamics and quadratizing the cost.

Many of the problems where LQR is applied have symmetries. Recently has the control community
began to study how symmetry can be used to increase the performance of classical control algorithms
Teng et al. (2023; 2022); Ghaffari et al. (2022). Hampsey et al. (2022b;a); Cohen et al. (2020a)
specifically consider LQR on homogeneous spaces but do not establish the connection to steerable
kernels.

We show how Euclidean symmetry inherently simplifies the linearized problem. We assume the
dynamics and cost (reward) are unknown and need to be learned, thus equivariance constraints
come in and reduce the number of free parameters.

D.3 THEOREM 3: EQUIVARIANCE OF LINEARIZED DYNAMICS

We show the derivation of steerable kernel constraint in this subsection and further discuss the
characteristics of steerable kernels in the next subsection.

Theorem 3: If a Geometric MDP has an infinitesimal G-action on the state-action space S ×A, the
linearized dynamics is also G-equivariant: the matrix-value functions A : S × A → RdS×dS and
B : S ×A → RdS×dA satisfy G-steerable kernel constraints.

Oftentimes, the problem of interest has continuous symmetry G that acts on the space S × A. We
will assume that the Lie group action G× (S ×A) → S ×A is continuous.

Under infinitesimal symmetry transformation g ≈ 1G ∈ G, let us suppose that the state and action
space transform as

s → ρS(g) · s, a → ρA(g) · a
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Figure 10: Adopted from main text. A schematic showing how a matrix-valued kernel A : X → R2×2 is
constrained by the SO(2)-steerable kernel constraints on a set of orbits A(g · p) = ρout(g)A(p)ρin(g

−1). On
each orbit (left), the constraints can be solved exactly: the matrices on same orbits (same colors) are related
and have explicit parameterization given in Lang & Weiler (2020a). Thus, these matrices can be spanned on a
basis (denoted by K) and live in a smaller “base” space B = X/G with a certain form A↓ : B → R2×2.

where ρS and ρA are representations of the group G. Let A and B be the lineariziations of the
dynamics f at the point p = (s,a), with

A(p) =
∂f

∂s
|p, B(p) =

∂f

∂a
|p

Under infinitesimal symmetry transformation g ≈ 1G ∈ G, the dynamics must satisfy,

ρS(g) · f(s,a) = f(ρS(g) · s, ρA(g) · a) (32)

Because we assume the state and action space has continuous group action, we can apply Taylor
expansion for continuous group actions and only keep the first order term. Let g = 1G+δg+O(δg2)
be the expansion around the identity element, then

ρS(g) = ρS(1G) + ρS(δg) +O(δg2) = 1dS + ρS(δg) +O(δg2)

ρA(g) = ρA(1G) + ρA(δg) +O(δg2) = 1dA + ρA(δg) +O(δg2)

inserting into 32, and collecting terms of order O(δg), we have that,

ρS(δg)
∂f

∂s
|δp =

∂f

∂s
|δg·pρS(δg), ρS(δg)

∂f

∂a
|p =

∂f

∂a
|δg·pρS(δg)

In general, we solve the non-linear problem by linearizing and iterating. Let us consider the lin-
earized problem at point p = (s0,a0). Assuming that the state and control do not change too
drastically over a short period of time, we can approximate the true dynamics as

st+1 = A(p) · st +B(p) · at

where A : S ×A → RdS×dS and B : S ×A → RdS×dA .

Now, linearizing the dynamics f and using the symmetry constraint. The matrix valued functions
A(p) and B(p) must satisfy the constraints

∀g ∈ G, A(g · p) = ρS(g)A(p)ρS(g
−1), B(g · p) = ρS(g)B(p)ρA(g

−1) (33)

so that A is a G-steerable kernel with input representation ρS and output representation ρS and B
is a G-steerable kernel with input representation ρA and output representation ρS Cohen & Welling
(2016a). The kernel constraints 33 relate A(p) and B(p) at different points. We use this constraint
to understand why Euclidean symmetry is beneficial for decision-making: it reduces the number of
free parameters and the dimensions of the solution space.

D.4 CHARACTERISTICS OF G-STEERABLE KERNELS

Consider the G-steerable kernel constraints,

∀g ∈ G, A(g · p) = ρS(g)A(p)ρS(g
−1), B(g · p) = ρS(g)B(p)ρA(g

−1) (34)
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To begin, note that this equation only relates A and B on points that can be related by G-
transformation. As first observed in Weiler et al. (2018a), we can solve the constraints 34 over
each orbit separately. Let us define the G-orbits of S ×A as

O(x) = { y | ∃g ∈ G, y = g · x } (35)

where x ∈ S × A. Every G-orbit is a homogeneous space of G Serre (2005). The set of G-orbits
form a partition of the space S ×A. Let us define the equivalence relation ∼ as

x ∼ y =⇒ ∃g ∈ G, such that x = g · y

so that x ∼ y only if x and y are related by symmetry transformation. We then define the quotient
space

