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Abstract

Many supervised learning problems involve high-dimensional data such as images,
text, or graphs. In order to make efficient use of data, it is often useful to leverage
certain geometric priors in the problem at hand, such as invariance to translations,
permutation subgroups, or stability to small deformations. We study the sample
complexity of learning problems where the target function presents such invariance
and stability properties, by considering spherical harmonic decompositions of such
functions on the sphere. We provide non-parametric rates of convergence for kernel
methods, and show improvements in sample complexity by a factor equal to the
size of the group when using an invariant kernel over the group, compared to
the corresponding non-invariant kernel. These improvements are valid when the
sample size is large enough, with an asymptotic behavior that depends on spectral
properties of the group. Finally, these gains are extended beyond invariance groups
to also cover geometric stability to small deformations, modeled here as subsets
(not necessarily subgroups) of permutations.

1 Introduction

Learning from high-dimensional data is known to be statistically intractable without strong assump-
tions on the problem. A canonical example is learning Lipschitz functions, which generally requires a
number of samples exponential in the dimension due to the curse of dimensionality (e.g., [31]). Many
high-dimensional machine learning problems involve highly structured data such as images, text, or
graphs, and may exhibit invariance to certain transformations of the input data, such as permutations,
translations or rotations, and near invariance to small deformations. More precisely, if X is the
high-dimensional data domain, and G is a set of transformations σ : X → X , the learning task can be
alleviated if one knows in advance that the target function f varies smoothly under transformations in
G: |f(σ · x)− f(x)| is uniformly small over x ∈ X for σ ∈ G.

To further motivate this property, it is useful to view the data domain X as a space of signals
X = L2(Ω;R) defined over a geometric domain Ω, such as a 2d grid. The set of transformations G
can then be articulated in terms of Ω rather than X , a much simpler geometric object, and then lifted
into X by composition: if σ : Ω → Ω, and x ∈ X then (σ · x)(u) := x(σ−1(u)) for every u ∈ Ω.
The smoothness to transformations can thus be interpreted as a form of geometric stability.

In this paper, we quantify the sample complexity gains brought by geometric stability. Concretely,
we consider target functions f defined on the sphere X = Sd−1 in d dimensions with finite L2(Sd−1)
norm. In this case, we view the geometric domain as the discrete 1d grid Ω = [1, . . . , d], and
consider geometric transformations G as subsets of the symmetric group of permutations of d
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elements. Given a set G (not necessarily a group), we consider the smoothing operator given
by SGf(x) = 1

|G|
∑
σ∈G f(σ · x) for f ∈ L2(Sd−1), and assume that our target function f is

geometrically stable, in the sense that f = SGg for some g ∈ L2(Sd−1). In words, the smoothing
operator SG replaces the prediction f(x) by the average over transformations of x. In particular,
functions which are invariant under the action of σ ∈ G, namely

f(σ · x) = f(x), σ ∈ G, x ∈ Sd−1, (1)
are also stable, with f = SGf .

Building on the recent work [23], we proceed by studying harmonic decompositions of such functions
using spherical harmonics [14], which generalize Fourier series on the circle to higher dimensions.
This allows us to obtain rates of approximation for invariant and geometrically stable functions with
varying levels of smoothness, and to study the generalization properties of invariant kernel methods
using kernels defined on the sphere. Specifically, our main contributions are:

• By comparing spectral properties of usual kernels on the sphere with invariant ones, we find that
the latter provide improvements in sample complexity by a factor of the order of the size of the
group when the sample size is large enough (Section 3).

• We study how this improvement factor varies with sample size, in terms of the structure of the
group and on spectral properties of the permutation matrices it contains (Section 4).

• We extend the invariance analysis to geometrically stable functions, establishing similar gains in
sample complexity that depend on the size of the transformation subset (Section 5).

Our proofs rely on comparing the dimension of invariant and non-invariant spherical harmonics at
a given degree, and showing that their ratio decays to the inverse group size as the degree tends to
infinity. In contrast to [23], we consider the dimension to be fixed and study non-parametric rates of
convergence for potentially non-smooth target functions and general groups of permutations, while
they consider a different regime in high dimension and focus on invariance to translation groups.

Related work. Invariance and deformation stability have been analysed using convolutional neural
network-type architectures such as the scattering transform [22, 7], or convolutional kernels [6,
20]. While these works characterise the stability in terms of the dyadic structure of convolutional
filters (such as wavelets), they do not cover a statistical analysis of sample complexity. Similarly,
models of compositional functions such as those in [11, 24, 27] study the benefit of hierarchical
representations with local connectivity for approximation, while [19, 21] study benefits of local
connectivity with optimization-based algorithms; yet these works do not consider invariance or
stability. [23] studies similar benefits of invariance but in a different, high-dimensional, regime where
only polynomials can be learned, focusing on translation groups, while we consider arbitrary groups
or sets of permutations in fixed dimension. [15] also sudies benefits of group invariance, but focuses
on linear models, and only considers interpolating estimators. [30] study general generalization
bounds of invariant classifiers that scale exponentially with the dimension, which would be pessimistic
under our assumptions. [10] study benefits of equivariant kernels in structured prediction problems.
[13] studies generalisation advantages of CNNs over fully-connected models, while our focus is on
non-parametrics.

2 Preliminaries

In this section, we describe our setup and provide some background on harmonic decompositions on
the sphere, and how these are affected by invariance.

Statistical learning setup. We consider a supervised learning problem where the data distribution
ρ on input-label pairs (x, y) is such that x ∈ Sd−1 and E[y|x] = f∗(x) for some target func-
tion f∗in L2(Sd−1). For simplicity, we will assume that x is uniformly distributed on the sphere, and
denote the uniform measure on Sd−1 by dτ . We consider a regression setup with L2 risk given by

R(f) = E(x,y)∼ρ
[
(f(x)− y)2

]
.

For a given estimator f̂n based on n samples from ρ, the goal is then to obtain generalization bounds
as a function of n on the excess risk

E[R(f̂n)]−R(f∗) = E[‖f̂n − f∗‖2L2(dτ)], (2)
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where the expectation is over the n samples. Such bounds are well-studied for various classes of target
functions f∗ such as smoothness classes, and estimators such as kernel ridge regression. These are
typically studied through harmonic decompositions of f∗ and of a kernel function in appropriate L2

bases, which then relate function regularity and decays of Fourier coefficients.

Harmonic analysis on the sphere. When considering functions in L2(dτ), an appropriate choice
of orthonormal basis is that of spherical harmonic polynomials [1, 14]. More precisely, de-
note {Yk,j}N(d,k)

j=1 denote an orthonormal basis of the space Vd,k of spherical harmonics of degree k,
i.e., homogeneous harmonic polynomials of degree k, where N(d, k) = 2k+d−2

k

(
k+d−3
d−2

)
. Then, the

collection {Yk,j : k ≥ 0, j = 1, . . . , N(d, k)} forms an orthonormal basis of L2(dτ), so that any
function f ∈ L2(dτ) may be written

f(x) =
∑
k≥0

N(d,k)∑
j=1

ak,jYk,j(x), (3)

with
∑
k

∑N(d,k)
j=1 a2

k,j <∞. Similarly, any dot-product kernel K(x, x′) = κ(〈x, x′〉) on the sphere
may be written

κ(〈x, x′〉) =
∑
k≥0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′), (4)

where µk is given by µk = ωd−2

ωd−1

∫ 1

−1
κ(t)Pd,k(t)(1−t2)(d−3)/2dt. Here, ωp−1 is the surface measure

of the sphere in p dimensions, and Pd,k are Legendre or Gegenbauer polynomials of degree k in d
dimensions (normalized with Pd,k(1) = 1),which form an orthogonal basis of L2([−1, 1], dw),
with dw(t) = (1− t2)(d−3)/2dt. When the kernel K is positive definite and is used in the context of
kernel ridge regression with data uniformly distributed on the sphere, then the µk also correspond
to the eigenvalues of the covariance operator. These eigenvalues and their decay then control the
statistical properties of the kernel ridge regression estimator [8].

Spherical harmonics and group-invariant functions. In order to describe harmonic decomposi-
tions of functions satisfying the group invariance property (1) for a discrete group G, we follow [23]
and define the symmetrization operator

SGf(x) =
1

|G|
∑
σ∈G

f(σ · x). (5)

This operator acts as a projection from L2(dτ) to a subset thereof which contains invariant functions.
It can be shown that the spaces Vd,k of spherical harmonics of degree k are stable by SG [23],
and we may then define an orthonormal basis of V d,k := SGVd,k consisting of invariant spherical

harmonics {Y k,j}N(d,k)
j=1 . We then have the following lemma.

Lemma 1 (Representation of projection [23]). For any k ≥ 0, we have

γd(k) :=
N(d, k)

N(d, k)
=

1

|G|
∑
σ∈G

Ex [Pd,k(〈σ · x, x〉)] . (6)

The quantity γd(k) will play an important role in determining the gains in sample complexity brought
by invariance. We will show in Section 4 that γd(k) converges to 1/|G| for large k, with an asymptotic
behavior that is governed by spectral properties of the elements of the group.

3 Sample Complexity of Invariant Kernels

We begin our study by focusing on the invariant case. In this section, we study the sample complexity
of learning invariant functions, by considering kernel ridge regression estimators and providing non-
parametric rates of convergence that illustrate the gains achievable with invariant kernels compared
to non-invariant ones.

3



Kernel ridge regression (KRR) and invariant kernels. For a positive definite kernel K with
RKHSHK , we consider the KRR estimator f̂λ given by

f̂λ := arg min
f∈HK

1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2HK . (7)

We consider the following kernels, which we assume positive definite, given for x, x′ ∈ Sd−1 by

K(x, x′) = κ(〈x, x′〉), KG(x, x′) =
1

|G|
∑
σ∈G

κ(〈σ · x, x′〉), (8)

with κ(u) ≤ 1. A common example for κ is the arc-cosine kernel [9], which arises from infinite-width
shallow neural networks with ReLU activations. The following integral operator defined on L2(dτ)
and its eigen decomposition play an important role for the statistical and approximation properties of
kernel methods:

TKf(x) =

∫
K(x, x′)f(x′)dτ(x′). (9)

We now show that its spectral properties are closely related for K and KG.
Lemma 2 (Spectral properties of K and KG.). There exists a basis of spherical harmonics in which
the operators TK and TKG are jointly diagonalized. They admit the same eigenvalues µk as in (4),
with multiplicity N(d, k) for TK and N(d, k) for TKG .

The decay of the eigenvalues µk controls the smoothness of functions in the RKHS, for instance
when µk decays polynomially, TK behaves similarly to powers of the Laplacian on the sphere, leading
to functional spaces similar to Sobolev spaces. For the example of the arc-cosine kernel, µk decays
as k−d−2. leading to an RKHS containing functions with d/2 + 1 bounded derivatives [2].

