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APPENDIX

A EXTENDED BACKGROUND

A.1 RL ALGORITHMS DESCRIPTIONS

Continuing from section 2.1} we provide an overview of standard RL definitions and the deep RL
algorithms we use in this work.

Two important functions in RL are the value function and the action-value function (also called the
@ function). These quantify, for policy , the expected sum of discounted future rewards given any
initial fixed state or state-action pair, respectively:
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Relatedly, the advantage function A™ (s, at) = Q™ (s¢,ar) — V™ (s;) quantifies the expected im-
provement from executing any given action a; from s, rather than following the policy. These func-
tions summarize the future evolution of an MDP and are often parameterized and learned auxiliary
to or even in-place of the policy model.

On-policy methods. Modern on-policy RL algorithms collect a new set of trajectories at each it-
eration with the current policy, discarding old data. They use these trajectories to learn the current
policy’s value function and recover a corresponding advantage function from the observed Monte-
Carlo returns, using techniques such as the popular Generalized Advantage Estimator (GAE) (Schul-
man et al., 2015). The estimated advantages A“4¥ are then used to compute the policy gradient
and update the policy, maximizing the probability of performing the best-observed actions (Sutton
& Barto| [2018). Since the values of ASAE are based on a limited set of trajectories, on-policy
methods generally suffer from high-variance targets and gradients (Pendrith et al.| [ 1997; Mannor
et al., 2007; [Wu et al., [2018). Proximal Policy Optimization (PPO) (Schulman et al., 2017) is one
of the most established on-policy algorithms that attenuates these issues by taking conservative up-
dates, restricting the policy update from making larger than e changes to the probability of executing
any individual action. PPO considers the ratio between the updated and old policy probabilities

Rr(atlst) = % to optimize a pessimistic clipped objective of the form:

Inin{Rﬂ(at|s,5)AGAE(s,57 at),clip(Rx(ag|st), 1 — e, 1+ e)AGAE(st, ai)}. (8)

As mentioned in the main text, PPO also includes a small entropy bonus to incentivize exploration
and improve data diversity. This term can be differentiated and optimized without any estimator
since we have full access to the policy model and its output logits, independently of the collected
data.

Off-policy methods. In contrast, off-policy algorithms generally follow a significantly different op-
timization approach. They store many different trajectories collected with a mixture of old policies
in a large replay buffer, B. They use this data to directly learn the () function for the optimal greedy
policy with a squared loss based on the Bellman backup (Bellman, |{1957):
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(Bellman, [1957). Agent behavior is then implicitly defined by the epsilon-greedy policy based on
the actions with the highest estimated Q values. We refer to the deep Q-networks paper (Mnih et al.,
2013)) for a detailed description of the seminal DQN algorithm. Rainbow DQN (Hessel et al., [2018))
is a modern popular extension that introduces several auxiliary practices from proposed orthogonal
improvements, which they show provide compatible benefits. In particular, they use n-step returns
(Sutton & Barto} 2018)), prioritized experience replay (Schaul et al.|,|2016), double Q-learning (Has-
selt, 2010), distributional RL (Bellemare et al., 2017), noisy layers (Fortunato et al., [2018])), and a
dueling network architecture (Wang et al., [ 2016).
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A.2 5 HYPERBOLICITY

d-hyperbolicity was introduced by Gromov (1987) as a criterion to quantify how hyperbolic a metric
space (X, d) is. We can express d-hyperbolicity in terms of the Gromov product, defined for z,y €
X at some base point » € X as measuring the defect from the triangle inequality:

(aly)e = 3 (d(a,7) + d(r,) — d(z, ). (10

Then, X is d-hyperbolic if for all base points » € X and for any three points x, y, z € X the Gromov
product between z and y is lower than the minimum Gromov product of the other pairs by at most
some slack variable J:

(@y)r = min((z(y)r, (z[y)r) — 0. (11)
In our case (a complete finite-dimensional path-connected Riemannian manifold, which is a
geodesic metric space), §-hyperbolicity means that for every point on one of the sides of a geodesic
triangle Axyz, there exists some other point on one of the other sides whose distance is at most §, or
in other words, geodesic triangles are -slim. In trees, the three sides of a triangle must all intersect
at some midpoint (Figure [3). Thus, every point belongs to at least two of its sides yielding § = 0.
Thus the §-hyperbolicity can be interpreted as measuring the deviation of a given metric from an
exact tree metric.

A.3 GENERATIVE ADVERSARIAL NETWORKS AND SPECTRAL NORMALIZATION

GANSs. In GAN training, the goal is to obtain a generator network to output samples resembling
some ‘true’ target distribution. To achieve this, (Goodfellow et al.|(2014)) proposed to alternate train-
ing of the generator with training an additional discriminator network, tasked to distinguish between
the generated and true samples. The generator’s objective is then to maximize the probability of its
own samples according to the current discriminator, backpropagating directly through the discrim-
inator’s network. Since both the generated data and discriminator’s network parameters constantly
change from this alternating optimization, the loss landscape of GANS is also highly non-stationary,
resembling, to some degree, the RL setting. As analyzed by several works, the adversarial nature
of the optimization makes it very brittle to exploding and vanishing gradients instabilities (Arjovsky
& Bottou, [2017; |Brock et al.,[2018) which often result in common failure modes from severe diver-
gence or stalled learning (Lin et al.,2021). Consequently, numerous practices in the GAN literature
have been proposed to stabilize training (Radford et al.| 2015 |Arjovsky et al.| 2017} |Gulrajani
et al.,2017). Inspired by recent work, in this work, we focus specifically on spectral normalization
(Miyato et al., 2018), one such practice whose recent success made in ubiquitous in modern GAN
implementations.