B = (S ×A)/ ∼

where the space B consists of the space of all G-orbit representatives. Using a standard result in
topology Husemöller (2013), there is then a canonical continuous projection map Π : S × A → B
which projects each point in S × A to a canonically chosen orbit representative. Note that points
related by G-action have the same projection and

∀g ∈ G, Π(g · x) = Π(x)

holds for all x ∈ S × A. We can decompose every point in the space S × A into an element of B
and a element of a homogeneous space of G. Let p ∈ S ×A, we can always write

p = xp × p↓

where p↓ = Π(p) ∈ B is the orbit representative of p and xp is an element of O(p↓) which is a
homogeneous space of G. Now, using this decomposition, we may write the constraints 33 as

∀g ∈ G, A(g · x, p↓) = ρS(g)A(x, p↓)ρS(g
−1), B(g · x, p↓) = ρS(g)B(x, p↓)ρA(g

−1),

A complete solution to this constraint for any compact group G was given in Lang & Weiler (2020a).
Following Weiler et al. (2018a), we can simplify these kernel constraints based on the decomposition
of ρS and ρA into irreducibles. Let Ĝ denote a representative set of G-irreducibles. Let us suppose
that ρS and ρA decompose into irreducibles of G as

(ρS , VS) =
⊕
σ∈Ĝ

nσ(σ, Vσ), (ρA, VA) =
⊕
σ∈Ĝ

qσ(σ, Vσ)

where (σ, Vσ) are the G-irreducibles and nσ and qσ count the multiplicity of the (σ, Vσ) irreducible
in ρS and ρA, respectively. The dimensions of each irreducible are related to the dimensions of the
S and A manifolds via

dS =
∑
σ∈Ĝ

dσnσ, dA =
∑
σ∈Ĝ

dσqσ

Now, by definition of an reducible representation, there exists a dS × dS unitary matrix U and a
dA × dA unitary matrix V such that we change basis and write

∀g ∈ G, ρS(g) = U


n1σ1(g) 0 0 ... 0 0

0 n2σ2(g) 0 ... 0 0
0 0 n3σ3(g) ... 0 0
... ... ... ... ... ...
0 0 ... 0 n|Ĝ|σ|Ĝ|(g)

U†

and

∀g ∈ G, ρA(g) = V


q1σ1(g) 0 0 ... 0 0

0 q2σ2(g) 0 ... 0 0
0 0 q3σ3(g) ... 0 0
... ... ... ... ... ...
0 0 ... 0 q|Ĝ|σ|Ĝ|(g)

V †
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where the notation biσi(g) denotes a block matrix with bi copies of the irreducible (σi, Vi) ∈ Ĝ on
the diagonals,

∀g ∈ G, biσi(g) =


σi(g) 0 0 ... 0 0
0 σi(g) 0 ... 0 0
0 0 σi(g) ... 0 0
... ... ... ... ... ...
0 0 ... 0 σi(g)


︸ ︷︷ ︸

bi copies

We can write down the solution explicitly in this basis,

A(x, p↓) = U


n1n1K

A
11(x, p↓) n1n2K

A
12(x, p↓) n1n3K

A
13(x, p↓) ... n1n|Ĝ|K

A
1|Ĝ|(x, p↓)

n2n1K
A
21(x, p↓) n2n2K

A
22(x, p↓) n2n3K

A
23(x, p↓) ... n2n|Ĝ|K

A
2|Ĝ|(x, p↓)

... ... ... ... ...
n|Ĝ|n1K

A
|Ĝ|1(x, p↓) n|Ĝ|n2K

A
|Ĝ|2(x, p↓) n|Ĝ|n3K

A
|Ĝ|3(x, p↓) ... n|Ĝ|n|Ĝ|K

A
|Ĝ||Ĝ|(x, p↓)

U†

and

B(x, p↓) = U


n1q1K

B
11(x, p↓) n1q2K

B
12(x, p↓) n1q3K

B
13(x, p↓) ... n1q|Ĝ|K

B
1|Ĝ|(x, p↓)

n2q1K
B
21(x, p↓) n2q2K

B
22(x, p↓) n2q3K

B
23(x, p↓) ... n2q|Ĝ|K

B
2|Ĝ|(x, p↓)

... ... ... ... ...
n|Ĝ|q1K

B
|Ĝ|1(x, p↓) n|Ĝ|q2K

B
|Ĝ|2(x, p↓) q|Ĝ|n3K

B
|Ĝ|3(x, p↓) ... n|Ĝ|q|Ĝ|K

B
|Ĝ||Ĝ|(x, p↓)

V †

where KA
ij are the A-kernels with input representation (σi, Vi) and output representation (σj , Vj)

and KB
ij are the B-kernels with input representation (σi, Vi) and output representation (σj , Vj). The

notation bicjK
C
ij (x) denotes bi × cj independent copies of the KC

ij kernel,

bicjK
C
ij (x, p↓) =


KC

ij (x, p↓) KC
ij (x, p↓) KC

ij (x, p↓) ... KC
ij (x, p↓)

KC
ij (x, p↓) KC

ij (x, p↓) KC
ij (x, p↓) ... KC

ij (x, p↓)
... ... ... ... ...