Approximation error. The approximation error of kernel methods is often controlled by the
following quantity (e.g., [3, 12]):

AH(λ, f∗) = inf
f∈H
‖f − f∗‖2L2(dτ) + λ‖f‖2H, (10)

where f∗ is a target function in L2(dτ), andH is a given RKHS. In particular, if f∗ is smooth enough
so that f∗ ∈ H, then we have AH(λ, f∗) ≤ λ‖f∗‖2H, while if f∗ /∈ H, e.g., if f∗ is only Lipschitz,
then AH(λ, f∗) typically grows much faster with λ. We now show a useful result for invariant targets,
showing that in this case the approximation error is the same for the kernels K and KG.
Lemma 3 (Approximation error for invariant functions.). If f∗ is invariant to the group G, so
that f∗ = SGf

∗, then we have

AHK (λ, f∗) = AHKG (λ, f∗). (11)

Degrees of freedom. The above result suggests that any gains of using KG instead of K for
learning invariant functions should come from estimation rather than approximation error. The
estimation error of ridge rigression estimators is typically controlled with the following quantity,
often called degrees of freedom or effective dimension (e.g., [3, 18]):

NK(λ) = Tr(ΣK(ΣK + λI)−1) =
∑
m≥0

λm
λm + λ

, (12)

where ΣK = Ex [K(x, ·)⊗HK K(x, ·)] is the covariance operator and (λm)m≥0 its eigenvalues,
taking multiplicity into account, which are the same as those of TK when data is distributed according
to dτ [8]. We then obtain the following simple result relating NKG to NK .
Lemma 4 (Degrees of freedom for K and KG.). For any ` ≥ 0, we have

NKG(λ) ≤ D(`) + νd(`)NK(λ),

where D(`) :=
∑
k<`N(d, k) and νd(`) := supk≥` γd(k), with γd given in (6).

This suggests that for a fixed `, the effective dimension of KG is controlled by a factor νd(`) times
that of K, up to a finite fixed dimension D(`). For difficult non-parametric problems which require
small λ at large sample sizes, the second term will tend to dominate, so that having a small νd(`) may
help reduce sample complexity compared to using the vanilla kernel K, an observation which we
make rigorous below.
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Generalization bound for KRR. Armed with the above lemmas on approximation error and
degrees of freedom, we now study generalization of KRR under the following assumptions:

(A1) capacity condition: NK(λ) ≤ CKλ−1/α with α > 1.
(A2) source condition: there exists r > α−1

2α and g ∈ L2(dτ) with ‖g‖L2(dτ) ≤ Cf∗ such
that f∗ = T rKg.

(A3) invariance: f∗ is G-invariant.
(A4) problem noise: ρ is such that Eρ[(y − f∗(x))2|x] ≤ σ2

ρ.

The first, second, and fourth conditions are commonly used in the kernel methods literature [8]. (A1)
characterizes the “size” of the RKHS, and is satisfied when the eigenvalues λm of TK decay as k−α.
On the sphere, α = 2s

d−1 corresponds to having s bounded derivatives, e.g., we have s = d/2 + 1 for
the arc-cosine kernel. The parameter r in (A2) defines the regularity of f∗ relative to that of the kernel:
r = 1/2 corresponds to f∗ ∈ HK , while larger (resp. smaller) r implies f∗ is more (resp. less)
smooth. The condition on r is needed for our specific bound, which is based on [3, Proposition 7.2],
but may be bypassed using different algorithms or analyses [17, 26]. We now present our bound on
the excess risk.
Theorem 5 (Generalization of invariant kernel.). Assume (A1-4). Let νd(`) be as in Lemma 4, or an
upper bound thereof, and assume ν0 := inf`≥0 νd(`) > 0.

Let n ≥ max
{
‖f∗‖2∞/σ2

ρ, (C1/ν0)
α

2αr+1−α
}

, and define

`n := sup{` : D(`) ≤ C2νd(`)
2αr

2αr+1n
1

2αr+1 }. (13)

We then have, for λ = C3(νd(`n)/n)α/(2αr+1),

E[R(f̂λ)−R(f∗)] ≤ C4

(
νd(`n)

n

) 2αr
2αr+1

. (14)

In the same setting, KRR with kernelK and λ = C3n
−α

2αr+1 achieves E[R(f̂λ)−R(f∗)] ≤ C4n
−2αr
2αr+1 ,

where C3, C4 are the same constants as for the invariant kernel. Here, the constants C1:4 only depend
on the parameters of assumptions (A1-4).

The theorem shows that the generalization error for the invariant kernel behaves as if it effectively had
access to n/νd(`n) samples, so that νd(`n) plays the role of an effective inverse sample complexity
gain at sample size n. Note that νd(`n) ≤ 1 and νd is decreasing, so that we always have some
improvement in sample complexity, and this gets better when `n is large. In particular, we show in
Section 4 that γd(k), and hence νd(`) converge to 1/|G|, so that asymptotically the gain in sample
complexity can be as large as the size of the group, which in some cases may grow exponentially in d.

Asymptotic estimates of the effective gain νd(`n). We now study the asymptotic behavior of the
effective gain factor νd(`n) when n → ∞, by considering a case where an asymptotic equivalent
of νd(`) in ` is known:

νd(`) ≈ ν0 + c`−β .

In Section 4, we obtain such asymptotics with ν0 = 1/|G|, and a rate β that depends on spectral
properties of the elements of G, as well as upper bounds with possibly faster rates β at the cost of
larger ν0. In Appendix B.5, we show that we may leverage this to obtain the following asymptotic
estimate of the effective gain νd(`n):

νd(`n) ≤ ν0 + C min
{

(ν2αr
0 n)

−β
(d−1)(2αr+1) , n

−β
(d−1)(2αr+1)+2βαr

}
. (15)

Notice that when β � d, both exponents of n display a curse of dimensionality, but this curse goes
away as β grows. Note also that the first exponent yields a faster rate, but one that is only achieved
for large n due to the factor ν2αr

0 , which may be small for large groups.

Curse of dimensionality and optimality. Note that the bound obtained in Theorem 5 is still cursed
for an invariant target f∗, in the sense that the exponent in the rate is of order 1/d when f∗ is only
assumed to be Lipschitz. Indeed, a Lipschitz assumption on f∗ corresponds to taking r and α such
that 2αr ≈ 2/(d− 1), which makes the source condition (A2) similar to a bound on ‖∇f∗‖L2(dτ).
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This then leads to a cursed rate n−2/(2+d−1), raising the question of whether this can be improved.
We note that since γd(k) = Ω(1/|G|) (as we show in Section 4), the asymptotic decays (as a function
of k) of the coefficients of f∗ and of the eigenvalues of TKG are similar to those for the non-invariant
case, which implies that these rates cannot be improved (see, e.g., [8]). In Appendix B.6, we show that
our bounds with an improvement in sample complexity by a factor |G| are asymptotically minimax
optimal, so that this may be the best we can hope for under our assumptions.

Comparison to [23]. The work [23] also consider non-parametric learning of invariant functions
with similar kernels. They consider a high-dimensional regime where d→∞ with sample sizes in
polynomial scalings n ≈ ds for some s. They then show that if γd(k) = Θd(d

−α) as d → ∞, for
some α > 0 (which they call degeneracy), then the invariant kernel can learn polynomials of degree `
with n ≈ d`−α while the non-invariant kernel needs n ≈ d` samples. In some cases, such as the
cyclic group, [23] show α = 1 and hence the gain of a factor dα = d is equal the size of the group,
but in other cases dα may be smaller than the group size. For groups of size exponential in d, the
analysis in [23] may only achieve polynomial improvements by factors dα, in contrast to our analysis,
which considers the different regime of fixed d and n→∞, and may lead to gains by exponential
factors if |G| is large, at least asymptotically.

4 Counting Invariant Polynomials

In this section, we study the asymptotic behavior of γd(k), given in (6), when k → ∞ and the
dimension d and the group G are fixed. This quantity can be seen as capturing the fraction
of orthogonal spherical harmonics of degree k that are invariant to G, and helps us control the
possible gains in sample complexity for learning invariant functions, as described in Section 3.
Denoting γd,σ(k) := Ex [Pd,k(〈σ · x, x〉)], we will show that γd,σ(k) vanishes for large k for
any σ that is not the identity. This implies that γd(k) converges to 1/|G|, since we trivially
have γd,Id(k) = Pd,k(1) = 1. We further characterize the asymptotic behavior of γd(k) in terms of
properties of the group elements. In the following we consider the case of G being a subgroup of Sd,
the groups of permutations on d elements.

Decay of γd,σ(k). Our main insight is to leverage the fact that when σ is not the identity, then the
random variable zσ = 〈σ ·x, x〉 when x ∼ τ admits a density on [−1, 1], which we denote qσ . This by
itself will prove sufficient to show that γd,σ(k) decays for large k, thanks to the oscillatory behavior
of Pd,k. We can then further characterize its asymptotic behavior by studying the singularities of qσ ,
leveraging the seminal work of Saldanha and Tomei [28]. In particular, these depend on spectral
properties of the matrix associated to σ. We summarize this in the next proposition.

Proposition 6 (Asymptotic behavior of γd,σ(k).). Let Aσ be the matrix associated to σ 6= Id, that is
such that σ · x = Aσx. Denote by Λσ the set of (complex) eigenvalues of Aσ, and by mλ the multi-
plicity of λ ∈ Λσ. When k → ∞, we have the asymptotic equivalent γd,σ(k) =

∑
λ∈Λσ

γd,σ,λ(k),
where

γd,σ,λ(k) .

{
k−d+mλ + o(k−d+mλ) , if λ ∈ {±1} ,
k−d+mλ+4 + o(k−d+mλ+4) , otherwise,

(16)

where . hides constants that may depend on d, σ and λ.

Every permutation σ ∈ Sd (where Sd is the symmetric group of permutations) can be decomposed
into cycles on disjoint orbits; the eigenvalues λ (and their multiplicities mλ) of a matrix Aσ admit
an interpretation based on such decomposition. Indeed, since Aσ is unitary, its eigenvalues are
of the form λ = e2πiθ, and one can verify that necessarily θ = p

q ∈ Q. Furthermore, assuming
w.l.o.g. that q is prime, such eigenvalue appears whenever σ contains a cycle of length a multiple of q.
In particular, the multiplicity of the eigenvalue 1, m1, corresponds to the total number of cycles in
such a decomposition, which we will denote by c(σ). Then γd,σ(k) can be controlled as follows.

Corollary 7 (Decay of γd,σ(k)). Let σ 6= Id, and let c(σ) denote the number of cycles in σ. Then,

γd,σ(k) .

