
Supplementary Material for STCN
A PyTorch-style Pseudocode
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Then, we show our efficient PyTorch [1] style implementation of Eq. 5.

Algorithm 1: L2 Similarity Computation
// Input:
// kM : Ck × THW
// kQ : Ck ×HW
// Returns:
// S : THW ×HW

1 function GetSimilarity(kM, kQ)
// Decomposing L2 distance into two parts: ab, a_sq
// b_sq is canceled out as shown above.

2 ab← kM.transpose().matmul(kQ) // ab : THW ×HW
3 a_sq← kM.pow(2).sum(dim=0).unsqueeze(dim=1) // a_sq : THW × 1

// This step utilizes broadcasting: dimensions of size 1 will be
implicitly expanded to match other tensors without extra memory
cost

4 S← 2 ∗ ab− a_sq // S : THW ×HW
5 return S

B Additional results on memory scheduling

Table 1 tabulates additional quantitative results of STM/STCN with dot product/L2 similarity under
different memory scheduling strategies.

1. With STM, there is a significant performance drop when the temporary frame is not used
regardless of the similarity function. This supports our claim that STM requires close-range
relations for robust matching.

2. With STCN+dot product, the performance drop is slight. Note that by dropping the tempo-
rary frame, we also enjoy a 31% increase in FPS as shown in the main paper. This supports
that the STCN architecture provides more robust key features.

3. With STCN+L2 similarity, it performs the best when the temporary frame is not used (while
also enjoying the 31% speed improvement). This suggests L2 similarity is more susceptible
to drifting when the memory scheduling is not carefully designed. Overall, L2 similarity is
still beneficial.
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Table 1: Performance (J&F) of networks under different memory configurations on the DAVIS
2017 validation set [2].

Every 5th + Last Every 5th only

STM + Dot product 83.3 81.3
STM + L2 similarity 82.7 81.0
STCN + Dot product 84.3 84.1
STCN + L2 similarity 83.1 85.4

C DAVIS test-dev

The test-dev split of DAVIS 2017 is notably more difficult than the training or validation set
with rapid illumination changes and highly similar objects. As a result, methods with strong spatial
constraints like KMN [3] or CFBI [4] typically perform better (while still suffering a drop in
performance from validation to test-dev). Some would use additional engineering, such as using
600p videos instead of the standard 480p [5, 3, 6].

Our baseline is severally punished for lacking spatial cues. BL30K helps a lot in this case but is still
not enough to reach SOTA performance. We find that simply encoding memory more frequently, i.e.,
every third frame instead of every fifth frame, can boost the performance of the model with extended
training to be above state-of-the-art on DAVIS test-dev. Admittedly, this comes with additional
computational and memory costs. Thanks to our efficient base model, STCN with increased memory
frequency is still runnable on the same 11GB GPU and is the fastest among competitors. Table 2
tabulates the comparison with other methods. FPS for methods that use 600p evaluation is estimated
from that of 480p (assuming linear scaling) unless given in their original paper.

Table 2: Comparisons between competitive methods on DAVIS 2017 test-dev [2]. M3 denotes
increased memory frequency. ∗ denotes 600p evaluation and † denotes the use of spatial cues – our
baseline is severally punished for lacking it which is crucial in this particular data split. Subscript
arrow denotes changes from baseline. Some results are modified from the table in [6]. 1

Method DAVIS 2017 test-dev [2]

J&F J F FPS

OSMN [7] 41.3 37.3 44.9 <2.38
OnAVOS [8] 56.5 53.4 59.6 <0.03
RGMP [9] 52.9 51.3 54.4 <2.38
FEELVOS [10] 57.8 55.2 60.5 <1.85
PReMVOS [11] 71.6 67.5 75.7 <0.02
STM ∗ [5] 72.2 69.3 75.2 6.5
RMNet † [12] 75.0 71.9 78.1 <11.9
CFBI ∗† [4] 76.6 73.0 80.1 2.9
KMN ∗† [3] 77.2 74.1 80.3 <5.4
CFBI+ ∗† [6] 78.0 74.4 81.6 3.4
LCM † [13] 78.1 74.4 81.8 9.2
MiVOS† [14] + BL30K 78.6 74.9 82.2 10.7