KC
ij (x, p↓) KC

ij (x, p↓) KC
ij (x, p↓) ... KC

ij (x, p↓)


 bi copies

︸ ︷︷ ︸
cj copies

Using Bra-Ket notation, let us define

Kτks
σρ (x) =

dτ∑
iτ=1

dσ∑
jσ=1

dρ∑
iρ=1

|σjσ⟩ ⟨s, σjσ|τiτ , ρiρ⟩︸ ︷︷ ︸
Clebsch-Gordon

Y
iρ
ρ,k(x)︸ ︷︷ ︸

harmonics

⟨ρiρ|

Then, using the main result of Lang & Weiler (2020a), the matrices Kτks
σρ (x) form a basis for the

space of G-steerable kernels with input representation ρ and output representation σ. Then, the
kernels KA and KB can be written in the form

KA
σρ(x) =

∑
τ∈Ĝ

mρ∑
k=1

mσ∑
s=1

cAτks(p↓)K
τks
σρ (x)

KA
σρ(x) =

∑
τ∈Ĝ

mρ∑
k=1

mσ∑
s=1

cBτks(p↓)K
τks
σρ (x)

where cAτks(p↓) : B → HomG[(σ, Vσ), (σ, Vσ)] and cBτks(p↓) : B → HomG[(σ, Vσ), (σ, Vσ)] are
maps from the quotient space B into (σ, Vσ)-endomorphisms.

Thus, when p↓ ∈ B is fixed, the total number of free parameters in the A(x, p↓) matrix is

dimA(x, p↓) =
∑
ρσ∈Ĝ

nρnσ

∑
τ∈Ĝ

mσmρC
σ
τρ × dimHomG[(σ, Vσ), (σ, Vσ)] ≤ 4

∑
ρτσ∈Ĝ

nρnσC
σ
τρmσmρ
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Similarly, at fixed p↓ ∈ B, the total number of free parameters in B(x, p↓)

dimB(x, p↓) =
∑
ρσ∈Ĝ

nρqσ
∑
τ∈Ĝ

Cσ
τρmσmρ × dimHomG[(σ, Vσ), (σ, Vσ)] ≤ 4

∑
ρτσ∈Ĝ

nρqσC
σ
τρmσmρ

Note that for fixed p↓,

dimA(x, p↓) ≤ d2S , dimB(x, p↓) ≤ dSdA,

always hold. To summarize, symmetry constraints force the LQR matrices A and B to take the form

A : B → RdS×dS , B : B → RdS×dA

Furthermore, the output matrices take the form of a G-steerable kernel Lang & Weiler (2020a) and
are parameterized by only a small number of parameters. This should be contrasted with the non-
equivarient case where

A : S ×A → RdS×dS , B : S ×A → RdS×dA

The dimension of the space B can be significantly less than that of S × A. Symmetry constraints
thus highly restricts the allowed form of LQR.

D.5 THEOREM 4: SYMMETRY IN SOLUTIONS OF LQR

Theorem 4: The LQR feedback matrix in a⋆t = −K(p)st and value matrix in V = s⊤t P (p)st are
G-steerable kernels, or matrix-valued functions: K : S×A → RdA×dS and P : S×A → RdS×dS .

Proof. The solution of LQR is derived from Bellman equation. The results, or optimal value function
Vt(s) = s⊤Pts and optimal policy function (feedback control law) a⋆ = −Kts, are given by the
discrete algebraic Riccati equation (DARE).

Vt(s) = s⊤Pts, a⋆ = −Kts, (36)
where

Pt = Q+A⊤Pt+1A−A⊤Pt+1B
(
R+B⊤Pt+1B

)−1
B⊤Pt+1A (37)

Kt =
(
R+B⊤Pt+1B

)−1
B⊤Pt+1A. (38)

The goal is to prove that Pt and Kt are G-steerable kernels.

If we iteratively linearize the problem, similar to the linearized dynamics, we quadratize the cost
function around a point p. The quadratic cost also depends on the point p and is given as follows.

st+1 = A(p) · st +B(p) · at, A : S ×A → RdS×dS , B : S ×A → RdS×dA (39)

c(s, a) = s⊤Q(p)s+ a⊤R(p)a, Q : S ×A → RdS×dS , R : S ×A → RdA×dA (40)

Analogously, Q and R are also G-steerable kernels by assuming the scalar function c(s, a) is G-
invariant:

∀g ∈ G, Q(g · p) = ρS(g)Q(p)ρS(g
−1), R(g · p) = ρA(g)R(p)ρA(g

−1) (41)

We prove by induction. For simplicity, we denote Ap := A(p) and similarly for Bp, Qp, Rp. We
start from PT = Qp. By the property of G-steerable kernel, it is Qp = ρS(g)Qg·pρS(g

−1), thus PT

is a steerable kernel.