Spectral normalization. In the adversarial interplay characterizing GAN training, instabilities com-
monly derive from the gradients of the discriminator network, fp (Salimans et al.,[2016). Hence,
Miyato et al. (2018) proposed to regularize the spectral norm of discriminator’s layers, [; € fp,i.e.,
the largest singular values of the weight matrices || WJWN lsn = J(st N, to be approximately one.
Consequently, spectral normalization effectively bounds the Lipschitz constant of the whole discrim-
inator network since, || fp||Lip < HfZIHZjHLip < H]L:1||W]'SN||sn = 1. In practice, the proposed
implementation approximates the largest singular value of some original unconstrained weight ma-
trices by running power iteration (Golub & Van der Vorst, 2000). Thus, it recovers the spectrally-
normalized weights with a simple re-parameterization, dividing the unconstrained weights by their

relative singular values W]SN = U(V;}'j). As mentioned in the main text, recent work (Lin et al.,
2021) showed that one of the main reasons for the surprising effectiveness of spectral normalization
in GAN training comes from effectively regulating both the magnitude of the activations and their
respective gradients, very similarly to LeCun initialization (LeCun et al.}|2012). Furthermore, when
applied to the discriminator, spectral normalization’s effects appear to persist throughout training,
while initialization strategies tend to only affect the initial iterations. In fact, in Figure 2 of their
paper, they also show that ablating spectral normalization empirically results in exploding gradients
and degraded performance, closely resembling our same observed instabilities in Figure[6| (B).

Other recent works also studied the application of spectral normalization (Miyato et al., 2018) for
reinforcement learning (Bjorck et al., 2021} |Gogianu et al.,|2021). In line with our results from Fig-
ure [/} they found that naively applying spectral normalization to traditional Euclidean architectures
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leads to underwhelming results for RL. Yet, they also observed performance benefits when applying
spectral normalization exclusively to particular layers. These empirical insights could inform future
improvements for S-RYM to retain the stability benefits of SN with less restrictive regularization.

B STABILIZATION OF HYPERBOLIC REPRESENTATIONS

One of the main challenges of incorporating hyperbolic geometry with neural networks comes from
end-to-end optimization of latent representations and parameters located in hyperbolic space. For
instance, numerical issues and vanishing gradients occur as representations get too close to either the
origin or the boundary of the Poincaré ball (Ganea et al., 2018). Moreover, training dynamics can
tend to push representations towards the boundary, slowing down learning and make optimization
problems of earlier layers ineffective (Guo et al.,2022). A number of methods have been used to
help stabilize learning of hyperbolic representations including constraining the representations to
have a low magnitude early in training, applying clipping and perturbations (Ganea et al., 2018;
Khrulkov et al., |2020), actively masking invalid gradients (Mathieu et al., 2019), and designing
initial ‘burn-in’ periods of training with lower learning rates (Nickel & Kiela, 2017} Bécigneul &
Ganea, 2018)). More recently |Guo et al.| (2022)) also showed that very significant magnitude clipping
of the latent representations can effectively attenuate these numerical and learning instabilities when
training hyperbolic classifiers for popular image classification benchmarks.

B.1 MAGNITUDE CLIPPING

Guo et al.| (2022) recently proposed to apply significant clipping of the magnitude of the latent
representations when using hyperbolic representations within deep neural networks. As in our work,
they also consider a hybrid architecture where they apply an exponential map before the final layer to
obtain latent representations in hyperbolic space. They apply the proposed clipping to constrain the
input vector of the exponential map to not exceed unit norm, producing hyperbolic representations
via:

1
T = expp <min{1,|xE||} sz>. (12)

The main motivation for this practice is to constrain representation magnitudes, which the authors
linked to a vanishing gradient phenomenon when training on standard image classification datasets
(Krizhevsky et al., 2009; |Deng et al.| |2009). However, a side effect of this formulation is that the
learning signal from the representations exceeding a magnitude of 1 will solely convey information
about the representation’s direction and not its magnitude. Since the authors do not share their im-
plementation, we tested applying their technique as described in the paper. We found some benefits
in additionally initializing the parameters of the last two linear layers (in Euclidean and hyperbolic
space) to 100 x smaller values to facilitate learning initial angular layouts.

B.2 IMAGE CLASSIFICATION EXPERIMENTS

To empirically validate and analyze our clipping implementation we consider evaluating deep hy-
perbolic representations on image classification tasks, following the same training practices and
datasets from|Guo et al.|(2022)). In particular, we utilize a standard ResNet18 architecture (He et al.,
2016b)) and test our network on CIFAR10 and CIFAR100 (Krizhevsky et al.,[2009). We optimize the
Euclidean parameters of the classifier using stochastic gradient descent with momentum and the hy-
perbolic parameters using its Riemmanian analogue (Bonnabel,|2013). We train for 100 epochs with
an initial learning rate of 0.1 and a cosine schedule (Loshchilov & Hutter| 2017)), using a standard
batch size of 128. We repeat each experiment 3 times, recording the final top-1 classification accu-
racy together with the latent representations in Euclidean space right before applying the exponential
map at the final layer.
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True label:  Truck True label: Bird True label: Ship True label: Dog
Predicted: Truck Predicted: Bird Predicted: Ship Predicted: Dog
Magnitude:  0.5468 Magnitude:  0.4948 Magnitude:  0.5024 Magnitude:  0.4986

=S
True label: Dog True label: Car True label: Frog True label: Deer
Predicted: Dog Predicted:  Airplane Predicted: Frog Predicted: Bird
Magnitude: ~ 0.3547 Magnitude:  0.3501 Magnitude:  0.3670 Magnitude:  0.3523

Figure 11: Visualization of test images from CIFAR10, with the corresponding final latent represen-
tations magnitudes from our hyperbolic ResNet18 classifier implemented with S-RYM. We sample
datapoints with the 5% highest magnitudes (Top) and the 5% lowest magnitudes (Bottom).