{
k−d+c(σ) , if c(σ) > d+3

2 ,

k−d/2+6 , otherwise .
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Decay on specific subgroups. We may now use Corollary 7 to study the asymptotic behaviour of
γd(k) as k →∞ for various choices of subgroups of Sd, using the following result.
Corollary 8 (Upper bounds with permutation statistics). Let G be a subset of Sd and define
ζ(G, s) := |{σ ∈ G : c(σ) > s}| for s ∈ [d− 1]. Then, for any s, we have

γd(k) ≤ ζ(G, s)

|G|
+O

(
k−d+max{s, d/2+6}

)
, (17)

with equality if s is such that ζ(G, s) = 1.

Note that such an upper bound immediately yields a similar upper bound for νd(`) as defined in
Section 3, which then controls the effective gain in sample complexity in Theorem 5. Indeed, (17)
implies that there is a constantC such that for all k > 0, γd(k) ≤ ζ(G, s)/|G|+Ck−d+max{s,d/2+6}.
Since this upper bound decreases with k, we obtain

νd(`) ≤
ζ(G, s)

|G|
+ C`−d+max{s,d/2+6}.

In the context of the generalization bound of Theorem 5 and our heuristic derivation thereafter, the
effective gain in sample complexity is then governed an upper bound on νd(`n) as in (15), with
asymptotic gain ν0 = ζ(G,s)

|G| and rate β = d−max{s, d/2 + 6}.
Example 9 (Translations). Let G = Cd be the cyclic group on d elements. Then it holds

γd(k) =
1

d
+O

(
k−d/2+6

)
.

This follows by noticing that every translation σ (but the identity) satisfies c(σ) ≤ d/2. This leads to
an asymptotic gain ν−1

0 = d and β = d/2− 6 leads to fast convergence in (15) even when d is large.
Example 10 (Local translations). Let d = s · r (with r, s ≥ 5 for simplicity), and consider the group
composed of traslations over r blocks of coordinates of size s; i.e., the block-cyclic group

G = {σ : σ = σ(1) ◦ · · · ◦ σ(r)}
where each σ(i) is a translation over the set {(i− 1)s+ 1, . . . , is}, for i ∈ [r]. Then it holds

γd(k) =
1

sr
+O

(
k−s/2+1

)
. (18)

This follows by noticing that every local translation σ (but the identity) satisfies c(σ) ≤ (d−s) +s/2.
Here the asymptotic gain is ν−1

0 = sr = sd/s, which can be exponential in d when s is small. We
have β = s/2 − 1, which leads to much slower convergence than the translation case, unless s is
large and of order d.
Example 11 (Full permutation group). For the case of G = Sd, we can split the group based on the
value of Fix(σ), the number of elements fixed by a permutation σ. Denote

ξ(G, s) := |σ ∈ G : Fix(σ) > s| =
d∑

j=s+1

(
d

j

)
!(d− j) .

for s ∈ [d− 1], where !k denotes the k-th subfactorial. Then we have

γd(k) ≤ ξ(G, s)

d!
+O

(
k−d/2+max{s/2, 6}

)
,

with equality for s = d − 1. This follows from the fact that c(σ) ≤ Fix(σ) + (d − Fix(σ))/2. In
particular, it follows

γd(k) ≤ 2

(s+ 1)!
+O

(
k−d/2+max{s/2, 6}

)
.

When considering the full group, we may get a large asymptotic improvement of order ν−1
0 = |G| = d!

in sample complexity, but a slow convergence with β = −1 as per Corollary 8 (assuming d large
enough). Using different values of s may yield different upper bounds with faster convergence
rates β = d/2−max{s/2, 6}, but smaller asymptotic gains in sample complexity, given by ν−1

0 =
(s+1)!/2. For instance, with s = d/2 and d large enough, we have β = d/4, leading to a potentially
fast convergence rate in 15 towards a sample complexity gain that is still significantly large, of
order (d/2 + 1)!/2.

Overall, these examples show that the size of the group determines the best possible improvement
in sample complexity, while the spectral properties of its permutations dictate how quickly we may
achieve these gains.
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5 Beyond Group Invariance: Geometric Stability

In this section, we study gains in sample complexity when the target function f∗ is not fully invariant
to a group, but may be stable under small geometric changes on the input. We formalize this by
considering a similar averaging operator SG, but we allow G to be a generic set of permutations
instead of a group, and allow for a weighted average:

SGf(x) :=
∑
σ∈G

h(σ)f(σ · x), (19)

where h(σ) ≥ 0 for all σ ∈ G and
∑
σ∈G h(σ) = 1. We assume thatG is “symmetric”, i.e., σ−1 ∈ G

when σ ∈ G and h(σ−1) = h(σ), so that SG is self-adjoint. In this case, images of SG are not
invariant functions, but may nevertheless exhibit a form of “local” stability to small perturbations
of the input data. For instance, if G consists of local translations by at most a few pixels, or if G
consists of all translations but h is localized around the identity, then applying SG yields functions
that are stable to local translations. We may also consider a more structured set G of permutations
that resemble local deformations, consisting of both a global translation as well as different local
translations at different scales, as we describe below.

Spectral properties of SG. Note that in this setup, we no longer have that SG is a projection,
however we may still view it as a smoothing operator, which attenuates certain harmonics that are
“less” invariant than others. The next lemma shows related spectral properties to the invariant case.

Lemma 12 (Spectral properties of SG). There exists a basis of spherical harmonics Y k,j , for k ≥ 0,
and j = 1, . . . , N(d, k), in which the operator SG is diagonal, with eigenvalues λk,j ≥ 0. In analogy
to Lemma 1, we have

γd(k) := N(d, k)−1

N(d,k)∑
j=1

λk,j =
∑
σ∈G

h(σ)Ex [Pd,k(〈σ · x, x〉)] . (20)

We also define νd(`) := supk≥` γd(k).

Sample complexity of stable kernel. In analogy to Section 3, we may consider a stable kernel

KG(x, x′) =
∑
σ∈G

h(σ)κ(〈σ · x, x′〉). (21)

Then, it is easy to check that the integral operator of KG is given by TKG = SGTK . In contrast to
Section 3, we no longer have that the approximation errors of K and KG are the same in general
on “geometrically stable" functions, since the notion is not precisely defined. Nevertheless, we may
represent favorable targets f∗ as those whose coefficients decay similarly at each frequency k to those
of SG, by viewing it as a smoothing of some L2 function g∗, i.e., f∗ = SrGg

∗ for some exponent r.
With this in mind, we make the following assumptions, replacing assumptions (A1-3) of Section 3.

(A5) capacity: the eigenvalues (ξm)m≥0 of TK satisfy ξm ≤ C(m+ 1)−α.

(A6) source condition: there exists r > α−1
2α and g ∈ L2(dτ) with ‖g‖L2(dτ) ≤ Cf∗ such

that f∗ = SrGT
r
Kg.

Note that (A6) corresponds to a standard source condition with the kernel KG (since T rKG =
SrGT

r
K), yet it reveals how KG jointly performs smoothing on the sphere, through TK , as well as on

permutations through SG. While these two forms of smoothing appear “entangled” in this assumption,
one may balance them by choosing different levels of smoothing in the kernel function κ, or by
averaging multiple times in (21). Assumption (A5) is needed for obtaining a variant of Lemma 4,
and implies (A1) with CK ∝ C1/α. We then obtain the following generalization bound.

Theorem 13 (Generalization with geometric stability.). Assume (A4-6), and assume ν0 :=

inf`≥0 νd(`) > 0. Let n ≥ max(‖f∗‖2∞/σ2
ρ, (C1/ν0)

1/(2αr+1−α)
), and define

`n := sup{` : D(`) ≤ C2νd(`)
2r

2αr+1n
1

2αr+1 }. (22)
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We then have, for λ = C3(νd(`n)1/α/n)α/(2αr+1),

E[R(f̂λ)−R(f∗)] ≤ C4

(
νd(`n)1/α

n

) 2αr
2αr+1

. (23)

In the same setting, KRR with kernel K achieves a similar bound with νd(`n)1/α replaced by 1, but
with a possibly smaller constant C4. Here, the constants C1:4 only depend on the parameters of
assumptions (A4-6).

Note that the obtained generalization bound is very similar to Theorem 5, but with a factor νd(`n)1/α

instead of νd(`n). This is due to the fact that in contrast to the invariant case, where γd(k) in (6) can
help precisely control the number of invariant spherical harmonics, in this case γd(k) as computed
in (20) can only give information about the sum of the eigenvalues λk,j at frequency k, which may
be insufficient to precisely estimate the gains in effective dimension. The gap between these two
factors is relatively small for kernels with slow decays (α ≈ 1) but can be more pronounced for
smooth kernels with fast decays (large α). Note also that the different source condition (A6) leads to
a different approximation error, and thus to an approximation-estimation trade-off related to stability,
which does not appear in the group-invariant case. More precise estimates of the decays of λk,j may
help characterize this tradeoff more formally, and we leave this question to future work. As in (15),
we may derive an estimate of νd(`n), namely if νd(`) ≈ ν0 + c`−β , then we have

νd(`n) ≤ ν0 + C min
{

(ν2r
0 n)

−β
(d−1)(2αr+1) , n

−β
(d−1)(2αr+1)+2βr

}
. (24)

Deformation-like stability. For inputs x defined as signals x ∈ L2(Ω) over a continuous domain
Ω ⊆ Rs, s = 1, 2, the action of ‘small’ diffeomorphisms ϕ : Ω → Ω as (ϕ · x)(u) = x(ϕ−1(u))
is a powerful diagnostic of performance of trainable CNNs [25], and a key guiding principle for
scattering representations [22, 7]. In these works, the basic deformation cost is measured as ‖ϕ‖ :=
supu ‖∇ϕ(u) − I‖. We instantiate an equivalent of small deformations in our finite-dimensional
setting as follows.

Φε := {σ ∈ Sd : |σ(u)− σ(u′)− (u− u′)| ≤ ε|u− u′|} , (25)

where the differences are taken modulo d. For ε = 0, we recover the translation group described in
Example 9. We can verify that ε = 1 also corresponds to the translation group (due to the constraint
that σ(u) 6= σ(u′) whenever u 6= u′), thus the first non-trivial model corresponds to ε = 2.

Proposition 14 (Upper bound on γd(k) for deformations.). It holds Φ−1
2 = Φ2. Moreover, |Φ2| ≥ τd

for τ ≈ 1.714, and

γd(k) ≤ C
(

e2η

(2η)2ητ1−2η

)d
+O

(
k−ηd

)
(26)

for η < 1/4. In particular, τ̃−1 := e2η

(2η)2ητ1−2η < 1 for η < 0.07, leading to an effective gain in

sample complexity exponential in d, ν−1/α
0 = Θ(τ̃d/α); and β = ηd resulting in fast convergence in

(24) even for large d.