By induction, we assume Pt+1 is steerable kernel: Pt+1(p) = ρS(g)Pt+1(g · p)ρS(g−1). We show
how each component is transformed under group transformation.

Pt(p) = Qp︸︷︷︸
(1)

+A⊤
p Pt+1(p)Ap︸ ︷︷ ︸

(2)

−A⊤
p Pt+1(p)Bp︸ ︷︷ ︸

(3)

(
Rp +B⊤

p Pt+1(p)Bp

)−1︸ ︷︷ ︸
(4)

B⊤
p Pt+1(p)Ap︸ ︷︷ ︸

(5)

(42)

For (1), by the property of G-steerable kernel, it is Qp = ρS(g)Qg·pρS(g
−1).
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Table 3: Equivariant dimension reduction for linearized dynamics. This table highlights the reduced
dimensions of spaces of kernels. X (M) denotes the dimension of signals living on the manifold
M.

Task S A G ρS ρA X (S ×A) X (B)

Free Particle in 2D R2 × R2 R2 SO(2) ρstd ρstd R16 R+ × R14

Reacher (in 2D) S1 × S1 × R2 R2 SO(2) ρstd ⊕ ρtriv ρtriv S1 × S1 × R10 S1 × R10

Single Free Particle in 3D R3 × R3 R3 SO(3) ρstd ρstd R32 (R+)2 × R10

N -Free Particles in 3D R3N × R3N R3N SO(3) ρstd ρstd R32N (R+)2 × R10N

For (2), we have

A⊤
p Pt+1(p)Ap =

(
ρS(g)Ag·pρS

(
g−1

))⊤
(ρS(g)Pt(g · p) ρS(g−1))

(
ρS(g)Ag·pρS

(
g−1

))
(43)

= ρS(g)A
⊤
g·pρS

(
g−1

)
ρS(g)Pt(g · pρS(g−1))ρS(g)Ag·pρS

(
g−1

)
(44)

= ρS(g)
(
A⊤

g·pPt(g · p)Ag·p
)
ρS

(
g−1

)
. (45)

We can similarly show for the rest:

(3) = ρS(g)
(
A⊤

g·pPt+1(g · p)Bg·p
)
ρA(g

−1) (46)

(4)−1 = ρA(g)
(
Rg·p +B⊤

g·pPt+1(g · p)Bg·p
)
ρA(g

−1) (47)

(5) = ρA(g)
(
B⊤

g·pPt+1(g · p)Ag·p
)
ρS(g

−1) (48)

Thus, the multiplication (3)(4)(5) transforms under input representation ρS(g) and output represen-
tation ρS(g

−1). Analogously, all terms (1), (2), and (3)(4)(5) transforms under input representation
ρS(g) and output representation ρS(g

−1), same for the sum. By moving the terms, we obtain
Pt(p) = ρS(g)Pt(g · p)ρS(g−1) that Pt is a steerable kernel.

D.6 ILLUSTRATION AND EXAMPLES

We work out a few examples of how symmetry can reduce the dimensionality of the LQR problem.
We specifically consider two simple problems: a free particle moving in the plane and a free particle
moving in space. The agent can control an applied force and tries to steer the particle to the origin.

Examples. In Table 3, we show the dimensions of the spaces of G-steerable kernels for each task.
X (S × A) refers to the space without equivariant constraints, while X (B) denotes the space with
G-steerable equivariant constraints. We can see that the spaces of equivariant version are hugely
reduced because of (1) smaller base space, as visualized in Figure ??, and (2) constrained output
matrix Rd×d with less free parameters.

In the empirical results, we show for multiple free particles (N -ball PointMass 3D), which gen-
eralize the results of single balls. Compared to Reacher that has two connected links by a joint,
multiple free particles can have much better saving. Note that for Reacher, in implementation we
convert the angles to unit vectors:(

θ1, θ2, θ̇1, θ̇2, xg − xf , yg − yf

)
⇒

(
cos θ1, sin θ1, cos θ2, sin θ2, θ̇1, θ̇2, xg − xf , yg − yf

)
.

(49)

D.6.1 SINGLE PARTICLE CONTROL IN THE PLANE

We work out the single particle control problem in the plane. The goal is to move a particle to origin.
The state space is the particle position, represented as a two-vector p⃗, and the particle velocity
represented as a two-vector v⃗. The action space consists of the applied force F̂ , which is also a
two-vector. The state space and action space are thus given by

S = R2 × R2, A = R2
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The group SO(2) acts on the state and action space. Specifically, under a rotation R ∈ SO(2), the
state and action transform as

State Transform: (p⃗, v⃗) → (Rp⃗,Rv⃗)

Action Transform: F⃗ → RF⃗

The state space transforms in ρS = ρ1 ⊕ ρ1 and the action space transform in ρA = ρ1. The set of
orbits are then given by states and actions where the angles between the vectors p⃗, v⃗ and F⃗ are fixed.