Table 3: Performance results on standard image classification benchmarks

CIFAR10 with ResNet18
Metric\ Architecture Euclidean Hyperbolic + Clipping Hyperbolic + S-RYM
Top-1 accuracy 94.92 +0.19 94.81 £ 0.17 95.12 £ 0.09
L2 representations magnitudes 5.846 1.00 0.481
Magnitudes standard deviation 0.747 0.00 0.039
CIFAR100 with ResNet18
Metric\ Architecture Euclidean ResNet18 Hyperbolic + Clipping Hyperbolic + S-RYM
Top-1 accuracy 76.86 + 0.23 76.75 + 0.23 77.49 + 0.35
L2 representations magnitudes 11.30 1.00 0.852
Magnitudes standard deviation 1.571 0.00 0.076

In Table[3] we report the different classifiers” performance together with the mean and standard de-
viation of the representations’ magnitudes from the images in the test set. The performance of the
clipped hyperbolic classifier is very close to the performance of the Euclidean classifier, matching
2022)’s results and validating our implementation. However, the learned representations’
magnitudes soon overshoot the clipping threshold and get mapped to constant-magnitude vectors
throughout training. Therefore, the model will effectively stop optimizing for the representations’
magnitudes and only focus on their unit direction. As volume and distances on the Poincaré ball
grow expoentially with radius, the magnitude component of the hyperbolic representations is pre-
cisely what facilitates encoding hierarchical information, providing its intuitive connection with tree
structures. Hence, the resulting clipped ‘hyperbolic’ space spanned by the clipped latent represen-
tations will lose its defining degree of freedom and approximately resemble an n — 1-dimensional
Euclidean space with a rescaled metric, potentially explaining its performance similarity with stan-
dard Euclidean classifiers. Even though the focus of our work is not image classification, we find
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S-RYM’s performance remarkably recovers and even marginally exceeds the performance of both
the Euclidean and the clipped hyperbolic classifiers on these saturated benchmarks. Furthermore,
its representations do not explode and maintain magnitude diversity, enabling to more efficiently
capture the relative hierarchical nature of image-classification benchmarks (Khrulkov et al.| [2020).
Overall, these results suggest that clipping simply treats the symptoms of the instabilities caused by
end-to-end large scale training by essentially resorting back to Euclidean representations for image
classification.

Analyzing the magnitude component of the latent representations for our hyperbolic classifier with
S-RYM, we find it correlates with classification performance. For instance, on CIFARI10 the test
performance on the images with representations’s with the top 5% magnitudes is 97.17%, while for
the bottom 5% is 79.64%. Furthermore, we display some samples from these two distinct groups in
Figure[TT] From these results and visualizations, it appears that the hyperbolic hierarchical structure
serves to encode the degree of uncertainty to disambiguate between multiple image labels due to
the blurriness and varying difficulty of the CIFAR10 datapoints. Hence, we believe the observed
accuracy improvements of our hyperbolic classifier might be specifically due to more efficiently
capturing this specific hierarchical property of the considered datasets.

C IMPLEMENTATION DETAILS

We provide a descriptions of the utilized benchmarks and implementations with the corresponding
hyper-parameters for both our Proximal Policy Optimization (PPO) (Schulman et al., 2017) and
Rainbow DQN experiments (Hessel et al., 2018)). We consider these two main baselines since they
are two of the most studied algorithms in the recent RL literature onto which many other recent
advances also build upon (e.g., (Cobbe et al.| 2021} |Laskin et al., 2020b; [Mohanty et al., 2021;
Raileanu et al.|[2020; Raileanu & Fergus| 2021} Yarats et al.,[2021a;|Van Hasselt et al.,|2019; | Laskin
et al., 2020a; [Schwarzer et al.| [2020)). Furthermore, PPO and Rainbow DQN are based on the main
families of model-free RL algorithms, with very distinct properties as described in Appendix
Hence, unlike most prior advances, we do not constrain our analysis to a single class of methods,
empirically showing the generality of hyperbolic deep RL. Our implementations closely follow the
reported details from recent research, and were not tuned to facilitate our integration of hyperbolic
representations. The main reason for this choice is that we wanted to avoid introducing additional
confounding factors from our evaluation of hyperbolic representations, as ad-hoc tuning frequently
plays a significant role in RL performance (Islam et al., |2017). We would like to acknowledge
the Geoopt optimization library (He et al., 2016a), which we used to efficiently train the network
parameters located on Riemannian manifolds other than R"™.

C.1 BENCHMARKS

Procgen. The Procgen generalization benchmark (Cobbe et al., 2020) consists of 16 game environ-
ments with procedurally-generated random levels. The state spaces of these environments consist
of the RGB values from the 64x64 rescaled visual renderings. Following common practice and the
recommended settings, we consider training agents using exclusively the first 200 levels of each
environment and evaluate on the full distribution of levels to assess agent performance and gen-
eralization. Furthermore, we train for 25M total environment steps and record final training/test
performance collected across the last 100K steps averaged over 100 evaluation rollouts.

Atari 100K. The Atari 100K benchmark (Kaiser et al.,[2020) is based on the seminal problems from
the Atari Learning Environment (Bellemare et al.| 2013). In particular, this benchmark consists of
26 different environments and only 100K total environment steps for learning each, corresponding
roughly to 2hrs of play time. The environments are modified with the specifications from (Machado
et al., 2018), making the state spaces of these environments 84x84 rescaled visual renderings and
introducing randomness through sticky actions. We note that this is a significantly different setting
than Procgen, testing the bounds for the sample efficiency of RL agents.

C.2 PPO IMPLEMENTATION

Our PPO implementation follows the original Procgen paper (Cobbe et al., 2020), which entails a
residual convolutional network (Espeholt et al., [2018)) and produces a final 256-dimensional latent
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representation with a shared backbone for both the policy and value function. Many prior im-
provements over PPO for on-policy learning have been characterized by either introducing auxiliary
domain-specific practices, increasing the total number of parameters, or performing additional op-
timization phases - leading to significant computational overheads (Cobbe et al., 2021} Raileanu &
Fergus| [2021; Mohanty et al., |2021)). Instead, our approach strives for an orthogonal direction by
simply utilizing hyperbolic geometry to facilitate encoding hierarchically-structured features into
the final latent representations. Thus, it can be interpreted as a new way to modify the inductive bias
of deep learning models for reinforcement learning.

