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A Formulas about Mutual Information1

In this section we introduce several formulas about mutual information that are used in this work.2

(P1) Positivity:

I(x; y) ≥ 0, I(x; y|z) ≥ 0

(P2) Chain rule:
I(xy; z) = I(y; z) + I(x; z|y)

(P3) Chain rule (Multivariate Mutual Information):

I(x; y; z) = I(y; z) − I(y; z|x)

B Theorems and Loss Computation3

B.1 Decomposition of I(xi; zi)4

Theorem B.1. Let zi be a representation of xi, then the mutual information between xi and zi can be
decomposed as:

I(xi, zi) = I(zi, xi|x j) + I(x j, zi).

Proof. Hypothesis (H1): zi is a representation of xi: I(x j; zi|xi) = 0.5

Based on the Hypothesis (H1) and Chain rule (P3), then we have6

I(xi; zi)
(P3)
= I(xi; zi|x j) + I(xi; zi; x j)

(P3)
= I(xi; zi|x j) + I(x j; zi) − I(x j; zi|xi)

(H1)
= I(xi; zi|x j) + I(x j; zi)

□7

B.2 Multi-View Redundancy and Sufficiency [2]8

Theorem B.2. Let xi, x j, and y be random variables with joint distribution p(xi, x j, y). Let zi be a
representation of xi, then:

I(xi; y|zi) ≤ I(xi; x j|zi) + I(xi; y|x j).

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Proof. Hypothesis (H1): zi is a representation of xi: I(y; zi|x jxi) = 0.9

Based on the Hypothesis (H1), Positivity (P1) and Chain rule (P3), we have10

I(xi; y|zi)
(P3)
= I(xi; y|zix j) + I(xi; x j; y|zi)

(P3)
= I(xi; y|x j) − I(xi; y; zi|x j) + I(xi; x j; y|zi)

(P3)
= I(xi; y|x j) − I(y; zi|x j) + I(y; zi|x jxi) + I(xi; x j; y|zi)

(P1)
≤ I(xi; y|x j) + I(y; zi|x jxi) + I(xi; x j; y|zi)

(H1)
= I(xi; y|x j) + I(xi; x j; y|zi)

(P3)
= I(xi; y|x j) + I(xi; x j|zi) − I(xi; x j|ziy)

(P1)
≤ I(xi; y|x j) + I(xi; x j|zi)

□11

Theorem B.3. Let xi be a redundant view with respect to x j for y. Any representation zi of xi that is
sufficient for x j is also sufficient for y, i.e.,

I(xi; x j|zi) = 0→ I(xi; y|zi) = 0.
Proof. Hypotheses (H1): zi is a representation of xi: I(y; zi|xi) = 0.12

(H2): xi is redundant with respect to x j for y: I(y; xi|x j) = 0.13

Using the results from Theorem B.2 I(xi; y|zi)
(Th.B.2)
≤ I(xi; y|x j) + I(xi; x j|zi)

(H2)
= I(xi; x j|zi)), we have14

I(xi; x j|zi) = 0→ I(xi; y|zi) = 0. □15

Theorem B.4. Let xi, x j and y be random variables with distribution p(xi, x j, y). Let zi be a
representation of xi, then

I(y; zi) ≥ I(y; xix j) − I(xi; x j|zi) − I(xi; y|x j) − I(x j; y|xi).
Proof. Hypothesis (H1): zi is a representation of xi: I(y; zi|xix j) = 0.16

I(y; zi)
(P3)
= I(y; zi|xix j) + I(y; xix j; zi)

(H1)
= I(y; xix j; zi)

(P3)
= I(y; xix j) − I(y; xix j|zi)

(P2)
= I(y; xix j) − I(y; xi|zi) − I(y; x j|zixi)

(P3)
= I(y; xix j) − I(y; xi|zi) − I(y; x j|xi) + I(y; x j; zi|xi)

(P3)
= I(y; xix j) − I(y; xi|zi) − I(y; x j|xi) + I(y; zi|xi) − I(y; zi|xix j)

(H1)
= I(y; xix j) − I(y; xi|zi) − I(y; x j|xi) + I(y; zi|xi)

(P1)
≥ I(y; xix j) − I(y; xi|zi) − I(y; x j|xi)

(Th.B.3)
≥ I(y; xix j) − I(xi; y|x j) − I(xi; x j|zi) − I(y; x j|xi)

□17

Corollary B.1. Let xi and x j be mutually redundant views for y. Let zi be a representation of xi that
is sufficient for x j. Then we have:

I(y; zi) = I(xix j; y).
Proof. Hypotheses (H1): zi and z j are mutually redundant for y: I(y; xi|x j) + I(y; x j|xi) = 0.18