The base space is given by B = R+×R4. Using Proposition E.6. in Lang & Weiler (2020a), a basis
for the steerable kernels of input type (ρ1, V1) and output type (ρ1, V1) is given by

K11(x) = c1

[
1 0
0 1

]
+ c2

[
0 −1
1 0

]
+ c3

[
cos(2x) sin(2x)
sin(2x) − cos(2x)

]
+ c4

[
− sin(2x) cos(2x)
cos(2x) − sin(2x)

]
where each cj ∈ R. This result was first derived in Weiler et al. (2018a). In more compact notation,
the matrix K11 : S1 → R2×2 can be expanded as

K11(x) =

[
c1 + c3 cos(2x)− c4 sin(2x), −c1 + c3 sin(2x)− c4 cos(2x)
c2 + c3 sin(2x) + c4 cos(2x), c1 + c3 sin(2x)− c4 sin(2x)

]
where each ci ∈ R. Then, using the form of the LQR matrices, we can write

A(p↓, x) =

[
K

(1,1)
A (p↓, x), K

(1,2)
A (p↓, x)

K
(2,1)
A (p↓, x), K

(2,2)
A (p↓, x)

]
, B(p↓, x) =

[
K

(1,1)
B (p↓, x)

K
(2,1)
B (p↓, x)

]

where each K
(i,j)
A and K

(k,l)
B take the form, X ∈ {A,B},

K
(i,j)
X (p↓, x) =

[
c
(i,j)
1,X (p↓) + c

(i,j)
3,X (p↓) cos(2x)− c

(i,j)
4,X (p↓) sin(2x), −c

(i,j)
1,X (p↓) + c

(i,j)
3,X (p↓) sin(2x)− c

(i,j)
4,X (p↓) cos(2x)

c
(i,j)
2,X (p↓) + c

(i,j)
3,X (p↓) sin(2x) + c

(i,j)
4,X (p↓) cos(2x), c

(i,j)
1,X (p↓) + c

(i,j)
3,X (p↓) sin(2x)− c

(i,j)
4,X (p↓) sin(2x)

]
the coefficients c(i,j)kA : R+ × R4 → R and c

(i,j)
kB : R+ × R4 → R are not constrained by symmetry

and can be parameterized by a neural network. If we amalgamate each of the coefficients c(i,j)kA and
c
(i,j)
kB into a single vector output C, the system dynamics can be learned by specifying

C : R+ × R4 → R16+8

This should be contrasted with the non-equivarient case, where one needs to learn

A : R6 → R16 and B : R6 → R8

The dimensional reduction in the equivarient vs non-equivarient case is infinite. This is analogous
to Wang et al. (2020) where equivarient methods can outperform non-equivarient methods by essen-
tially an essentially infinite margin. In practice, due to discritization, this infinite gain is reduced to
some large finite number.

D.6.2 SINGLE PARTICLE CONTROL IN SPACE

Let us consider the analogous single particle control problem in three-dimensional space. The state
space is the particle position, represented as a three-vector p⃗, and the particle velocity represented as
a three-vector v⃗. The action space consists of the applied force F̂ , which is also a three-vector. The
state space and action space are thus given by

S = R3 × R3, A = R3

The group SO(3) acts on the state and action space. Specifically, under a rotation R ∈ SO(3), the
state and action transform as

State Transform: (p⃗, v⃗) → (Rp⃗,Rv⃗)

Action Transform: F⃗ → RF⃗

Position and Velocity are both vectors the state space transforms in ρS = ρ1 ⊕ ρ1. Force is a vector
quantity and the action space transform in ρA = ρ1. The set of SO(3)-orbits are then given by states
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and actions where the angles between the vectors p⃗, v⃗ and F⃗ are fixed. The base space is given by
B = R+ × R6.

A complete characterization of SO(3)-kernels was first derived in Weiler et al. (2018b). In the basis
that diogonalizes the representation, the vectored kernel matrix for a SO(3)-steerable kernel of input
type (D1,W 1) and (D1,W 1) can be written as

Vec(K11(x)) =

Φ0(||x||)Y0(
x

||x|| )

Φ1(||x||)Y1(
x

||x|| )

Φ2(||x||)Y2(
x

||x|| )


where each Yℓ : S2 → R(2ℓ+1) are spherical harmonics in vector form. Each Φi(||x||) : R+ → R
are a set of radial functions. Unvectorizing, we have that

K11(x) =

 Φ0(||x||)Y 0
0 (

x
||x|| ) Φ1(||x||)Y 1

1 (
x

||x|| ) Φ2(||x||)Y 2
2 (

x
||x|| )

Φ1(||x||)Y −1
1 ( x

||x|| ) Φ1(||x||)Y 0
1 (

x
||x|| ) Φ2(||x||)Y 1

2 (
x

||x|| )

Φ1(||x||)Y −2
2 ( x

||x|| ) Φ2(||x||)Y −1
2 ( x

||x|| ) Φ2(||x||)Y 0
2 (

x
||x|| )


Now, using the results of G-steerable kernel constraints, the most general LQR matrices can be
written in the form

A(p↓, x) =

[
K

(1,1)
A (p↓, x), K

(1,2)
A (p↓, x)