Table 4: PPO hyper-parameters used for the Procgen generalization benchmark

PPO hyperparameters
Parallel environments 64
Stacked input frames 1
Steps per rollout 16384
Training epochs per rollout 3
Batch size 2048
Normalize rewards True
Discount ~ 0.999
GAE ) (Schulman et al., [2015) 0.95
PPO clipping 0.2
Entropy coefficient 0.01
Value coefficient 0.5
Shared network True
Impala stack filter sizes 16, 32, 32
Default latent representation size 256
Optimizer Adam (Kingma & Bal 2014)
Optimizer learning rate 5x1074
Optimizer stabilization constant (¢) 1x1075
Maximum gradient norm. 0.5

In Table ] we provide further details of our PPO hyper-parameters, as also described by the origi-
nal Procgen paper (Cobbe et al.,|2020). When using hyperbolic latent representations, we optimize
the hyperbolic weights of the final Gyroplane linear layer with the Riemannian Adam optimizer
(Bécigneul & Ganea, |2018)), keeping the same learning rate and other default parameters. As per
common practice win on-policy methods, we initialize the parameters of the final layer with 100X
times lower magnitude. We implemented the naive hyperbolic reinforcement learning implementa-
tions introduced in Subsection [3.2]by initializing also the weights of the preceding layer with 100 x
lower magnitudes to facilitate learning appropriate angular layouts in the early training iterations.
We found our S-RYM stabilization procedure also enable to safely remove this practice with no
effects on performance.

C.3 RAINBOW IMPLEMENTATIONS

Our implementation of Rainbow DQN uses the same residual network architecture as our PPO
implementation (Espeholt et al., 2018) but employs a final latent dimensionality of 512, as again
specified by |Cobbe et al.|(2020). Since Cobbe et al.|(2020) do not open-source their Rainbow im-
plementation and do not provide many of the relative details, we strive for a simple implementation
removing unnecessary complexity and boosting overall efficiency. Following (Castro et al.| (2018),
we only consider Rainbow DQN’s three most significant advances over vanilla DQN (Mnih et al.|
2013): distributional critics (Bellemare et al., [2017), prioritized experience replay (Schaul et al.,
2016)), and n-step returns (Sutton & Barto, [2018). While the methodology underlying off-policy
algorithms is fundamentally different from their on-policy counterparts, we apply the same exact
recipe of integrating hyperbolic representations in the final layer, and compare against the same
variations and baselines.
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Table 5: Rainbow DQN hyper-parameters used for the Procgen generalization benchmark

Rainbow DQN Procgen hyperparameters

Parallel environments 64
Stacked input frames 1

Replay buffer size 1.28M
Batch size 512
Minimum data before training 32K steps

Update network every
Update target network every
e-greedy exploration schedule

256 env. steps
12800 env. steps
1—0.01 in 512K steps

Discount ~y 0.99
N-step 3

Use dueling (Wang et al., [2016) False

Use noisy layers (Fortunato et al.,[2018) False

Use prioritized replay (Schaul et al., [2016) True

Use distributional value (Bellemare et al.,[2017) True
Distributional bins 51
Maximum distributional value 10
Minimum distributional value -10
Impala stack filter sizes 16, 32, 32
Default latent representation size 512
Optimizer Adam (Kingma & Ba, 2014)
Optimizer learning rate 5x1074
Optimizer stabilization constant (¢) 1x1075
Maximum gradient norm. 0.5

In Table [5] we provide details of our Rainbow DQN hyper-parameters. We note that sampling of
off-policy transitions with n-step returns requires retrieving the future n rewards and observations.
To perform this efficiently while gathering multiple transitions from the parallelized environment,
we implemented a parellalized version of a segment tree. In particular, this extends the original im-
plementation proposed by |Schaul et al. (2016), through updating a set of segment trees implemented
as a unique data-structure with a single parallelized operation, allowing for computational efficiency
without requiring any storage redundancy. We refer to the shared code for further details. As with
our hyperbolic PPO extensions, we also optimize the final layer’s hyperbolic weights with Rieman-
nian Adam, keeping the same parameters as for the Adam optimizer used in the other Euclidean
layers.

Table 6: Rainbow DQN hyper-parameters changes for the Atari 100K benchmark

Rainbow DQN Atari 100K training hyper-parameters

Stacked input frames 4

Batch size 32
Minimum data before training 1600 steps
Network updates per step 2

Update target network every
e-greedy exploration schedule

1 env. steps
1—0.01 in 20K steps

The characteristics of the Atari 100K benchmark are severely different from Procgen, given by the
lack of parallelized environments and the 250 reduction in total training data. Hence, we make a
minimal set of changes to the training loop hyper-parameters of our Rainbow DQN implementation
to ensure effective learning, as detailed in Table[6] These are based on standard practices employed
by off-policy algorithm evaluating on the Atari 100K benchmark (Van Hasselt et al., [2019; [Laskin
et al., 2020a; |Yarats et al.,|2021a) and were not tuned for our specific implementation.
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Table 7: Detailed performance comparison for the Rainbow DQN algorithm on the full Procgen
benchmark. We train for a total of 25M steps on 200 training levels and fest on the full distribution
of levels. We report the mean returns, the standard deviation, and relative improvements from the
original Rainbow DQN baseline over 5 random seeds.