Ours 76.1 72.7 79.6 20.2
Ours, M3 76.5↑0.4 73.1↑0.4 80.0↑0.4 14.6↓5.6
Ours + BL30K 77.8↑1.7 74.3↑1.6 81.3↑1.7 20.2
Ours + BL30K, M3 79.9↑3.8 76.3↑3.6 83.5↑3.9 14.6↓5.6

D Re-timing on Our Hardware

The inference speed of networks (even with the same architecture) can be influenced by implemen-
tations, software package versions, or simply hardware. As we are mainly evolving STM [5] into
STCN, we believe that it is just to re-time our re-implemented STM with our software and hardware

2



for a fair comparison. While the original paper reported 6.25 single-object FPS (which will only
be slower for multi-object), we obtain 10.2 multi-object FPS which is reported in our Table 3. We
believe this gives the proper acknowledgment that STM deserves.

E Multi-scale Testing and Ensemble

To compete with other methods that use multi-scale testing and/or model ensemble on the
YouTubeVOS 2019 validation set [15], we also try these techniques on our model. Table 3 tab-
ulates the results. Our base model beats the previous winner [16], and our ensemble model achieves
top-1 on the still active validation leaderboard at the time of writing. The 2021 challenge has not
released the official results/technical reports by NeurIPS 2021 deadline, but our method outperforms
all of them on the validation set.

For multi-scale testing, we feed the network with 480p/600p and original/flipped images and simply
average the output probabilities. As we trained our network with 480p images, we additionally
employ kernelized memory reading [3] in 600p inference for a stronger regularization.

For model ensemble, we adopt three model variations: 1) original model trained with BL30K [14],
2) backbone replaced by WideResNet-50 [17], and 3) backbone replaced by WideResNet-50 [17] +
ASPP [18]. Their outputs are simply averaged as in the case for multi-scale inference. We do not try
deeper models due to computational constraints.

Table 3: Results on the YouTubeVOS 2019 validation split [15]. MS denotes multi-scale testing.
EMN [16] is the previous challenge winner. Methods are ranked by performance, with variants of the
same method grouped together.

Method MS? Ensemble? G JS FS JU JU
EMN [16] 3 3 82.0 - - - -
CFBI [4] 7 7 81.0 80.6 85.1 75.2 83.0
CFBI [4] 3 7 82.4 81.8 86.1 76.9 84.8
MiVOS [14] 7 7 82.4 80.6 84.7 78.1 86.4
Ours 7 7 84.2 82.6 87.0 79.4 87.7
Ours 3 7 85.2 83.5 87.8 80.7 88.7
Ours 3 3 86.7 85.1 89.6 82.2 90.0

F Implementation Details

F.1 Optimizer

The Adam [19] optimizer is used with default momentum β1 = 0.9, β2 = 0.999, a base learning rate
of 10−5, and a L2 weight decay of 10−7. During training, we use PyTorch’s [1] Automatic Mixed
Precision (AMP) for speed up with automatic gradient scaling to prevent NaN. It is not used during
inference.

Batchnorm layers are set to eval mode during training, meaning that their running mean and variance
are not updated and batch-wise statistics are not computed to save computational and memory cost
following STM [5]. The normalization parameters are thus kept the same as the initial ImageNet
pretrained network. The affine parameters γ and β are still updated through back-propagation.

F.2 Feature Fusion

As mentioned in the main text (feature reuse), we fuse the last layer features from both encoders
(before the projection head) with two ResBlocks [20] and a CBAM block [21] as the final value
output. To be more specific, we first concatenate the features from the key encoder (1024 channels)
and the features from the value encoder (256 channels) and pass them through a BasicBlock style

1MiVOS [14] uses spatial cues from kernelized memory reading [3] in and only in their DAVIS test-dev
evaluation.
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ResBlock with two 3× 3 convolutions which output a tensor with 512 channels. Batchnorm is not
used. We maintain the channel size in the rest of the fusion block, and pass the tensor through a
CBAM block [21] under the default setting and another BasicBlock style ResBlock.