K
(2,1)
A (p↓, x), K

(2,2)
A (p↓, x)

]
, B(p↓, x) =

[
K

(1,1)
B (p↓, x)

K
(2,1)
B (p↓, x)

]
where each K

(i,j)
A and K

(k,l)
B take the form, X ∈ {A,B},

Kij
X (x) =

 Φij
0 (||x||)Y 0

0 (
x

||x|| ) Φij
1 (||x||)Y 1

1 (
x

||x|| ) Φij
2 (||x||)Y 0

2 (
x

||x|| )

Φij
1 (||x||)Y −1

1 ( x
||x|| ) Φij

2 (||x||)Y −2
−2 (

x
||x|| ) Φij

2 (||x||)Y 1
2 (

x
||x|| )

Φij
1 (||x||)Y 1

3 (
x

||x|| ) Φij
2 (||x||)Y −1

2 ( x
||x|| ) Φij

2 (||x||)Y 2
2 (

x
||x|| )


the coefficients Φ(i,j)

kA : R+ ×R6 → R and Φ
(i,j)
kB : R+ ×R6 → R are not constrained by symmetry

and can be parameterized by a neural network. If we amalgamate each of the coefficients Φ(i,j)
kB and

Φ
(i,j)
kB into a single vector output Φ, the system dynamics can be learned by specifying

Φ : R+ × R6 → R12+6

This should be contrasted with the non-equivarient case where one needs to learn a function from
R3 × R6 → R12+6. By utilizing symmetry, we are able to significantly reduce the domain of the
function spaces.

E ALGORITHM DESIGN

We elaborate on the algorithm design in this section.

Invariance of return. We compute the expected return of sampled trajectories, and study how
it is transformed:

return(τ) = Eτ

[
γHQθ (sH ,aH) +

H−1∑
t=0

γtRθ (st,at)

]
= Eτ [U(s1:H ,a1:H−1)] (50)

return(g · τ) = Eg·τ

[
γHρ0(g) ·Qθ (g · sH , g · aH) +

H−1∑
t=0

γtρ0(g) ·Rθ (g · st, g · at)

]
(51)

=

∫
g∈G

ρ0(g)dg · Eτ [U(g · s1:H , g · a1:H−1)] (52)

= 1 · Eτ [U(s1:H ,a1:H−1)] = return(τ) (53)

In Equation 51, we use ρ0(g) = 1 to denote that the output is not transformed, so we may extract
the term out. In Equation 52, dg is a Haar measure that absorbs the normalization factor, and we can
extract the term from expectation. Equation 53 uses the invariance of Qθ and Rθ. In other words,
the return under the G-orbit of trajectories is the same, thus return is G-invariant.

29



Under review as a conference paper at ICLR 2024

Equivariance of G-sample. In Model Predictive Path Integral (MPPI) (Williams et al., 2017b),
we sample N actions from a random Gaussian distribution N (µ, σ2I), denoted as A = {ai}Ni=1.
However, since µ and σ are not state-dependent, CEM/MPPI does not satisfy the condition of equiv-
ariance, which requires that rotating the input results in a rotated output. To address this, we pro-
pose a solution - augmenting the action sampling by transforming with all elements in the group G:
GA = {g · ai | g ∈ G}Ni=1. This approach ensures that our method can handle different orientations
and maintain the property of equivariance.

To validate our approach, we first demonstrate the equivariance condition mathematically. We
assume that (s0, a0) gives the maximum value a0 = argmaxa∈GA Q(s0, a). If we consider
g · a0 = g · argmaxa∈GA Q(s0, a) = argmaxa∈GA Q(g · s0, a), it implies that if we rotate
the state to g · s0, we expect g · a0 to still provide the maximum Q-value so that argmax can
select it. The proof is validated using the invariance of Q, Q(g · s, g · a) = Q(s, a). Hence,
a′0 = argmaxa∈GA Q(g ·s0, a) = argmaxa∈GA Q(s0, g

−1 ·a). By comparing these two equations,
we find that a′0 = g · a0.

Note that when not augmenting A, it is not guaranteed that g · a0 exists in A. However, when the
number of samples approaches infinity, g · a0 can get close to some element in A.

The proof can be directly applied to multiple steps, as return is also G-invariant.

F IMPLEMENTATION DETAILS AND ADDITIONAL EVALUATION

F.1 IMPLEMENTATION DETAILS: EQUIVARIANT TD-MPC

We mostly follow the implementation of TD-MPC (Hansen et al., 2022). The training of TD-MPC is
end-to-end, i.e., it produces trajectories with a learned dynamics and reward model and predicts the
values and optimal actions for those states. It closely resembles MuZero (Schrittwieser et al., 2019)
while uses MPPI (Model Predictive Path Integral (Williams et al., 2015; 2017b)) for continuous
actions instead of MCTS (Monte-Carlo tree search) for discrete actions. It inherits the drawbacks
from MuZero - the dynamics model is trained only from reward signals and may collapse or experi-
ence instability on sparse-reward tasks. This is also the case for the tasks we use: PointMass and
Reacher and their variants, where the objectives are to reach a goal position.