Task\ Algorithm Rainbow DQN Rainbow DQN + data aug. Rainbow DQN + S-RYM Rainbow DQN + S-RYM, 32 dim.
Levels distribution train/test train/test train/test train/test

bigfish 23.17+4 15.47+2 19.61+4 (-15%) 17.39+4 (+12%) 27.61£0 (+19%) 23.03+2 (+49%) 30.85+2 (+33%) 22.37+2 (+45%)
bossfight 7.17%1 7291 6.22+1 (-13%) 6.97%1 (-4%) 9.41x1 (+31%) 7.75%1 (+6%) 8.21%1 (+15%) 8.71£1 (+20%)
caveflyer 7.00+1 3.92+1 7.59+0 (+8%) 5.36%1 (+37%) 6.39+1 (-9%) 3.11%1 (-21%) 6.45+1 (-8%) 5.46%1 (+39%)
chaser 3.09+1 2.31+0 2.89+0 (-6%) 2.61£0 (+13%)  4.03%1 (+30%) 3.65+1 (+58%)  3.78+0 (+23%) 3.29+0 (+43%)
climber 3.68+1 1.73x1  2.57+1 (-30%) 2.36*1 (+36%) 3.91+0 (+6%) 2.39+0 (+38%)  4.80+2 (+31%) 3.00+0 (+73%)
coinrun 5.56x1 4331  3.22+1 (-42%) 3.00+1 (-31%) 5200 (-6%) 5.07%1 (+17%) 6.00+1 (+8%) 6.33+1 (+46%)
dodgeball 7.42+1 4.67+1 8.91%1 (+20%) 6.96+1 (+49%)  6.07+1 (-18%) 3.60%1 (-23%) 6.89+1 (-7%) 5.311 (+14%)
fruitbot 21.51£3 16.94+2 22.29+2 (+4%) 20.53+3 (+21%)  20.31£1 (-6%) 20.30+1 (+20%) 22.81%1 (+6%) 21.87%2 (+29%)
heist 0.67+0 0.11+0 1.67+0 (+150%) 0.67+0 (+500%) 1.27+0 (+90%) 0.40+0 (+260%) 0.93%1 (+40%) 0.47+0 (+320%)
Jjumper 5.33+1 3.1120  4.22+0 (-21%) 2.78%1 (-11%) 4781 (-10%) 2.44%1 (-21%) 5.53+1 (+4%) 3.47%1 (+11%)
leaper 1.78+1 2.56+1 6.11+1 (+244%) 5.11%1 (+100%) 2.00+1 (+13%) 1.00+0 (-61%) 0.80+0 (-55%) 0.53+0 (-79%)
miner 2.22+1 2.33+0  1.89+0 (-15%) 1.33%1 (-43%) 2.40+0 (+8%) 1.40+0 (-40%)  2.73%1 (+23%) 2.00+0 (-14%)
maze 2.01+£0 0.67£0  2.07+0 (+3%) 1.58%1 (+137%)  1.91£0 (-5%) 0.93%0 (+40%) 1.9740 (-2%) 0.92+0 (+38%)
ninja 3.33+0 2.33+1 3.44x1 (+3%) 2.56%1 (+10%) 3.33%1 (+0%) 2.11+0 (-10%)  3.73x1 (+12%) 3.33%1 (+43%)
plunder 8.69+0 6.28+1  6.06+1 (-30%) 5.30%1 (-16%) 7.33%1 (-16%) 5.93+1 (-5%) 7.11%1 (-18%) 5.71x1 (-9%)
starpilot 47.83+6 42.42+1 51.79+3 (+8%) 46.23+5 (+9%) 57.64%2 (+21%) 55.86+3 (+32%) 59.94+1 (+25%) 54.77+3 (+29%)

Average norm. score  0.2679 0.1605 0.2698 (+1%) 0.2106 (+31%) 0.2774 (+4%) 0.1959 (+22%)  0.3097 (+16%) 0.2432 (+51%)
Median norm. score  0.1856 0.0328 0.1830 (-1%) 0.1010 (+208%)  0.2171 (+17%) 0.0250 (-24%)  0.2634 (+42%) 0.1559 (+376%)
# Env. improvements 0/16 0/16 8/16 11/16 8/16 9/16 11/16 13/16

D EXTENDED RESULTS AND COMPARISONS

In this Section we provide detailed per-environment Rainbow DQN Procgen results that were omit-
ted from the main text due to space constraints. For both Rainbow DQN and PPO, we also compare
the performance improvements from the integration of our deep hyperbolic representations with
the reported improvements from recent state-of-the-art (SotA) algorithms, employing one or several
orthogonal domain-specific practices. In Appendix [E:3] we provide examples empirically validat-
ing that hyperbolic representations provide mostly complementary benefits and are compatible with
different domain-specific practices, potentially yielding even further performance gains.

D.1 RAINBOW DQN PROCGEN RESULTS

As shown in Table [/} our hyperbolic Rainbow DQN with S-RYM appears to yield conspicuous
performance gains on the majority of the environments. Once again, we find that reducing the di-
mensionality of the representations to 32 provides even further benefits, outperforming the Euclidean
baseline in 13 out of 16 environments. This result not only highlights the efficiency of hyperbolic
geometry to encode hierarchical features, but also appears to validate our intuition about the useful-
ness of regularizing the encoding of non-hierarchical and potentially spurious information. While
still inferior to our best hyperbolic implementation, data augmentations seem to have a greater over-
all beneficial effect when applied to Rainbow DQN rather than PPO. We believe this result is linked
with recent literature (Cetin et al., [2022)) showing that data-augmentation also provides off-policy
RL with an auxiliary regularization effect that stabilizes temporal-difference learning.

D.2 SOTA COMPARISON ON PROCGEN

In Table[8|we compare our best hyperbolic PPO agent with the reported results for the current SotA
Procgen algorithms from Raileanu & Fergus|(2021). All these works propose domain-specific prac-
tices on top of PPO (Schulman et al.;[2017)), designed and tuned for the Procgen benchmark: Mixture
Regularization (MixReg) (Wang et al.l |2020), Prioritized Level Replay (PLR) (Jiang et al., |[2021)),
Data-regularized Actor-Critic (DraC) (Raileanu et al., 2020), Phasic Policy Gradient (PPG) (Cobbe
et al.,|2021), and Invariant Decoupled Advantage Actor Critic (Raileanu & Fergus| |2021).Validating
our implementation, we see that our Euclidean PPO results closely match the previously reported
ones, lagging severely behind all other methods. In contrast, we see that introducing our deep hy-
perbolic representations framework makes PPO outperform all considered baselines but IDAAC,
attaining overall similar scores to this algorithm employing several domain-specific practices. In
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Table 8: Performance comparison on the test distribution of levels for our Euclidean and Hyperbolic
PPO agents with the reported results of recent RL algorithms designed specifically for the Procgen
benchmark.