We thus verify that small deformations, already with ε = 2, provide a substantial gain relative to
rigid translations, since Φ2 now grows exponentially with the dimension, rather than linearly. Let
us remark that our small deformation model (25) acting on {1, d} differs in important ways from
diffeomorphisms acting on a continuous domain. In our case they define unitary operators (since
they are constructed as subsets of the permutation group), as opposed to diffeorphims, for which
‖ϕ · x‖L2(Ω) 6= ‖x‖L2(Ω) generally. In other words, the ‘deformations’ in Φε are more akin to local
shufflings of the pixels rather than local distortions. That said, our model does roughly capture the
size of small deformation classes. An interesting question for future work is to extend our framework
to non-unitary transformations, which could accommodate appropriate discretisations of continuous
diffeomorphisms.

6 Numerical Experiments

In this section, we provide simple numerical experiments on synthetic data which illustrate our
theoretical results. In Figure 1, we consider KRR on 5 000 training samples with inputs uniformly
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Figure 1: Comparison of KRR with invariant and non-invariant kernels. (left) permutation-invariant
target with d = 6, comparison between various invariant kernels (cyclic, block-cyclic, and permutation
groups). (center/right) invariant vs non-invariant kernels on invariant target functions with d = 12,
for block-cyclic groups G of two different sizes.

distributed on Sd−1, and outputs generated according to a target non-smooth function f∗ = SGg
∗,

with g∗(x) = 1{w>∗ x ≥ 0.7}, where the averaging operator SG is over different groups in each plot.
The regularization parameter λ is optimized on 5 000 test samples. We use the dot-product kernel
function κ(u) = (u+ 1)κ1(u), where κ1 is the arc-cosine kernel of degree 1, which corresponds to
an infinite-width shallow ReLU network [9].

When the target is permutation-invariant, we can see in Figure 1(left) that the kernel based on
permutation invariance leads to the largest gain in sample complexity compared to those which use
cyclic or block-cyclic groups. Since the permutation group has the largest cardinality, this is consistent
with our finding that the gains may be of the order of the size of the group. Figures 1(center/right)
consider the example of cyclic translations on local blocks of size 2 or 6 (Example 10 with s = 2
or 6), and illustrate that the improvement in sample complexity happens later for s = 2 than s = 6,
which is consistent with the slower decays of γd obtained in (18) due to the larger number of cycles.

7 Discussion and Conclusion

We have studied how geometric invariance or stability assumptions on target functions enable more
efficient learning, with improvements in sample complexity which may be as large as the number of
permutations considered in the group or set of elements to which the target is invariant or stable. In
particular, this gain can be exponential in the dimension if we consider, e.g., all permutations, local
translations on small blocks, or permutations that resemble small deformations. This last example
provides a strong justification for seeking models and architectures that are stable to deformations, a
natural prior when learning functions on images [25]. In that respect, our results provide a theoretical
baseline to assess learning guarantees under geometric priors: by designing appropriate geometrically
stable kernels, we simultaneously address approximation and generalisation errors within a framework
of convex optimization.

That said, while these gains may be large in practice, the obtained rates are still generically cursed
by dimension if the target is non-smooth. In other words, invariance or geoemtric stability allows
us to express Lipschitz assumptions with respect to weaker metrics. While these stronger regularity
assumptions result in important gains in sample complexity, they do not overcome the inherent
difficulty of learning non-smooth structures in high-dimensions. This suggests that further assump-
tions may be needed to learn efficiently on high-dimensional geometric data, for instance with more
structured forms of regularity beyond our invariant/stable setup, which may be exploited perhaps
through architectures that involve local connectivity, hierarchy (which would explain the benefits
of depth, as opposed to our current results), or feature learning [2, 4, 16, 21, 27]. A natural further
question is to study stability to transformations that are not necessarily permutations, and which may
then provide more realistic models of continuous deformations. Another interesting question is to
study whether it is possible to adapt to general symmetries present in the target, instead of encoding
them in the model with an appropriately designed kernel as done here.
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This appendix contains additional background on spherical harmonics (Appendix A), and proofs of
the results from Section 3, 4 and 5 (in Appendix B, C and D, respectively).

A Background on Spherical Harmonics and Legendre Polynomials

In this section, we provide background on spherical harmonic and Legendre/Gegenbauer polynomials,
which are used extensively in our analysis. See, e.g., [1, 14] for references. We consider inputs on the
d− 1 sphere Sd–1 = {x ∈ Rd, ‖x‖ = 1}.
We recall some properties of the spherical harmonics Yk,j introduced in Section 2. For j =

1, . . . , N(d, k), where N(d, k) = 2k+d−2
k

(
k+d−3
d−2

)
, the spherical harmonics Yk,j are homogeneous

harmonic polynomials of degree k that are orthonormal with respect to the uniform distribution τ
on the d–1 sphere. The degree k plays the role of an integer frequency, as in Fourier series, and the
collection {Yk,j , k ≥ 0, j = 1, . . . , N(d, k)} forms an orthonormal basis of L2(Sd–1, dτ). As with
Fourier series, there are tight connections between decay of coefficients in this basis w.r.t. k, and
regularity/differentiability of functions, in this case differentiability on the sphere. In particular, this
is a key property that we exploit for obtaining decays related to the number of invariant polynomials
in Proposition 6. This follows from the fact that spherical harmonics are eigenfunctions of the
Laplace-Beltrami operator on the sphere ∆Sd−1 (see [14, Proposition 4.5]):

∆Sd−1Yk,j = −k(k + d− 2)Yk,j . (27)

For a given frequency k, we have the following addition formula:

N(d,k)∑
j=1

Yk,j(x)Yk,j(y) = N(d, k)Pd,k(x>y), (28)

where Pd,k is the k-th Legendre polynomial in dimension d (also known as Gegenbauer polynomial
when using a different scaling), given by the Rodrigues formula:

Pd,k(t) = (−1/2)k
Γ(d−1

2 )

Γ(k + d−1
2 )

(1− t2)(3−d)/2

(
d

dt

)k
(1− t2)k+(d−3)/2. (29)

The polynomials Pd,k are orthogonal in L2([−1, 1], dw) where the measure dw is given by the weight
function dw(t) = (1− t2)(d−3)/2dt, and we have∫ 1

−1

P 2
d,k(t)(1− t2)(d−3)/2dt =

ωd−1

ωd−2

1

N(d, k)
, (30)

where ωp−1 = 2πp/2

Γ(p/2) denotes the surface of the sphere Sp−1 in p dimensions. Using the addition
formula (28) and orthogonality of spherical harmonics, we can show∫

Pd,j(w
>x)Pd,k(w>y)dτ(w) =

δjk
N(d, k)

Pd,k(x>y) (31)

We will use the following recurrence relation of Legendre polynomials [14, Eq. 4.36]

tPd,k(t) =
k

2k + d− 2
Pd,k–1(t) +

k + d− 2

2k + d− 2
Pd,k+1(t), (32)

for k ≥ 1, and for k = 0 we simply have tPd,0(t) = Pd,1(t). We will also use the following
pointwise upper bound on Pd,k(t) (see [1, Eq. 2.117]):

|Pd,k(t)| ≤
Γ
(
d−1

2

)
√
π

(
4

k(1− t2)

)(d−2)/2

(33)

The Funk-Hecke formula is helpful for computing Fourier coefficients in the basis of spherical
harmonics in terms of Legendre polynomials: for any j = 1, . . . , N(d, k), we have∫

f(x>y)Yk,j(y)dτ(y) =
ωd−2

ωd−1
Yk,j(x)

∫ 1

−1

f(t)Pd,k(t)(1− t2)(d−3)/2dt. (34)
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For example, we may use this to obtain decompositions of dot-product kernels by computing Fourier
coefficients of functions κ(〈x, ·〉). Indeed, denoting

µk =
ωd−2

ωd−1

∫ 1

−1

κ(t)Pd,k(t)(1− t2)(d−3)/2dt,

writing the decomposition of κ(〈x, ·〉) using (34) leads to the following Mercer decomposition of the
kernel:

κ(x>y) =

∞∑
k=0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(y) =

∞∑
k=0

µkN(d, k)Pd,k(x>y). (35)

B Proofs for Section 3 (Sample complexity of Invariant Kernels)

B.1 Proof of Lemma 2 (spectral properties of K and KG)

Proof. That µk are eigenvalues of TK with multiplicity N(d, k) is standard and follows from the
Funk-Hecke formula (see, e.g., [29]). In particular, for any spherical harmonic Yk ∈ Vd,k, we
have TKYk = µkYk, and there are N(d, k) orthogonal spherical harmonics in Vd,k.

For KG, note that we have TKG = SGTK , so that for any G-invariant spherical harmonic Y k ∈ V d,k
we have TKGY k = µkSGY k = µkY k, while for any Yk ∈ Vd,k ∩ V

⊥
d,k, we have TKGYk = 0

since SGYk = 0.

B.2 Proof of Lemma 3 (approximation error)

Proof. Let Y k,j , for j = 1, . . . , N(d, k) be an orthonormal basis of Vd,k such that (Y k,j)j≤N(d,k)

form an orthonormal basis of V d,k. Then, the collection of Y k,j for k ≥ 0 and j = 1, . . . , N(d, k)
forms an orthonormal basis of L2(dτ).

For a function f ∈ L2(dτ) with decomposition

f(x) =
∑
k≥0

N(d,k)∑
j=1

ak,jY k,j(x),

we have the following expressions of the RKHS norms forK andKG by Mercer’s theorem (e.g., [12]):

‖f‖2HK =

{∑
k:µk>0

∑N(d,k)
j=1

a2
k,j

µk
, if ak,j = 0 whenever µk = 0

∞, otherwise.

‖f‖2HKG =

{∑
k:µk>0

∑N(d,k)
j=1

a2
k,j

µk
, if ak,j = 0 whenever µk = 0 or j > N(d, k)

∞, otherwise.