F.2 EXPERIMENTAL DETAILS

We implement G-equivariant MLP using escnn (Weiler & Cesa, 2021) for policy, value, transition,
and reward network, with 2D and 3D discrete groups. For all MLPs, we use two layers with 512
hidden units. The hidden dimension is set to be 48 for non-equivariant version, and the equivariant
version is to keep the same number of free parameters, or sqrt strategy.

For example, for D8 group, sqrt strategy (to keep same free parameters) has number of hidden
units divided by

√
|D8| =

√
16 = 4. The other strategy is to make equivariant networks’ input and

output be compatible with non-equivariant ones: linear strategy, which keeps same input/output
dimensions (number of hidden units divided by |D8| = 16).

The hidden space uses regular representation, which is common for discrete equivariant network
(Cohen & Welling, 2016c; Weiler & Cesa, 2021; Zhao et al., 2022b).

F.3 ADDITIONAL RESULTS

Ablation on model-based vs. model-free (“planning-free”). We ablate the use of planning com-
ponent in equivariant version of TD-MPC, which is to justify why we aim to build model-based
version of equivariant RL algorithm over model-free counterparts. The results are shown in Fig-
ure 11. On both Reacher Easy and Hard, with planning, the performance is much better.
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Figure 11: Ablation study on planning component.
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Figure 12: Ablation study on equivariant components, using Reacher Hard with D8 symmetry
group.

Ablation on equivariant components. Recall that we have several equivariant components in
equivariant TD-MPC:

fθ : S ×A → S : ρS(g) · fθ(st,at) = fθ(ρS(g) · st, ρA(g) · at) (54)
Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (55)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (56)
πθ : S → A : ρA(g) · πθ(· | st) = πθ(· | ρS(g) · st) (57)
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Figure 13: Ablation study on number of warmup episodes on PointMass 3D with small target.
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Figure 14: Ablation study on symmetry group on Reacher Hard.

We experiment to enable and disable each of them: (1) transition network: dynamics f and reward R,
(2) value network: Q, and (3) policy network π. Note that to make equivariant and non-equivariant
components compatible, we need to make sure the input and output dimensions match.

We show the results on Reacher Hard with D8 symmetry group in Fig 12. Instead of using sqrt
strategy (to keep same free parameters, number of hidden units divided by

√
|D8| =

√
16 = 4)

on specifying the number of hidden units, we use linear strategy that keeps same input/output
dimensions (number of hidden units divided by |D8| = 16). Thus, the performance of fully non-
equivariant model and fully equivariant model are not directly comparable, because the number of
free parameters in fully equivariant one is much smaller.

The results show the relative importance of value, policy, and transition. It shows the most important
equivariant component is Q-value network. It is reasonable because it has been used intensively in
predicting into the future, where generalization and training efficiency are very important and benefit
from equivariance.

Hyperparameter of amount of warmup. We experiment different number of warmup episodes,
called seed steps in TD-MPC hyperparameter. We find this is a critical hyperparameter for
(non-equivariant) TD-MPC. One possible reason is that TD-MPC highly relies on joint training and
may collapse when the transition model is stuck at some local minima. This warmup hyperparameter
controls how many episodes TD-MPC collects before starting actual training.

We test using different numbers on PointMass 3D with small target. The results are shown in
Figure 13, which demonstrate that our equivariant version is robust under all choices of warmup
episodes, even with little to none warmup. The non-equivariant TD-MPC is very sensitive to the
choice of warmup number.

Ablation on symmetry groups. We also do ablation study on the choice of discrete sub-
groups. We run experiments on Reacher Hard to compare 2D discrete rotation/dihedral groups:
C4, C8, C16, D16, using 1 warmup episode.
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Figure 15: Results for global reference frame on Reacher.

The results are shown in Fig 14. We find using groups larger than C8 does not bring additional
improvement on this specific task, Reacher Hard. In the main paper, we thus use D4, D8 to
balance the performance and computation time and memory use.

Comparing reference frames and state features. This experiment studies the balance between
reference frames and the choice of state features. In the theory section, we emphasize that kinematic
constraints introduce local reference frames.

Here, we study a specific example: Reacher (Easy and Hard). The second joint has angle θ2 and
angular velocity θ̇2 relative to the first link.

For local reference frame version, we use(
θ1, θ2, θ̇1, θ̇2, xg − xf , yg − yf

)
⇒

(
cos θ1, sin θ1, cos θ2, sin θ2, θ̇1, θ̇2, xg − xf , yg − yf

)
(58)

Thus, cos θ1, sin θ1 is transformed under standard representation ρ1 and cos θ2, sin θ2 is transformed
under trivial representation ρ0 ⊕ ρ0.

For the global reference frame version, we compute the global location of the end-effector (tip) by
adding the location of the first joint. Thus, the global position is transformed also under standard
representation now ρ1.