(H2): zi is sufficient forx j: I(x j; xi|zi) = 0.19

Using the Theorem B.4 and Hypotheses (H1)-(H2), we have20

I(y; zi)
(Th.B.4)
≥ I(y; xix j) − I(xi; y|x j) − I(xi; x j|zi) − I(y; x j|xi)

(H1)
= I(y; xix j) − I(xi; x j|zi)

(H2)
= I(y; xix j)
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Since I(y; zi) ≤ I(y; xix j) is a consequence of the data processing inequality, we conclude that21

I(y; zi) = I(y; xix j). □22

B.3 Consistent Variational Lower Bound for SCMVC23

Consistent variational lower bound provides an efficient approximate posterior inference of the latent24

variable z⃗, yi given an observed value xi. We maximize the following formulation:25

max log qϕ(xi) = DKL(pθ (⃗z, yi|xi)||qϕ (⃗z, yi|xi)) + L(ϕ, θ; xi), (1)

as DKL(pθ (⃗z, yi|x(i))||qϕi (⃗z, yi|xi)) ≥ 0, then we have

log qϕi (xi) ≥ L(ϕi, θi; xi) = Epθi (z,y|x
i)[− log pθi (zi, yi|x(i)) + log qϕi (xi, zi, yi)],

Inspired by [1], which is better at generalization due to its emphasis on disentangled representations26

and robustness during training, L(ϕ, θ, xi) can be expressed as follows:27

max Li
2 = Epθi (⃗z,y|x

i)[log qϕi (xi |⃗z, yi)] − γDKL(pθi (⃗z, yi|xi)||qϕi (⃗z, yi)), (2)

As we assume that
qϕ(xi |⃗z, yi) = qϕ(xi |⃗z), pθ (⃗z, yi|xi) = pθ(yi |⃗z)pθ (⃗z|xi),

Epθ (⃗z,yi |xi)[log qϕi (xi |⃗z, yi)] is equivalent as28

Epθ (⃗z,yi |xi)[log qϕi (xi |⃗z, yi)] =
" ∑

y

pθ (⃗z, yi|xi) log qϕ(xi |⃗z)dzdx

=

" ∑
y

pθ(yi |⃗z)pθ (⃗z|xi) log qϕ(xi |⃗z)dzdx

=

"
pθ (⃗z|xi) log qϕ(xi |⃗z)dzdx

For DKL(pθ(z, yi|xi||qϕ(z, y)),29

DKL(pθ (⃗z, yi|xi||qϕ (⃗z, y)) =
∑

y

"
pθ (⃗z, yi|xi)ln

pθ (⃗z, yi|xi)
qϕ (⃗z, yi)

dzdx

=
∑

y

"
pθ(yi |⃗z)pθ (⃗z|xi)ln

pθ(yi |⃗z)pθ (⃗z|xi)
qϕ (⃗z|yi)qϕ(yi)

dzdx

= Ex∼ p̃(x)[Ez⃗∼p̃(⃗z|xi)[
∑

y

pθ(yi |⃗z)KL(pθ (⃗z|xi)||qϕ(⃗z|yi)) + KL(pθ(yi |⃗z)||qϕ(yi))]]

Given

q(⃗z|xi) =
1

d∏
t=1

√
2πσi

t
2(xi)

exp{−
1
2
||

zi − µ(xi)
σ(xi)

||2}

and30

q(⃗z|yi
j) =

1

(2π)
d
2

exp(−
1
2
||⃗z − µi

j||
2),

the objective function of SCMVC can be formulated as follows:31

max Li
con ↔ max

n∑
m=1

−|xi
m − x̃i

m|
2 +

k∑
j=1

γ(yi
m j(

d∑
t=1

logσ2
t (x)) −

1
2
||⃗z − µi

j||
2 + log(yi

m j))

where d is the dimension of hidden layer features, yv
i j (obtained from zv

i through softmax layer ) is32

the probability of instance i assigned to class j in view-v, and x̃i represents the reconstruction item33

through the decoder. For µi
j, which is initialized randomly, is the mean vector of the class of i-th view.34
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B.4 Bayes Error Rates for Arbitrary Learned Representations35

Theorem B.5. The Bayes Error Rates for Arbitrary Learned Representations can be minimized by36

maximizing Li j
c on + βLi

su f , formally:37

max Li
con + βL

i j
su f ↔ min p̄e. (3)

Proof. Our reparameterization strategy transforms zi into a normal distribution that maximizes
H(n)
θ∗ (zi). Moreover, we obtain consistent information among views, as expressed in consistent lower

bound, which minimizes Ĥ(n)
θ∗ (zi|x j). As we have Î(n)

θ∗ (zi; x j) = Ĥ(n)
θ∗ (zi) − Ĥ(n)

θ∗ (zi|x j), the resulting
Î(n)
θ∗ (zi; x j) is maximized. As for minimizing I(zi; xi|x j,T ), given Proof of the sufficient representation

lower bound in Section 3.3 the conclusion can be stated as follows:

max−DKL(p(zi|xi), p(z j|x j))↔ min I(zi; xi|x j,T ).