Assume now that f∗ is invariant, so that its coefficients a∗k,j satisfy a∗k,j = 0 for j > N(d, k). We
have
AHK (λ, f∗) = inf

f∈HK
‖f − f∗‖2L2(dτ) + λ‖f‖2HK

= inf
ak,j

∑
k:µk>0

N(d,k)∑
j=0

(
(ak,j − a∗k,j)2 + λ

a2
k,j

µk

)

= inf
ak,j

∑
k:µk>0

N(d,k)∑
j=0

(
(ak,j − a∗k,j)2 + λ

a2
k,j

µk

)
+

∑
k:µk>0

N(d,k)∑
j=N(d,k)+1

(1 + λ/µk)a2
k,j

= inf
ak,j

∑
k:µk>0

N(d,k)∑
j=0

(
(ak,j − a∗k,j)2 + λ

a2
k,j

µk

)
= AHKG (λ, f∗),

which proves the lemma.
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B.3 Proof of Lemma 4 (degrees of freedom)

Proof. The result immediately follows from the following expressions of degrees of freedom for K
and KG:

NK(λ) =
∑
k≥0

N(d, k)
µk

µk + λ
, NKG(λ) =

∑
k≥0

N(d, k)
µk

µk + λ
. (36)

B.4 Proof of Theorem 5 (generalization bound)

Proof. We start from the following bound from [3, Proposition 7.2], which holds for any λ ≤ 1,
assuming KG(x, x) ≤ 1 almost surely (this is satisfied when κ(u) ≤ 1), and for n ≥ 5

λ (1 +
log(1/λ)):

E[R(f̂λ)]−R(f∗) ≤ 16
σ2
q

n
NKG(λ) + 16AHKG (λ, f∗) +

24

n2
‖f∗‖2∞. (37)

Under assumption (A2), we have (see, e.g., [12, Theorem 3, p.33], using that ‖f‖HK =

‖T−1/2
K f‖L2(dτ))

AHK (λ, f∗) ≤ C2
f∗λ

2r, (38)

with Cf∗ := ‖T−rK f∗‖L2(dτ) By Lemma 3, we also have

AHKG (λ, f∗) ≤ C2
f∗λ

2r. (39)

Using Lemma 4 for some integer ` ≥ 0 and (A1), the bound (37) becomes

E[R(f̂λ)]−R(f∗) ≤ 16C2
f∗λ

2r + 16
σ2
qD(`)

n
+ 16

CKσ
2
qνd(`)

n
λ−1/α +

24

n2
‖f∗‖2∞. (40)

Jointly optimizing the first and third terms for λ yields

λn =

(
CKσ

2
qνd(`)

2rαC2
f∗n

) α
2αr+1

(41)

The bound then becomes

E[R(f̂λn)]−R(f∗) . C
2

2αr+1

f∗

(
CKσ

2
qνd(`)

n

) 2αr
2αr+1

+
σ2
qD(`)

n
+

1

n2
‖f∗‖2∞. (42)

Here, . hides only absolute constants that depend on α and r. Now we choose ` = `n, given by (13),
with constant corresponding to:

`n := sup{` : σ2
qD(`) ≤ C

2
2αr+1

f∗

(
CKσ

2
qνd(`)

) 2αr
2αr+1 n

1
2αr+1 }, (43)

so that the second term is smaller than the first term. The last term is of the same order when

n &
‖f∗‖2∞
σ2
qD(`n)

, (44)

which is verified under the condition

n ≥ max
{
‖f∗‖2∞/σ2

ρ, (C1/ν0)
α

2αr+1−α
}

(45)

from the theorem statement, since D(`n) ≥ 1. Note that for the specific bound (37) to hold we also
need λn & 1/n (up to logarithmic terms). This imposes the qualification condition r > (α− 1)/2α,
and leads to the additional requirement

n &

(
C2
f∗

σ2
qCKνd(`)

) α
2αr+1−α

. (46)

This is verified under condition (45) with C1 = C2
f∗/σ

2
qCK .

For the KRR estimator with kernel K, the same bound (40) holds, but without the factor νd(`) and
without the term involving D(`). The resulting bound follows from a similar analysis.

15



B.5 Estimating `n and the effective gain νd(`n)

In this section, we provide more details on our study of the asymptotic behavior of the quantities `n
and νd(`n) in Theorem 5, as described in Section 3.

Since D(`) increases with `, Eq. (13) suggests that `n increases with n. We now provide intuition on
how we might expect `n and νd(`n) to behave in a situation of interest where we know an asymptotic
equivalent of νd. Namely, assume that

νd(`) ≈ ν0 + c`−β .

We provide such asymptotic equivalents in Section 4, where ν0 = 1/|G|, and β depends on spectral
properties of the elements of G. For some large groups, β may be small, in which case we may
consider other approximations with larger β, at the cost of a larger ν0. When `n is large, using
the approximation N(d, k) ≈ kd−2, we have D(`) ≈

∑`−1
k=0 k

d−2 ≈ `d−1. Hiding constants other
than ν0, we may then consider `n to be solution of

`
(d−1)(2αr+1)

2αr = n
1

2αr (ν0 + `−β).

Since the l.h.s. increases, while the r.h.s. decreases with `, we must have `n ≥ max(`n,1, `n,2), with

`
(d−1)(2αr+1)

2αr
n,1 = n

1
2αr ν0, and `

(d−1)(2αr+1)
2αr

n,2 = n
1

2αr `−βn,2.

This yields
νd(`n) ≤ ν0 + C min

{
(ν2αr

0 n)
−β

(d−1)(2αr+1) , n
−β

(d−1)(2αr+1)+2βαr

}
. (47)

Notice that when β � d, both exponents of n display a curse of dimensionality, but this curse goes
away as β grows. Note also that the first exponent yields a faster rate, but one that is only achieved
for large n due to the factor ν2αr

0 , which may be small for large groups.

B.6 Discussion of Optimality

In this section, we discuss the optimality of the upper bounds in Theorem 5, in particular the
constant C4 and its dependence on the constants CK and Cf∗ from the source and capacity conditions.

Tightness of C4 for non-invariant targets. We first provide a minimax lower bound for the class
of (non-invariant) targets satisfying the source and capacity conditions (A1/A2), in order to show that
the constant C4 can be tight (up to absolute constants) in a minimax sense for this class.

Consider a kernel K0(x, x′) = κ0(〈x, x′〉) such that we have the following asymptotics on the
eigenvalues of the integral operator: λm(TK0

) ∼ C0m
−α. Let `0 be such that for all m ≥ M0 :=

D(`0) + 1 we have C0m
−α/2 ≤ λm(TK0

) ≤ 2C0m
−α. We can then construct a function κ and

corresponding kernel K such that λm(TK) ≤ 2C0m
−α and for m ≥ M0, λm(TK) ≥ C0m

−α/2.
For instance, we may define κ(u) =

∑
k≥0 µk(κ)N(d, k)Pd,k(u), with

µk(κ) =

{
2C0M

−α
0 if k ≤ `0

µk(κ0) otherwise,

where the µk(κ0) are the Legendre coefficients of κ0.

Note that this kernel K satisfies the capacity condition (A1) with CK . C
1/α
0 . With this choice

of K, define F to be the set of regression functions f∗ that further satisfy assumption (A2) with
parameters C∗ and r, and assume that labels are generated as y = f∗(x) + ε, with ε ∼ N (0, σ2

ρ).
Under these assumptions, note that the upper bound in Theorem 5 is given by

E[‖f̂ − f∗‖2] . C
2

2αr+1
∗ C

2r
2αr+1

0 (
σ2
ρ

n
)

2αr
2αr+1 , (48)

where . hides absolute constants or constants depending only on α and r.

Following [3], we use Fano’s inequality to lower bound the minimax risk. In particular, we have a
lower bound

Mn(F) := inf
f̂

sup
f∗∈F

EDn∼ρ⊗n [‖f̂Dn − f∗‖2L2(dτ)] ≥ A/2,

on the minimax risk Mn(F) if we can find a set {f1, . . . , fM} ∈ F , M ≥ 16, such that
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• ‖fi − fj‖2L2(dτ) ≥ 4A for i 6= j (i.e., we have a packing set)

• n
2σ2
ρ
‖fi − fj‖2L2(dτ) ≤

logM
4 (this ensures fi and fj are difficult enough to distinguish).

In order to construct a packing, we use the Varshamov-Gilbert lemma to obtain M ≥ exp(K/8)
elements x1, . . . , xM ∈ {0, 1}K for some K to be chosen later, which satisfy ‖xi − xj‖1 ≥ K/4

for i 6= j. Defining fi = β
∑K
m=1 2((xi)m − 1)φm, where (φm)m are the eigenfunctions of TK

sorted such that the corresponding eigenvalues λm are non-decreasing, we have
‖fi − fj‖2 ≥ β2K, for i 6= j,

and may thus consider a lower bound of the form A/2 = Kβ2/8. Then, since ‖fi−fj‖2 ≤ 4β2K ≤
32β2 logM , it suffices to have 16nβ2/σ2

ρ logM ≤ logM/4, i.e., β2 ≤ σ2
ρ/64n to satisfy the second

condition above. Further, in order for all fi to satisfy the capacity condition, we need ‖T−rK fi‖2 ≤ C2
∗ .

Note that we have

‖T−rK fi‖2 = β2
K∑
m=1

λ−2r
m ≤ Kβ2λ−2r

K ,

thus, it suffices to take Kβ2 ≤ C2
∗λ

2r
K . Taking a maximal β2 under these two conditions, we have the

following lower bound on the minimax risk:

Mn(F) ≥ Kβ2

8
≥ 1

8
min

{
C2
∗λ

2r
K ,

Kσ2
ρ

64n

}
.

Using the lower bound λ2r
K ≥ (C0/2)2rK−2αr, which holds for K ≥ M0, and optimizing for K

yields K ≈ (C2
∗C

2r
K σ

2
ρn)1/(1+2αr). For n large enough, we have K ≥M0, and the following lower

bound holds:

Mn(F) & C
2

2αr+1
∗ C

2r
2αr+1

0 (
σ2
ρ

n
)

2αr
2αr+1 .

This matches the upper bound (48) up to absolute constants.

Tightness of 1/|G| for the invariant class. We now show that the our bound in Theorem 5 which
asymptotically shows a 1/|G|n instead of 1/n, is (asymptotically) minimax optimal over the class of
invariant targets which satisfy assumption (A2).

We consider the same kernel K0 as above, and denote by KG,0 its invariant counterpart. It suffices to
show that we have the asymptotic expansion

λm(TKG,0) ∼ |G|−αC0m
−α (49)

instead of C0m
−α. Indeed, in this case we can construct a kernel K such that its invariant coun-

terpart KG has eigenvalues upper bounded as λm(TKG) ≤ 2C0|G|−αm−α and lower bounded
by (C0/2)|G|−αm−α for m ≥M1 (note that M1 could be chosen large enough so that construction
from before for the non-invariant case also applies to the same kernel K). Then, applying the same
arguments as for the non-invariant case, we obtain the desired minimax-lower bound

Mn(F̄) & C
2

2αr+1
∗ C

2r
2αr+1

0 (
σ2
ρ

|G|n
)

2αr
2αr+1 ,

for n large enough, where F̄ is the class of invariant targets satisfying assumption (A2) with the
kernel K. This shows that our upper bound is asymptotically tight in a minimax sense for the kernel
considered.