We show the results in Figure 15. Evaluation reward curves for non-equivariant and equivariant TD-
MPC over 5 runs using global frames. Error bars denote 95% confidence intervals. Non-equivariant
TD-MPC outperforms equivariant TD-MPC. Surprisingly, we find using global reference frame
where the second joint is associated with standard representation (equivariant feature, instead of
invariant feature) brings much worse results, compared to the local frame version in the main paper.
One possibility is that it is more important to encode kinematic constraints (e.g., the length of the
second link is preserved in cos θ2, sin θ2), compared to using equivariant feature.

G ADDITIONAL MATHEMATICAL BACKGROUND

We provide additional mathematical background on representation theory and its relation with our
theoretical results.

G.1 MATHEMATICAL EXPOSITION: PRINCIPAL G-BUNDLES AND LQR

Fiber bundles were introduced in the 1930s as a natural extension of the concept of tangent spaces
in differential geometry (Milnor & Stasheff, 1974). Conceptually, fiber bundles attach additional
information at each point on some underlying manifold. The connection between equivarient ma-
chine learning and the theory of fiber-bundles was first noted in (Cohen & Welling, 2016b; Weiler
et al., 2018a). For continuous state-action manifolds, the dynamics can be viewed as some additional
structure that depends on the state action manifold location. The results presented in the main text
can be understood within the context of fiber bundle theory.
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G.1.1 FIBER BUNDLE

We briefly comment on how Equivarient LQR can be understood in terms of fiber bundles. For a
full exposition on the theory of fiber-bundles, please see (KARSTOFT, 1992; Husemöller, 2013).

Formally, a smooth fiber bundle is specified by (E,B, F, π) where E and B are smooth manifolds
and F is a vector space. E is called the total space and B is called the base space. The vector space
V is called the fiber. The map π : E → B is a smooth subjection called the projection map. The
projection π must satisfy a trivialization condition (Husemöller, 2013).

Sections are generalization of vector fields. A smooth section s of a fiber bundle is a smooth map
s : B → E such that

∀x ∈ B, π(s(x)) = x

so that a section does not change the base point. One can think of a section s(x) as a vector with
origin at point x ∈ B.

G.1.2 PRINCIPAL BUNDLE

Intuitively, a G-Principal Bundle is fiber bundle with an additional symmetry on the total space. Let
G be a Lie group. Then, a smooth G-Principal Bundle is smooth fiber bundle that has continuous G
action on the total space G× E → E which preserves the fibers of E so that

∀x ∈ E, ∀g ∈ G, π(g · x) = π(x)

Sections of G-Principal Bundles are defined analogously to the vector bundle case. Specifically, a
section s is a map s : B → E such that

∀x ∈ B, π(s(x)) = x

Note that if s : B → E is a section then g · s : B → E is another section as

∀x ∈ B, ∀g ∈ G π(g · s(x)) = π(s(x)) = x

Thus, on G-Principal bundles we can speak of G-families of sections sg : G × B → E defined as
sg(x) = g · s(x). It is thus natural to consider equivalence classes of sections. These equivalence
classes correspond to flows related by G action.

More formally, the LQR system in consideration is a G-bundle with total space given by E = S×A
and base space B = B given by G-orbit representatives. The canonical projection π : S × A → B
is the map unto G-orbit representatives which satisfies

∀g ∈ G, Π(g · x) = Π(x)

The LQR dynamical matrices A and B can be viewed as sections of the G-bundle. By utilizing
equivarience methods, we only need to learn a section on the base space B as opposed to vector
fields on the total space E. This corresponds to learning equivalence classes of sections, instead of
individual sections.

34


	Introduction
	Problem Statement: Symmetry and Choice of Reference Frame
	Geometric Structure in MDP
	Related Topics

	Theory: Why is Symmetry Useful in Geometric MDPs?
	Properties of Geometric MDPs
	Linearizing Geometric MDPs: G-steerable Kernel Constraints

	Symmetry in Sampling-based Model-based RL Algorithms
	Components
	Integrating Symmetry
	Equivariance of MPC

	Evaluation: Sampling-based Planning
	Conclusion and Discussion
	Outline
	Additional Discussion
	Discussion: Symmetry in Decision-making
	Additional Related Work
	Limitations and Future Work
	Illustration and Examples of Geometric MDPs
	Continuous Group Actions for Geometric MDPs

	Mathematical Background
	Background for Representation Theory and G-steerable Kernels
	Group Definition

	Theory and Proofs
	Theorem 1 and 2: Equivariance in Geometric MDPs
	Linear-Quadratic Control: Linearizing Geometric MDPs
	Theorem 3: Equivariance of Linearized Dynamics
	Characteristics of G-Steerable Kernels
	Theorem 4: Symmetry in Solutions of LQR
	Illustration and Examples

	Algorithm Design
	Implementation Details and Additional Evaluation
	Implementation Details: Equivariant TD-MPC
	Experimental Details
	Additional Results

	Additional Mathematical Background
	Mathematical Exposition: Principal G-Bundles and LQR