Task\ Algorithm PPO (Reported) Mixreg PLR UCB-DrAC PPG IDAAC PPO (Ours) Hyperbolic PPO + S-RYM (Ours)
bigfish 3.7 7.1 10.9 9.2 112 185 1.46+1 16.57+2 (+1037 %)
bossfight 7.4 8.2 8.9 7.8 103 9.8 7.04+2 9.02+1 (+28%)
caveflyer 5.1 6.1 6.3 5 7 5 5.86+1 5.20%1 (-11%)
chaser 35 5.8 6.9 6.3 9.8 6.8 5.89+1 7.32+1 (+24%)
climber 5.6 6.9 6.3 6.3 2.8 8.3 5.11%1 7.28+1 (+43%)
coinrun 8.6 8.6 8.8 8.6 8.9 94 8.25+0 9.20£0 (+12%)
dodgeball 1.6 1.7 1.8 42 2.3 32 1.87+1 7.14+1 (+281%)
fruitbot 26.2 273 28 27.6 278 279 26332 29.51+1 (+12%)
heist 2.5 2.6 29 35 2.8 35 2.92+1 3.60+1 (+23%)
Jjumper 5.9 6 5.8 6.2 5.9 6.3 6.14+1 6.10x1 (-1%)
leaper 49 53 6.8 4.8 8.5 7.7 4.36x2 7.00+1 (+61%)
maze 5.5 52 5.5 6.3 5.1 5.6 6.50+0 7.101 (+9%)
miner 8.4 9.4 9.6 9.2 74 9.5 9.28+1 9.86x1 (+6 %)
ninja 5.9 6.8 7.2 6.6 6.6 6.8 6.50+1 5.60+1 (-14%)
plunder 5.2 5.9 8.7 8.3 143 233 6.06+3 6.68+0 (+10%)
starpilot 24.9 324 279 30 472 37 26.57+5 38.27+5 (+44%)
Average norm. score 0.3078 0.3712 0.4139  0.3931 0.4488 0.5048 0.3476 0.4730 (+36%)
Median norm. score 0.3055 0.4263 0.4093 0.4264 0.4456 0.5343  0.3457 0.4705 (+36%)

Table 9: Performance comparison for our Euclidean and Hyperbolic Rainbow DQN agents with the
reported results of recent RL algorithms designed specifically for the Atari 100K benchmark.

Task\Algorithm Random Human DER OTRainbow CURL DrQ SPR  Rainbow DQN (Ours) Rainbow DQN + S-RYM (Ours)
Alien 227.80 7127.70 739.9 824.7 5582 7712 8015 548.33 679.20 (+41%)
Amidar 580 1719.50 188.6 82.8 142.1 102.8 1763 132.55 118.62 (-11%)
Assault 22240 74200 4312 351.9 600.6 4524 571 539.87 706.26 (+52%)
Asterix 210.00 8503.30 470.8 628.5 7345 6035 977.8 448.33 535.00 (+36%)
Bank Heist 1420  753.10 51 182.1 131.6  168.9 380.9 187.5 255.00 (+39%)
Battle Zone 2360.00 37187.50 10124.6  4060.6 14870 12954 16651 12466.7 25800.00 (+132%)
Boxing 0.10 12.10 0.2 25 1.2 6 35.8 292 9.28 (+226%)
Breakout 1.70 30.50 1.9 9.8 49 16.1 17.1 13.72 58.18 (+370%)
Chopper Command 811.00 7387.80 861.8 1033.3  1058.5 780.3 974.8 791.67 888.00 (+498%)
Crazy Climber 10780.50 35829.40 16185.3  21327.8 12146.5 20516.5 42923.6 20496.7 22226.00 (+18%)
Demon Attack 152.10 1971.00 508 711.8 817.6 11134 5452 1204.75 4031.60 (+269 %)
Freeway 0.00 29.60 279 25 26.7 9.8 24.4 30.5 29.50 (-3%)
Frostbite 6520 433470 866.8 231.6 1181.3 331.1 1821.5 318.17 1112.20 (+314%)
Gopher 257.60 2412.50 349.5 778 669.3 6363 7152 343.67 1132.80 (+917 %)
Hero 1027.00 30826.40 6857 6458.8  6279.3 3736.3 7019.2 9453.25 7654.40 (-21%)
Jamesbond 29.00 302.80 301.6 112.3 471 236 3654 190.83 380.00 (+117%)
Kangaroo 52.00 3035.00 779.3 605.4 8725 940.6 3276.4 1200 1020.00 (-16%)
Krull 1598.00 2665.50 2851.5 32779  4229.6 4018.1 3688.9 3445.02 3885.02 (+24%)
Kung Fu Master 258.50 22736.30 14346.1 5722.2 14307.8 9111 13192.7 7145 10604.00 (+50%)
Ms Pacman 307.30  6951.60 1204.1 941.9 1465.5 960.5 13132 1044.17 1135.60 (+12%)
Pong -20.70  14.60  -19.3 1.3 -165 -85 -5.9 3.85 11.98 (+33%)
Private Eye 2490 69571.30 97.8 100 2184 -13.6 124 72.28 106.06 (+71%)
Qbert 163.90 13455.00 1152.9 509.3 10424 8544 669.1 860.83 2702.00 (+264 %)
Road Runner 11.50  7845.00 9600 2696.7 5661 8895.1 14220.5 6090 22256.00 (+266 %)
Seaquest 68.40 42054.70 354.1 286.9 3845 301.2 583.1 259.33 476.80 (+114%)
Up N Down 533.40 11693.20 2877.4  2847.6 29552 3180.8 28138.5 2935.67 3255.00 (+13%)
Human Norm. Mean 0.000 1.000  0.285 0.264 0.381 0.357 0.704 0.353 0.686 (+94%)
Human Norm. Median 0.000 1.000  0.161 0.204 0.175 0.268 0.415 0.259 0.366 (+41%)