F.3 Dataset

All the data augmentation strategies follow exactly from the open-sourced training code of
MiVOS [14] to avoid engineering distractions. They are mentioned here for completeness, but
readers are encouraged to look at the implementation directly.

F.3.1 Pre-training

We used ECSSD [22], FSS1000 [23], HRSOD [24], BIG [25], and both the training and testing set of
DUTS [26]. We downsized BIG and HRSOD images such that the longer edge has 512 pixels. The
annotations in BIG and HRSOD are of higher quality and thus they appear five times more often than
images in other datasets. We use a batch size of 16 during the static image pretraining stage with
each data sample containing three synthetic frames augmented from the same image.

For augmentation, we first perform PyTorch’s random scaling of [0.8, 1.5], random horizontal flip,
random color jitter of (brightness=0.1, contrast=0.05, saturation=0.05, hue=0.05),
and random grayscale with a probability of 0.05 on the base image. Then, for each synthetic frame,
we perform PyTorch’s random affine transform with rotation between [−20, 20] degrees, scaling
between [0.9, 1.1], shearing between [−10, 10] degrees, and another color jitter of (brightness=0.1,
contrast=0.05, saturation=0.05). The output image is resized such that the shorter side has a
length of 384 pixels, and then a random crop of 384 pixels is taken. With a probability of 33%, the
frame undergoes an additional thin-plate spline transform [27] with 12 randomly selected control
points whose displacements are drawn from a normal distribution with scale equals 0.02 times the
image dimension (384).

F.3.2 Main training

We use the training set of YouTubeVOS [15] and DAVIS [2] 480p in main training. All the images in
YouTubeVOS are downsized such that shorter edge has 480 pixels, like those in the DAVIS 480p
set. Annotations in DAVIS has a higher quality and they appear 5 times more often than videos in
YouTubeVOS, following STM [5]. We use a batch size of 8 during main training with each data
sample containing three temporally ordered frames from the same video.

For augmentation, we first perform PyTorch’s random horizontal flip, random resized
crop with (crop_size=384, scale=(0.36, 1), ratio=(0.75, 1.25)), color jitter of
(brightness=0.1, contrast=0.03, saturation=0.03), and random grayscale with a proba-
bility of 0.05 for every image in the sequence with the same random seed such that every image
undergoes the same initial transformation. Then, for every image (with different random seed), we ap-
ply another PyTorch’s color jitter of (brightness=0.01, contrast=0.01, saturation=0.01),
random affine transformation with rotation between [−15, 15] degrees and shearing between [−10, 10]
degrees. Finally, we pick at most two objects that appear on the first frame as target objects to be
segmented.

F.3.3 BL30K training

BL30K [14] is a synthetic VOS dataset that can be used after static image pretraining and before main
training. It allows the model to learn complex occlusion patterns that do not exist in static images
(and the main training datasets are not large enough). The sampling and augmentation strategy is
the same as the ones in main training, except 1) cropping scale in the first random resized crop is
(0.25, 1.0) instead of (0.36, 1.0) – this is because BL30K images are slightly larger and 2) we discard
objects that are tiny in the first frame (<100 pixels) as they are very difficult to learn and unavoidable
in these synthetic data.

F.4 Training iteration and scheduling

By default, we first train on static images for 300K iterations then perform main training for 150K
iterations. When we use BL30K [14], we train for 500K iterations on it after static image pretraining
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and before main training. Main training would be extended to 300K iterations to combat the domain
shift caused by BL30K. Regular training without BL30K takes around 30 hours and extended training
with BL30K takes around 4 days in total.

With a base learning rate of 10−5, we apply step learning rate decay with a decay ratio of γ = 0.1.
In static image pretraining, we perform decay once after 150K iterations. In standard (150K) main
training, once after 125K iterations; in BL30K training, once after 450K iterations; in extended
(300K) main training, once after 250K iterations. The learning rate scheduling is independent of
the training stages, i.e., all training stages start with the base learning rate of 10−5 regardless of any
pretraining.