We now explain why (49) holds. Let µk denote the Legendre coefficients of κ at frequency k, and
assume µk ∼ C1k

−β . Recall that we have N(d, k) ∼ C2k
d−2, so that D(k) =

∑
k′≤kN(d, k′) ∼

C3k
d−1 for some C3. Then, when taking eigenvalues with their multiplicity, when D(k − 1) <

m ≤ D(k), the m-th eigenvalue λm(TK0
) is µk. Asymptotically, we have k ∼ C

1
d−1

3 m
1
d−1 , so

that λm ∼ C1C
−β
d−1

3 m
−β
d−1 , that is, we have α = β/(d− 1) and C0 = C1C

−α
3 .

Now, since N(d,k)
N(d,k) →

1
|G| as k → ∞, we have N(d, k) ∼ (C2/|G|)kd−2, and D̄(k) ∼

(C3/|G|)kd−1. With the same reasoning, this leads to λm(TKG,0) ∼ C1(C3/|G|)−αm−α =
C0|G|−αm−α, which is the desired constant.
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C Proofs for Section 4 (Decays of γd(k))

C.1 Proof of Proposition 6 (decay of γd,σ(k))

The proof of Proposition 6 is technical and relies on identifying and analyzing the singularities
in the density qσ of the random variable Zσ = 〈σ · x, x〉, with x ∼ τ , using results in [28].
Lemma 15 provides a general integration by parts result which is useful throughout the proof to obtain
asymptotic decays from regularity properties. Lemma 17 and Lemma 18 provide asymptotic decays
for singularities φ(t) localized around some λ in (−1, 1) and {±1}, respectively, either through
integration by parts or using closed form expressions of certain integrals. Proposition 6 is then proved
by appropriately “cancelling” the singularities in qσ using such localized functions φ, as explained in
Lemma 19, and applying the integration by parts lemma on the resulting function, which is of higher
smoothness and thus leads to faster-decaying terms.

Lemma 15 (Integration by parts). Let g : [−1, 1]→ R be 2s-times differentiable, with all derivatives
bounded on [−1, 1]. We then have∫ 1

−1

g(t)Pd,k(t)(1− t2)
d−3

2 dt =
1

(k(k + d− 2))s

∫ 1

−1

g̃d,s(t)Pd,k(t)(1− t2)
d−3

2 dt, (50)

where g̃d,s is a bounded function on [−1, 1].

Proof. We use the following relation, derived in [5, Lemma 4] for a function f0:∫ 1

−1

f0(t)Pd,k(t)(1− t2)
d−3

2 dt =
1

k(k + d− 2)

(
− f0(t)(1− t2)1+ d−3

2 P ′d,k(t)
∣∣∣1
−1

+ f ′0(t)(1− t2)1+ d−3
2 Pd,k(t)

∣∣∣1
−1

+

∫ 1

−1

f1(t)Pd,k(t)(1− t2)(d−3)/2dt
)
,

where f1(t) = −f ′′0 (t)(1 − t2) + (d − 1)tf ′0(t). Note that the terms in brackets vanish when f0

and f ′0 are bounded, and that f1 is 2s− 2 times differentiable with bounded derivatives if f0 is 2s
times differentiable. We may thus apply this recursively s times to f0 = g, with

fk(t) = −f ′′k−1(t)(1− t2) + (d− 1)tf ′k−1(t),

and we obtain the desired result, with g̃ = fs.

Lemma 16. Let g ∈ L∞([−1, 1]). It holds that∣∣∣∣∫ 1

−1

g(t)Pd,k(t)(1− t2)(d−3)/2 dt

∣∣∣∣ ≤ 2πd−1/2‖g‖∞
(
d

k

)(d−2)/2

.

Proof. By [1, equation (2.117)], we get that

|Pd,k(t)| ≤ 1√
π

Γ

(
d− 1

2

)(
4

k(1− t2)

)(d−2)/2

≤ 1√
π

(
d− 1

4

)(d−3)/2(
4

k(1− t2)

)(d−2)/2

≤ 1√
π

(
d

4

)−1/2(
d

k(1− t2)

)(d−2)/2

≤ 2d−1/2

(
d

k(1− t2)

)(d−2)/2

.

Therefore it follows that∣∣∣∣∫ 1

−1

g(t)Pd,k(t)(1− t2)(d−3)/2 dt

∣∣∣∣ ≤ 2d−1/2‖g‖∞
(
d

k

)(d−2)/2 ∫ 1

−1

(1− t2)−1/2 dt ,

which concludes the proof.
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Lemma 17 (Decay for λ ∈ (−1, 1)). Let φλ+,α(t) := (t − λ)α+ϕλ+,α(t) and φλ−,α(t) := (t −
λ)α−ϕλ−,α(t), where ϕλ±,α ∈ C∞([−1, 1]) have support (−1 + ε, 1− ε) for some ε > 0 and take
the value 1 at t = λ. Then we have that∣∣∣∣∫ 1

−1

φλ±,α(t)Pd,k(t)dt

∣∣∣∣ ≤ C(d, α)k−d/2−α+3 . (51)

Also let, for α integer, φ∗λ±,α(t) := (t− λ)α± log |t− λ|ϕ∗λ±,α(t), where ϕ∗λ±,α ∈ C∞([−1, 1]) have
support (−1 + ε, 1− ε) for some ε > 0 and take the value 1 at t = λ. Then we have that∣∣∣∣∫ 1

−1

φ∗λ±,α(t)Pd,k(t)dt

∣∣∣∣ ≤ C(d, α)k−d/2−α+3 . (52)

Proof. Let ψλ±,α(t) := φλ±,α(t)(1 − t2)−(d−3)/2. Notice that ψλ+,α satisfies the assumption of
Lemma 15 with 2s = 2

⌊
α
2

⌋
≥ α− 2. Therefore we obtain∣∣∣∣∫ 1

−1

φλ+,α(t)Pd,k(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1

−1

ψλ+,α(t)Pd,k(t)(1− t2)(d−3)/2dt

∣∣∣∣
≤ k−α+2

∣∣∣∣∫ 1

−1

ψ̃λ+,α,d(t)Pd,k(t)
(
1− t2

)(d−3)/2
dt

∣∣∣∣
≤ C(d, α)k−α+2−d/2+1 ,

where ψ̃λ+,α,d is a bounded function given by Lemma 15, and where we used Lemma 16 to obtain
the last inequality. The second inequality follows in the same way, by noticing that the function
ψ∗λ±,α(t) := φ∗λ±,α(t)(1− t2)−(d−3)/2 satisfies the assumption of Lemma 15 with 2s = 2

⌊
α−1

2

⌋
≥

α− 2 (since we assume that α is integer in this case).

Lemma 18 (Decay for λ = ±1). Let φ1,α,s(t) := (1+t
2 )α+s−bαc(1− t)α, with α non-integer and s

integer. Then, φ1,α,s is s times differentiable at −1 and obeys the decay∣∣∣∣∫ 1

−1

φ1,α,s(t)Pd,k(t)dt

∣∣∣∣ ≤ C(d, α, s)k−2(α+1), (53)

where the constant C(d, α, s) may be different depending on the parity of k.

Similarly, let φ−1,α,s(t) := ( 1−t
2 )α+s−bαc(t+ 1)α, then φ−1,α,s is s times differentiable at 1, and

obeys the same decay.

Proof. We begin by evaluating the decay of ψα(t) := (1− t2)α. Following analogous calculations
to [5, Lemma 6], we have4 ∫

ψα(t)Pd,k(t)dt ∼ C(d, α)k−2(α+1), (54)

for k even, and the integral is equal to zero for k odd. We have

C(d, α) = 24α+3ωd−2

ωd−1

Γ(α+ 1)2

Γ(2α+ 2)

Γ(α+ 3
2 )Γ(d−1

2 )Γ(α+ 5−d
2 )

Γ(− 1
2 )Γ(α+ 7−d

2 )Γ(−α+ d−5
2 )

,

where ωp−1 is the surface of Sp−1.

Now, let r := s− bαc, so that we have

φ1,α,s(t) = 2−α−r(1 + t)rψα(t).

Let c0, . . . , cr denote the coefficients of the degree-r polynomial p(t) = 2−α−r(1 + t)r, so that

p(t) = 2−α−r(1 + t)r = c0 + c1t+ · · ·+ crt
r.

4Note that while Lemma 6 in [5] is stated for α = ν + d−3
2

for ν > 0, the derivation still holds for
any α > −1.
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Using the relation (see, e.g., [14, Proposition 4.21])

tPd,k(t) =
k

2k + d− 2
Pd,k−1(t) +

k + d− 2

2k + d− 2
Pd,k+1(t),

we may then write

p(t)Pd,k(t) =

r∑
j=−r

bj(k)Pd,k+j(t),

for some coefficients bj(k) satisfying bj(k) = O(1) as k →∞. Then, we have∫
φ1,α,sPd,k(t)dt =

∫
ψα(t)p(t)Pd,k(t)dt

=

r∑
j=−r

bj(k)

∫
ψα(t)Pd,k+j(t)dt.

When k → ∞, this is a sum of at most 2r + 1 ≤ 2s + 1 terms, each of which decays with k
as k−2(α+1) by (54). This yields the result.

The decay for φ−1,α,s is proved analogously.

Lemma 19 (Cancelling singularities of the density). Let qσ denote the density of the random
variable Zσ = 〈σ · x, x〉, with σ 6= Id, and let Λ̄σ be the set of eigenvalues of Āσ := (Aσ +A>σ )/2,
where Aσ is the permutation matrix of σ, and denote by m̄λ the multiplicity of λ ∈ Λ̄σ . Define

αλ =
d− m̄λ

2
− 1. (55)

There exists constants {cλ,i} such that the function defined by

q̃σ =
∑

λ∈Λσ\{1,λmin}

dd+1−αλe∑
i=0

(cλ+,iφλ+,αλ+i + cλ−,iφλ−,αλ+i + c∗λ+,iφ
∗
λ+,αλ+i + c∗λ−,iφ

∗
λ−,αλ+i)

+ 1{λmin > −1}
dd+1−αλmin

e∑
i=0

(cλmin +,iφλmin +,αλmin
+i + c∗λmin +,iφ

∗
λmin +,αλmin

+i)

+
∑

λ∈Λσ∩{±1}

dd+1+ d−3
2 −αλe∑

i=0

cλ,iφλ,αλ+i,dd+1+ d−3
2 e

satisfies that t 7→ (qσ(t)− q̃σ(t))(1− t2)−
d−3

2 admits d+ 1 bounded derivatives on [−1, 1].

Proof. Note that we have

〈σ · x, x〉 =
1

2
(〈Aσx, x〉+ 〈x,Aσ, x〉) = 〈Āσx, x〉,

where Āσ = 1
2 (Aσ + A>σ ) is symmetric and thus has real eigenvalues. When Aσ is a permutation

matrix, these eigenvalues are in [−1, 1], as the real part of complex roots of unity.