# Super N/A N/A 2 1 2 2 7 2 5

particular, IDAAC not only makes use of a very specialized architecture, but also introduces an aux-
iliary objective to minimize the correlation between the policy representations and the number of
steps until task-completion. |[Raileanu & Fergus (2021) found this measure to be an effective heuris-
tic correlating with the occurrence of overfitting in many Procgen environments. Moreover, we see
that our hyperbolic PPO attains the best performance on 7 different environments, more than any
other method. Furthermore, in these environment the other Euclidean algorithms specifically strug-
gle, again indicating the orthogonal effects of our approach as compared to traditional RL advances.

D.3 SOTA COMPARISON ON ATARI 100K

In Table [9] we provide detailed raw results for our hyperbolic Rainbow DQN agent, comparing
with the results for recent off-policy algorithms for the Atari 100K benchmark, as reported by
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Agent trajectory

—— Policy transitions ~—— Random transitions - Value gyroplane Random trajectory deviations

Figure 12: Visualization of 2-dimensional hyperbolic embeddings in the starpilot Procgen envi-
ronment. We sub-sample states from recorded agent trajectories every 15 timesteps. We show the
evolution of the hyperbolic latent representations following the recorded policy transitions as com-
pared to random transitions collected by resetting the environments from each state and executing a
random policy for the same 15 timesteps.

Schwarzer et al. (2020). All the considered algorithms build on top of the original Rainbow al-
gorithm (Hessel et al.,[2018)). We consider Data Efficient Rainbow (DER) (Van Hasselt et al., [2019)
and Overtrained Rainbow (OTRainbow) (Kielak, |2019) which simply improve the model architec-
tures and other training-loop hyper-parameters, for instance, increasing the number of update steps
per collected environment step. We also compare with other more recent baselines that incorpo-
rate several additional auxiliary practices and data-augmentation such as Data-regularized Q (DrQ)
(Yarats et al.|[2021a), Contrastive Unsupervised Representations (CURL) (Laskin et al.,[2020a), and
Self-Predictive Representations (SPR) (Schwarzer et al.,|[2020). While our Euclidean Rainbow im-
plementation attains only mediocre scores, once again we see that introducing our deep hyperbolic
representations makes our approach competitive with the state-of-the-art and highly-tuned SPR al-
gorithm. In particular, SPR makes use of several architectural advancements, data-augmentation
strategies from prior work, and a model-based contrastive auxiliary learning phase. Also on this
benchmark, our hyperbolic agent attains the best performance on 8§ different environments, more
than any other considered algorithm.

D.4 2-DIMENSIONAL REPRESENTATIONS PERFORMANCE AND INTERPRETATION

To visualize and allow us to interpret the struc-
ture of the learned representations, we analyze
our hyperbolic PPO agents using only two di-

Table 10: Performance of 2-dimensional hyper-
bolic PPO as compared to the original PPO algo-

mensions to model the final latent representa- rithm.

tions. As mentioned in Section 4] and shown - -

in Table [T0] we find even this extreme imple- ~ 12SK\Algorithm PPO + S-RYM, 2 dim.
mentation to provide performance benefits on  Levels distribution train/test

the test levels over Euclidean PPO. Further-  pjgfish 5.65+4 (+52%) 2.34%3 (+60%)
more, the generalization gap with the train-  dodgeball 2.62+0 (-48%) 2.36x1 (+26%)
ing performance is almost null in three out fruitbot 27.18+4 (-10%) 25.75%1 (-2%)
of the four considered environments. As the starpilot 30.27%3 (-1%) 29.72+6 (+12%)

2-dimensional representation size greatly con-

straints the amount of encoded information, this results provides further validation for the affin-
ity of hyperbolic geometry to effectively prioritize features useful for RL. We then observe how
these 2-dimensional hyperbolic latent representations evolve within trajectories, mapping them on
the Poincaré disk and visualizing the corresponding input states. As summarized in Section |4, we
observe a recurring cyclical behavior, where the magnitude of the representations monotonically in-
creases within subsets of the trajectory as more obstacles and/or enemies appear. Together with Fig-
ure |10] (on the bigfish environment), we provide another example visualization of this phenomenon
in Figure [I2] (on the starpilot environment). These plots compare the representations of on-policy
states sampled at constant intervals within a trajectory, every 15 timesteps, and deviations from ex-
ecuting 15 timesteps of random behavior after resetting the environment to the previous on-policy
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state. We observe the state representations form tree-like branching structures, somewhat reflecting
the tree-like nature of MDPs. Within these sub-trajectory structures, we find that the magnitudes in
the on-policy trajectory tends to grow in the direction of the Value function’s gyroplane’s normal.
Intuitively, this indicates that as new elements appear (e.g., new enemies in Starpilot), the agent rec-
ognizes a larger opportunity for rewards (e.g., from defeating them) but requiring a much finer level
of control. This is because as magnitude increases, the signed distances with the policy gyroplanes
will also grow exponentially, and so will the value of the different action logits, decreasing entropy.
In contrast, the magnitudes of the state representations following the random deviations grow in
directions with considerably larger orthogonal components to the Value gyroplane’s normal. This
still reflects the higher precision required for optimal decision-making, as magnitudes still increase,
but also the higher uncertainty to obtain future rewards from these less optimal states.

E FURTHER EXPERIMENTS AND ABLATION STUDIES

In this section, we further analyze the properties of our hyperbolic RL framework and its implemen-
tation, through additional experiments and ablations. We focus on our hyperbolic PPO algorithm
and four representative tasks from the Procgen benchmark.