As for curriculum learning mentioned in Section 5, we apply the same schedule as MiVOS [14]. The
maximum temporal distance between frames is set to be [5, 10, 15, 20, 25, 5] at the corresponding
iterations of [0%, 10%, 20%, 30%, 40%, 90%] or [0%, 10%, 20%, 30%, 40%, 80%] of the total train-
ing iterations for main training and BL30K respectively. A longer annealing time is used for BL30K
because it is relatively harder.

F.5 Loss function

We use bootstrapped cross entropy (or hard pixel-mining) as in MiVOS [14]. Again, the parameters
are the same as in MiVOS [14] as we do not aim to over-engineer and are included for completeness.

For the first 20K iterations, we use standard cross entropy loss. After that, we pick the top-p% pixels
that have the highest loss and only compute gradients for these pixels. p is linearly decreased from
100 to 15 over 50K iterations and is fixed at 15 afterward.

References
[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In NIPS,
2019.

[2] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander Sorkine-Hornung, and Luc
Van Gool. The 2017 davis challenge on video object segmentation. In arXiv:1704.00675, 2017.

[3] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized memory network for video object segmentation.
In ECCV, 2020.

[4] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative video object segmentation by foreground-
background integration. In ECCV, 2020.

[5] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation using
space-time memory networks. In ICCV, 2019.

[6] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative video object segmentation by multi-scale
foreground-background integration. In PAMI, 2021.

[7] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K Katsaggelos. Efficient video
object segmentation via network modulation. In CVPR, 2018.

[8] Paul Voigtlaender and Bastian Leibe. Online adaptation of convolutional neural networks for video object
segmentation. In BMVC, 2017.

[9] Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and Seon Joo Kim. Fast video object segmentation
by reference-guided mask propagation. In CVPR, 2018.

[10] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and Liang-Chieh Chen.
Feelvos: Fast end-to-end embedding learning for video object segmentation. In CVPR, 2019.

[11] Jonathon Luiten, Paul Voigtlaender, and Bastian Leibe. Premvos: Proposal-generation, refinement and
merging for video object segmentation. In ACCV, 2018.

[12] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping Zhang, and Wenxiu Sun. Efficient regional
memory network for video object segmentation. 2021.

5



[13] Li Hu, Peng Zhang, Bang Zhang, Pan Pan, Yinghui Xu, and Rong Jin. Learning position and target
consistency for memory-based video object segmentation. In CVPR, 2021.

[14] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Modular interactive video object segmentation:
Interaction-to-mask, propagation and difference-aware fusion. In CVPR, 2021.

[15] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas Huang.
Youtube-vos: A large-scale video object segmentation benchmark. In ECCV, 2018.

[16] Zhishan Zhou, Lejian Ren, Pengfei Xiong, Yifei Ji, Peisen Wang, Haoqiang Fan, and Si Liu. Enhanced
memory network for video segmentation. In ICCV Workshops, 2019.

[17] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.

[18] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[21] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention
module. In ECCV, 2018.

[22] Jianping Shi, Qiong Yan, Li Xu, and Jiaya Jia. Hierarchical image saliency detection on extended cssd. In
TPAMI, 2015.

[23] Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung Tang. Fss-1000: A 1000-class dataset
for few-shot segmentation. In CVPR, 2020.

[24] Yi Zeng, Pingping Zhang, Jianming Zhang, Zhe Lin, and Huchuan Lu. Towards high-resolution salient
object detection. In ICCV, 2019.

[25] Ho Kei Cheng, Jihoon Chung, Yu-Wing Tai, and Chi-Keung Tang. Cascadepsp: Toward class-agnostic and
very high-resolution segmentation via global and local refinement. In CVPR, 2020.

[26] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin, and Xiang Ruan.
Learning to detect salient objects with image-level supervision. In CVPR, 2017.

[27] Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. PAMI,
1989.

6


	PyTorch-style Pseudocode
	Additional results on memory scheduling
	DAVIS test-dev
	Re-timing on Our Hardware
	Multi-scale Testing and Ensemble
	Implementation Details
	Optimizer
	Feature Fusion
	Dataset
	Pre-training
	Main training
	BL30K training

	Training iteration and scheduling
	Loss function