We then identify the singularities of the density qσ, which are the same as those of the cumulative
distribution function, up to one fewer degree of smoothness. Such singularities are shown in the
following lemma, proved in [28].

Lemma 20 ([28]). Consider σ ∈ G as above, and let Λ̄σ be the set of eigenvalues of Āσ. For
each λ ∈ Λ̄σ, we denote by m̄λ its multiplicity. Then the cumulative distribution function Qσ
of Zσ = 〈σ · x, x〉 takes the form

Qσ(t) = ϕ(t) +
∑
λ∈Λ̄σ

gλ(t)

where ϕ is analytic and
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• gλ(t) = |t− λ|(t− λ)
d−m̄λ

2 −1ϕ1
λ(t) + (t− λ)

d−m̄λ
2 log(|t− λ|)ϕ2

λ(t) if d− m̄λ is even,

• gλ(t) = (t− λ)
d−m̄λ

2
+ ϕ1

λ(t) + (λ− t)
d−m̄λ

2
+ ϕ2

λ(t) if d− m̄λ is odd,

for some ϕ1
λ, ϕ

2
λ analytic. Further, the term involving log(|t− λ|) only appears for λ ∈ (−1, 1).

In particular, it follows from this lemma by differentiation that we may write

qσ(t) = ϕ̃(t) +
∑
λ∈Λ̄σ

g̃λ(t),

with ϕ̃ analytic and

• g̃λ(t) = (t−λ)
d−m̄λ

2 −1
+ ϕ̃λ,1(t) + (t−λ)

d−m̄λ
2 −1

− ϕ̃λ,2(t) + (t−λ)
d−m̄λ

2 −1
+ log(|t−λ|)ϕ̃λ,3(t) +

(t− λ)
d−m̄λ

2 −1
− log(|t− λ|)ϕ̃λ,4(t), if d− m̄λ is even

• g̃λ(t) = (t− λ)
d−m̄λ

2 −1
+ ϕ̃λ,1(t) + (t− λ)

d−m̄λ
2 −1

− ϕ̃λ,2(t), if d− m̄λ is odd,

where ϕ̃λ,i are analytic for i ∈ [4].

The result then follows by appropriately “cancelling” those singularities up to order d using the
simple functions φ introduced in the previous lemmas, and noting that for singularities at ±1,
we require an additional (d − 3)/2 degrees of smoothness, so that we may divide by the weight
function (1− t2)(d−3)/2.

For instance, for λ ∈ (−1, 1), an appropriate exponent α and an analytic ϕ, we may write

(t− λ)α+ϕ(t) = (t− λ)
d−m̄λ

2 −1
+ (c0 + (t− λ)ψ(t)), (56)

with ψ analytic. Then for φλ+,α as in Lemma 17, we have

(t− λ)α+ϕ(t)− c0φλ+,α(t) = (t− λ)α+1
+ ϕ̃(t),

with ϕ̃ analytic. We may then repeat this process with functions φλ+,α+1, φλ+,α+2, etc., to finally
obtain that

(t− λ)α+ϕ(t)−
dd+1−αe∑
i=0

ciφλ+,α+i(t)

is d times differentiable, as desired. A similar reasoning can be applied for other types of singularities.
For the terms involving log(|t− λ|), which only appear for λ ∈ (−1, 1), note that the corresponding
exponent αλ is integer since d− m̄λ is even, so that Lemma 17 applies.

We are now ready to state the proof of Proposition 6.

Proof of Proposition 6. Let qσ be the density of 〈σ · x, x〉, and let q̃σ be as in Lemma 19. By
Lemma 19 and Lemma 15, we have∫ 1

−1

(qσ(t)− q̃σ(t))Pd,k(t)dt =

∫ 1

−1

qσ(t)− q̃σ(t)

(1− t2)
d−3

2

Pd,k(t)(1− t2)
d−3

2 dt ≤ Ck−d,

where we have bounded the integral on the r.h.s. of (50) by a constant. Renaming the terms in q̃
as q̃σ =

∑
i ciqi, where each qi is as in Lemma 17 or Lemma 18, we have

γd,σ(k) ≤
∑
i

ci

∫
qiPd,k +O(k−d).

Now, note that the eigenvalues of Āσ = 1
2 (Aσ +A>σ ) are the real parts of the complex eigenvalues of

the permutation matrix Aσ . Since Aσ is real, its complex eigenvalues come in conjugate pairs, so that
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for any λ ∈ Λσ with λ /∈ R, we have mλ = m̄Re(λ)/2, where m̄ are the multiplicities of Lemma 19.
Note that in the case of permutations, the eigenvalues of Aσ are roots of unity, so that we have

mλ =

{
m̄λ, if λ ∈ {±1}
m̄Re(λ)/2, otherwise.

The result then follows by applying the decays given by Lemma 17 and Lemma 18 to each compo-
nent qi with the appropriate αλ, and focusing on the leading-order terms. Namely, for λ ∈ {±1}, by
Lemma 18, the leading order term in γd,σ,λ(k) has decay

k−2(αλ+1) = k−2(
d−m̄λ

2 −1+1) = k−d+mλ ,

while for λ /∈ {±1}, we have Re(λ) ∈ (−1, 1), hence using (55) and m̄Re(λ) = 2mλ, we
have αRe(λ) = d

2 −mλ − 1, so that the decay, by Lemma 17, is upper bounded by

k−
d
2−αRe(λ)+3 ≤ k−d+mλ+4.

This concludes the proof.

C.2 Proof of Corollary 7 (leading order of γd,σ)

Proof. By Proposition 6, we get that

γd,k(σ) . k−d+s

where s = maxλ∈Λσ {mλ + 4 · 1(|λ| < 1)}. Notice that, for any permutation σ, it holds m1 ≥ mλ.
Therefore, we have

s ≤ m1 + 4 · 1{∃|λ| < 1 : m1 < mλ + 4} .
Now, if m1 < mλ + 4 for some |lambda| < 1, since m1 +mλ ≤ d, it must hold 2m1 ≤ d+ 3, or,
equivalently, m1 ≤ d/2 + 3/2. It follows that

s ≤
{
m1 if m1 > (d+ 3)/2 ,

d/2 + 5.5 otherwise.

This concludes the proof, since m1 = c(σ).

C.3 Proof of Corollary 8 (different upper bounds using permutation statistics)

Proof. For all σ ∈ G \ ζ(G, s), it holds c(σ) ≤ s and

γd,σ(k) . k−d+ησ ,

with

ησ = c(σ) · 1 (c(σ) > (d+ 3)/2) +

(
d

2
+ 6

)
1 (c(σ) ≤ (d+ 3)/2) .

In particular, we have

γd(k) =
ζ(G, s)

|G|
+O

(
k−d+η

)
where

η = max
c(σ)≤s

ησ .

Denote s∗(s) = maxσ∈G\ζ(G,s) c(σ). If s∗(s) ≥ d/2 + 6, then it holds that s∗(s) = η. Otherwise,
c(σ) ≤ d/2 + 7 for any σ such that c(σ) ≤ s, which implies that s ≤ d/2 + 6. It follows that

η = max{s∗(s), d/2 + 6} ≤ max{s, d/2 + 6}.
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C.4 Details on Example 11 (full permutation group)

The number of permutations in G = Sd which fix exactly n elements is given by
(
n
k

)
!(n− k), where

!m denotes the m-th subfactorial:

!m :=

⌊
m! + 1

e

⌋
≤ 2m!

e
.

It follows that

ξ(G, s)

|G|
=

1

d!

d∑
k=s+1

d!

(d− k)!k!
!(d− k) ≤ 2

e

d∑
k=s+1

1

k!

≤ 2

e(s+ 1)!

d∑
k=s+1

1

(s+ 2)k−(s+1)
=

2

e(s+ 1)!

1− 1
(s+2)d−s

1− 1
s+2

≤ 2(s+ 2)

e(s+ 1)

1

(s+ 1)!
≤ 2

(s+ 1)!
.

D Proofs for Section 5

D.1 Proof of Lemma 12 (spectral properties of smoothing operator SG)

Proof. As in the invariant case, we note that for any degree k, the space Vd,k of spherical harmonics
of degree k is stable by SG, i.e., SGVd,k ⊂ Vd,k. Since SG is self-adjoint, we may then find an
orthonormal basis of such spherical harmonics, which we denote Y k,j , for j = 1, . . . , N(d, k), such
that the restriction of SG to Vd,k is diagonal, and we have SGY k,j = λk,jY k,j , with λk,j ≥ 0.

It remains to show (20). Define the operator Πkf = Ey [Pd,k(〈·, y〉)f(y)]. SGΠk is then an integral
operator with kernel

H(x, y) =
∑
σ∈G

h(σ)Pd,k(〈σ · x, y〉). (57)

Since Y k,j , j = 1, . . . , N(d, k) forms an orthonormal basis of Vd,k, by the addition formula of
spherical harmonics, we have

Πk =
1

N(d, k)

N(d,k)∑
j=1

Y k,jY
∗
k,j .

It follows that

SGΠk =
1

N(d, k)

N(d,k)∑
j=1

SGY k,jY
∗
k,j =

1

N(d, k)

N(d,k)∑
j=1

λk,jY k,jY
∗
k,j .

This implies that the kernel H of the operator SGΠk can also be expressed as

H(x, y) =
1

N(d, k)

N(d,k)∑
j=1

λk,jY k,j(x)Y k,j(y). (58)

Fixing y = x and taking expectations over x ∼ τ in both (57) and (58) proves the equality.

D.2 Proof of Theorem 13 (generalization with geometric stability)

The proof of the theorem is analogous to that of Theorem 5, replacing the control on NKG(λ) with
that of Lemma 21 below, which provides an extension of Lemma 4 to generic smoothing operators,
at the cost of a weaker constant νd(`)1/α instead of νd(`). The remark on the constant C4 being
potentially smaller for the kernel K stems from the fact that we no longer have equal approximation
errors for the two kernels, and that the quantity Cf∗ in (40) in this case is the one given by the source
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condition (A2) instead of (A6), which is smaller, as we now show. Indeed, note that if f∗ = SrGT
r
Kg,

then we have f∗ = T rK(SrGg) = T rK g̃ with g̃ = SrGg, since SG and TK are diagonalized in the
same basis and hence commute. The result follows by noting that we have ‖g̃‖L2(dτ) ≤ ‖g‖L2(dτ),
since ‖SrG‖ ≤ ‖SG‖r ≤ 1 (indeed we have the operator norm bound ‖SG‖ ≤ 1, which follows from
a simple triangle inequality).