E.1 S-RYM’S COMPONENTS CONTRIBUTION

—— Alltest levels ~ --- 200 training levels
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Figure 13: Performance ablating either spectral normalization or rescaling from our Hyperbolic PPO
agent stabilized with S-RYM.

Our proposed spectrally-regularized hyperbolic mappings (S-RYM) relies on two main distinct com-
ponents: spectral normalization and rescaling. As described in Section |3} we design our deep RL
models to produce a representation by applying traditional neural network layers in Euclidean space
g = fr(s). Before the final linear layer fp, we then use an exponential map from the origin
of the Poincaré to yield a final representation in hyperbolic space x = exp}(zg). As shown by
Lin et al.|(2021), applying spectral normalization to the layers of fr regulates both the values and
gradients similarly to LeCun initialization (LeCun et al.,2012). Hence, we make the regularization
approximately dimensionality-invariant by rescaling 2y € R”, simply dividing its value by /n.
In Figure we show the results from ablating either component from S-RYM. From our results,
both components seem crucial for performance. As removing spectral normalization simply recov-
ers the unregularized hyperbolic PPO implementation with some extra rescaling in the activations,
its performance is expectedly close to the underwhelming performance of our naive implementa-
tions in Figure [6] Removing our dimensionality-based rescaling appears to have an even larger
effect, with almost no agent improvements in 3 out of 4 environments. The necessity of appropriate
scaling comes from the influence the representations magnitudes have on optimization. When ap-
plying spectral normalization, the dimensionality of the representations directly affects its expected
magnitude. Thus, high-dimensional latents will result in high-magnitude representations, making it
challenging to optimize for appropriate angular layouts in hyperbolic space (Nickel & Kiela, 2017;
Ganea et al.l 2018) and making the gradients of the Euclidean network parameters stagnate (Guo
et al.,2022). These issues cannot even be alleviate with appropriate network initialization, since the
magnitudes of all weights will be rescaled by the intruduced spectral normalization.
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E.2 REPRESENTATION SIZE
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Figure 14: Final performance comparison between PPO agents with Euclidean and hyperbolic rep-
resentations with different dimensionalities.

In Figure[T4] we show the final train and test performance attained by our Euclidean and hyperbolic
PPO agents with different dimensionalities for their final latent representations. We collect results
on a log scale 2" with n € {3,4,5,6,7,8}, i.e., ranging from 23 = 8 to 28 = 256 latent dimen-
sions. Integrating our hyperbolic representations framework with PPO boosts performance across
all dimensionalities. Moreover, in 3/4 environments we see both train and test performance of the
Euclidean PPO agent considerably dropping as we decrease the latent dimensions. In contrast, the
performance of hyperbolic PPO is much more robust, even attaining some test performance gains
from more compact representations. As described in Section 2} Euclidean representations require
high dimensionalities to encode hierarchical features with low distortion (Matousek, [1990; |Gupta
1999), which might explain their diminishing performance. Instead, as hyperbolic representations
do not have such limitation, lowering the dimensionality should mostly affect their ability of encod-
ing non-hierarchical information, which we believe to counteract the agent’s tendency of overfitting
to the limited distribution of training levels and observed states.

E.3 COMPATIBILITY WITH ORTHOGONAL PRACTICES

Introducing hyperbolic geometry to model the representations of RL agents is fundamentally or-
thogonal to most recent prior advances. Thus, we validate the compatibility of our approach with
different methods also aimed at improving the performance and generalization of PPO.
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Figure 15: Performance comparison from integrating the advances from the PPG algorithm our
hyperbolic reinforcement learning framework.

Phasic Policy Gradient (PPG). We re-implement this recent PPO extension designed by [Cobbe
et al.|(2021) specifically for the Procgen benchmark. PPG adds non-trivial algorithmic and compu-
tational complexity, by performing two separate optimization phases. In the first phase, it optimizes
the same policy and value optimization objective as in PPO, utilizing the latest on-policy data. In
the second phase, it utilizes a much larger buffer of past experience to learn better representations
in its policy model via an auxiliary objective, while avoiding forgetting with an additional behavior
cloning weighted term. The two phases are alternated infrequently after several training epochs.
Once again, we incorporate our hyperbolic representation framework on top of PPG without any
additional tuning. In Figure[T3] we show the results from adding our deep hyperbolic representation
framework to PPG. Even though PPG’s performance already far exceeds PPO, hyperbolic represen-
tations appear to have similar effects on the two algorithms, with performance on the 200 training
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levels largely invaried, and especially notable test performance gains on the bigfish and dodgeball
environments. Hence, in both PPO and PPG, the new prior induced by the hyperbolic representa-
tions appears to largely reduce overfitting to the observed data and achieve better generalization to
unseen conditions. Our approach affects RL in an orthogonal direction to most other algorithmic
advances, and our results appear to confirm the general compatibility of its benefits.
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Figure 16: Performance comparison from integrating data augmentation with the Euclidean and
hyperbolic PPO agents.

Data augmentation. Finally, we also test introducing data augmentation to our Hyperbolic PPO
implementation. We consider the same popular random shifts from |Yarats et al. (2021a)), evaluated
in Section[d] We note that the problem diversity characterizing procgen makes it challenging for
individual hand-designed augmentations to have a generally beneficial effect, with different strate-
gies working best in different environments (Raileanu et al.||2020). In fact, applying random shifts
to PPO appears to even hurt performance on a considerable subset of environments (see Table [I)),
likely due to the agents losing information about the exact position and presence of key objects at the
borders of the environment scene. This inconsistency is reflected onto the hyperbolic PPO agent. In
particular, while the addition of random shifts further provides benefits on the bigfish environment,
it appears to hurt performance on dodgeball. Overall, integrating our hyperbolic framework still
appears considerably beneficial even for the test performance of the data-augmented agent, further
showing the generality of our method.
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