Overall, the Bayes Error Rates for Arbitrary Learned Representations are minimized:38

max Li
con + βL

i j
su f ↔ min p̄e. (4)

□39

C Sufficient Representation Loss40

Based on the assumption that {zi}vi=1 follows a Gaussian distribution, DKL(p(zi|xi), p(z j|x j)) can be41

directly optimized via minimizing the KL divergence:42

DKL(p(zi|xi), p(z j|x j)) =
1
2

[tr((Σi)−1
Σ j) + (µi − µ j)T(Σi)−1(µi − µ j) − d + ln

|Σi|

|Σ j|
], (5)

where tr stands for the trace of a matrix defined as the sum of the diagonal elements of the matrix,43

Σi, Σ j are the diagonal matrices where the diagonal elements are the variances of zi and z j in each44

dimension respectively, and d is the dimension of embeddings {zi}vi=1. The mutual information45

between the two representations can be maximized by using any sample-based differentiable mutual46

information lower bound like InfoNCE. In our methods we found that the predictive information47

term didn’t play a role in improving final clustering results. As we focus on discarding superfluous48

information to finetune the model, we discard the signal-relevant term during fintuning. It’s interesting49

to further explore this discovery in the future work.50

D More Details of the Proposed Methods51

D.1 Implementation Details52

We use the convolutional autoencoder (CAE) for each view to learn embedded features. The encoder is53

Input-Conv32
4 -Conv64

4 -Conv64
4 -Fc200 and the decoders are symmetric with the corresponding encoders.54

For the comparing methods, we use open-source codes with the settings recommended by the authors.55

For all datasets an encoder and a decoder are shared for all views. The experiments were conducted56

utilizing a Windows PC installed with an Intel(R) Core(TM) i5-12600K CPU@3.69 GHz, 32.057

GB RAM, and GeForce RTX 3070ti GPU (8 GB cache). All baselines were tuned to their highest58

performance according to the respective papers to ensure fair comparison. We set β and γ to 0.159

for all experiments. To better understand our approach, we provide the framework of SCMVC and60

SUMVC in Figs. 1-2.61

D.2 Visualization of Learned Generative Models62

We show the reconstructed pictures and sampled pictures generated on the Multi-Mnist and Multi-63

COIL-20 respectively (Figs. 3-5). We utilize the trained model, set the batch size to 32, and display64

the images of each view for three epochs.65
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Figure 1: The framework of SCMVC. For the v-th view, xv denotes the input data, zv denotes the
embedded features, f v

θv
and gv

ϕv
are the encoder and the decoder of v-th view respectively.

Figure 2: The framework of SUMVC. We utilize a collaborative training approach whereby each
view sequentially serves as a guide to facilitate other views’ learning process.

D.3 Limitation of the Proposed Methods66

While our proposed methods have demonstrated promising results in addressing the multi-view67

clustering research problem and have provided valuable insights into strengthening consistency68

and decreasing view redundancy, it is important to acknowledge several limitations that should be69

considered. In particular, our model does not perform well on datasets with particularly strong70

heterogeneity between views, such as huge differences in dimensions of different views. This is71

because variational inference assumes that all samples in the data come from a common probability72

distribution. However, this assumption may not hold true when the data is highly heterogeneous,73

and the distribution may exhibit a range of subgroups and variations. In such cases, the use of74

variational inference may not be accurate or effective. To the best of our knowledge, this issue75

remains unexplored within the existing literatures. In the future, we will consider employing76

ensemble variational inference or gaussian process mixture model as a potential solution to address77

this problem and achieve a more robust model.78
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(a) view-1_1 (b) view-1_2 (c) view-1_3

(d) view-2_1 (e) view-2_2 (f) view-2_3

Figure 3: The reconstructed pictures generated on Multi-Mnist.

(a) view-1_1 (b) view-1_2 (c) view-1_3

(d) view-2_1 (e) view-2_2 (f) view-2_3

Figure 4: The reconstructed pictures generated on Multi-COIL-20.

(a) M_1 (b) M_2 (c) M_3

(d) C_1 (e) C_2 (f) C_3

Figure 5: The sampled pictures generated on the Multi-Mnist and Multi-COIL-20.
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