Lemma 21 (Degrees of freedom for KG with stability.). Assume (A5). We have

NK(λ) ≤ CKλ−1/α,

and for any ` ≥ 0, we have

NKG(λ) ≤ D(`) + νd(`)
1/αCKλ

−1/α, (59)

with the same constant CK .

Proof. The first statement is a standard consequence of Assumption (A5). Namely, if ξm denote the
eigenvalues of TK (namely, the same as µk counted with their multiplicities) and ξm ≤ C(m+ 1)−α,
we have

NK(λ) =
∑
m≥0

ξm
ξm + λ

≤
∑
m≥0

1

1 + λC−1(m+ 1)α

≤
∫ ∞

0

dt

1 + λC−1tα

≤ C1/αλ−1/α

α

∫ ∞
0

u1/α−1du

1 + u
= CKλ

−1/α,

with CK := C1/α

α

∫∞
0

u1/α−1du
1+u .

We now write

NKG(λ) =
∑
k≥0

N(d,k)∑
j=0

λk,jµk
λk,jµk + λ

=
∑
k≥0

∑
j

λk,j

λk,j + λµ−1
k

≤
∑
k

N(d, k)
λ̄k

λ̄k + λµ−1
k

(by Jensen’s inequality, with λ̄k = N(d, k)−1
∑
j

λk,j)

≤
∑
k

N(d, k)
λ̄kµk

λ̄kµk + λ
,

We may then write, for some ` ≥ 1,

NKG(λ) ≤ D(`) +
∑
k≥0

µ̄k
µ̄k + λ

,

where

µ̄k =

{
λ̄kµk, if k ≥ `
0, o/w.

Note that for k ≥ `, we have λ̄k =
∑
j λk,j

N(d,k) = γd(k) ≤ νd(`), and the same holds trivially for k < `.
Then, writing ξ̄m the collections of µ̄k counted with multiplicities, we may write ξ̄m ≤ νd(`)C(m+
1)−α, with the same constant C as in (A5). Repeating the argument above for bounding NKG(λ) in
terms of λ−1/α then yields the result.
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D.3 Proof of Proposition 14 (upper bound on γd(k) for deformations)

Proof. We first show that Φ2 is stable under inversion, and later proceed to study lower bounds on its
number of elements, and cycle statistics.

Step 1: Φ−1
2 = Φ2. Let us first establish that Φ2 is closed under inversion.

First observe that
Φ2 = {σ; |σ(u+ 1)− σ(u)− 1| ≤ 2 ∀ u} . (60)

The inclusion LHS ⊆ RHS is immediate by definition. The reverse inclusion is obtained by the
triangle inequality, by observing that if u < ũ < u′, then
|σ(u)− σ(u′)− (u− u′)| = |σ(u)− σ(ũ)− (u− ũ) + σ(ũ)− σ(u′)− (ũ− u′)|

≤ |σ(u)− σ(ũ)− (u− ũ)|+ |σ(ũ)− σ(u′)− (ũ− u′)| ,
so by induction if the condition holds for small pairs (u, ũ), (ũ, u′) it extends to all pairs (u, u′).

We directly verify from (60) that σ ∈ Φ2 iff it holds
∀ u , σ(u+ 1) = σ(u) + {3, 2, 1,−1} , (61)

since we need to have σ(u) 6= σ(u′) whenever u 6= u′.

Let now ũ = σ(u), so σ−1(ũ) = u. We will show that σ−1 also verifies (61). We want to enumerate
all possible u′ so that σ(u′) = ũ+ 1. Clearly σ−1(ũ+ 1) 6= σ−1(ũ) so u′ 6= u.

Suppose by contradiction that u′ < u−1. Note that we must have σ(u′+1) ≥ ũ+2 since ũ and ũ+1
already have pre-images (namely u and u′), and smaller values would violate σ(u′ + 1)− σ(u′) ∈
{3, 2, 1,−1}. Similarly σ(u′ + s) ≥ ũ + 2 for all s = 2, . . . , u − u′ − 1, since otherwise we
would need a step σ(u′ + s + 1) − σ(u′ + s) ≤ −3, which is ruled out by (61). Then it must be
that σ(u)−σ(u−1) = ũ−σ(u−1) ≤ −2, which is a contradiction. We have thus shown u′ ≥ u−1.

Similarly, let us show u′ ≤ u + 3. Assume, by contradiction that u′ > u + 3. Note first that
the only way to have σ(u + s) < ũ for some s ∈ [0, u′ − u] is to only have σ(u + 1) = ũ − 1,
and σ(u+ s) ≥ ũ+ 2 otherwise. Indeed, values smaller than ũ must happen just following u in order
to allow decreasing by 1, and having additional negative steps after u+ 1 (e.g., σ(u+ 2) = ũ− 2)
would require a step σ(u + s + 1) − σ(u + s) > 3 for some s ∈ [2, u′ − u] (since the values
ũ− 1, ũ, ũ+ 1 already have pre-images, given by u+ 1, u, u′, respectively), which is a contradiction.
Then, if σ(u+1) = ũ−1, we must have σ(u+2) = ũ+2 (since we cannot have longer steps), which
implies σ(u′− 1) ≥ ũ+ 3 and thus σ(u′)− σ(u′− 1) ≤ −2, which is a contradiction. Alternatively,
we must have σ(u + s) ≥ ũ + 2 for all s ∈ [1, u′ − u − 1]. This implies σ(u′ − 1) = ũ + 2,
σ(u′ − 2) = ũ+ 3, and more generally σ(u′ − t) = ũ+ t+ 1, since these are the only allowed steps
to obtain σ(u′) = ũ+ 1. Then, we have σ(u+ 1) = σ(u′ − (u′ − u− 1)) = ũ+ (u′ − u) > ũ+ 3,
which is in contradiction with σ(u+ 1)− σ(u) ≤ 3. We have thus proved u′ ≤ u+ 3. We thus have
that σ−1 satisfies (61), which shows Φ−1

2 = Φ2.

Step 2: Lower bound on |Φ2|. Denote as before σ(u) = ũ. By denoting ∆v = σ(v) − v for
arbitrary v, observe that ∆u′ −∆u′−1 ∈ {2, 1, 0,−1}. Similarly we define Γũ := σ−1(ũ)− ũ. By
the previous argument, we also have Γũ+1 = Γũ + {2, 1, 0,−1}. Fix an arbitrary u0, say u0 = 1 and
consider the subset of Φ2 given by

Φb2 = {σ ∈ Φ2;σ(u0) = u0, σ(u0 − 1) = u0 − 1} .
Φb2 thus contains permutations with ‘fixed’ boundary conditions. For σ ∈ Φb2, the boundary condition
prevents ∆u0+1 < ∆u0

, so we identify the following possible cases:

1-block: ∆u0+1 = ∆u0
. In this case, σ(u0 + 1) = σ(u0) + 1.

2-block: ∆u0+1 = ∆u0 + 1. This implies Γũ0+2 = Γũ0
− 1, which in turn implies Γũ0+1 =

Γũ0 + 1, and finally ∆u0+2 = ∆u0+1 − 2. In summary, σ(u0 + 1) = σ(u0) + 2 and
σ(u0 + 2) = σ(u0) + 1.

3-block: ∆u0+1 = ∆u0 + 2. This implies Γũ0+3 = Γũ0 − 2, which necessarily implies Γũ0+1 =
Γũ0

+ 2, Γũ0+2 = Γũ0+1 − 2 and Γũ0+3 = Γũ0+2 − 2. This corresponds to σ(u0 + 1) =
σ(u0) + 3, σ(u0 + 2) = σ(u0) + 2 and σ(u0 + 3) = σ(u0) + 1.
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So an element of Φb2 can be constructed sequentially by assembling three possible ‘blocks’ Bi of size
i = {1, 2, 3}. Moreover, we verify immediately that the following transitions are admissible:

B1 → B{1,2,3} , B2 → B{1,2} , B3 → B1 .

Thus, by denoting B(m;Bi) the number of permutations in Φb2 restricted to their first m elements,
and which that start (after u0) with a block of type Bi, we have the following recursion:

B(m;B1) = B(m− 1;B1) + B(m− 1;B2) + B(m− 1;B3)

B(m;B2) = B(m− 2;B2) + B(m− 2;B1)

B(m;B3) = B(m− 3;B1) , (62)

with B(i;Bi) = 1. Let Fi(z) :=
∑
m≥0 B(m,Bi)z

m be the generating function associated to each
of the above sequences. We have

F1(z) = z−1(F1(z) + F2(z) + F3(z)) , F2(z) = z−2(F1(z) + F2(z)) , F3(z) = z−3F1(z) .

By substituitng F2, F3 into the first equation, we obtain

F1(z)(1− z−1 − z−3(1− z−2)−1 − z−4) = 0 ,

so F1 has a pole at τ ≈ 1.714, the solution of the associated characterstic equation z = 1+ 1
z2−1 + 1

z3 .
Moreover, this pole is also present in F2 and F3. This shows that B(m,Bi) � Ciτm, and hence

|Φ2| ≥ |Φb2| =
3∑
i=1

B(d;Bi) = Θ(τd) .

Step 3: cycle statistics. Let us now compute a bound for γd(k) using Corollary 8. Let

ξ(Φ2, n; d) = {σ ∈ Φ2 : Fix(σ) ≥ n}

denote the set of elements of Φ2 that fix at least n positions, set n = (1− η)d, and assume η < 1/2.
Observe that this necessarily implies that two consecutive indices, say u0 and u0 − 1, are fixed, by
the pigeonhole principle. Thus

ξ(Φ2, n) ⊂ Φb2 ,

and we can use the characterisation of elements in Φb2. We have

|ξ(Φ2, (1− η)d; d)| ≤
d∑

n′=(1−η)d

(
d

d− n′

)
|B(n′;B1) + B(n′;B2) + B(n′;B3)|

≤ Cτηd
d∑

n′=(1−η)d

(
d

d− n′

)
≤ C

(
eη−1

)ηd
τηd ,

where C is an abolute constant. Finally, from Example 11, we have

n < c(σ)⇒ 2n− d < Fix(σ) ,

thus ζ(Φ2, n) ≤ ξ(Φ2, 2n − d). By picking n = (1 − η)d with η < 1/4, we have 2n − d =
(1− 2η)d > d/2 and

γd(k) ≤ ξ(Φ2, (1− 2η)d)

|Φ2|
+O

(
k−d+max(n,d/2+7)

)
(63)

≤ C(e(2η)−1)2ηdτ (2η−1)d +O
(
k−d+max(n,d/2+7)

)
. (64)

= C

(
e2η

(2η)2ητ1−2η

)d
+O

(
k−ηd

)
. (65)

When 2η < 0.15, we verify that e2η

(2η)2ητ1−2η < 1.
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