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A UMA IMPLEMENTATION AND ABLATIONS

A.1 GRADIENT-BASED IMPLEMENTATION OF UMA

To achieve the attack goal outlined in (2), we introduce a gradient-based input mapping attack:

argmin
{δx}

Ex∈Du [D(fu(δx; θ
u), f(x; θ))] , (4)

where D quantifies the difference and can vary depending on the context, such as Mean Square Error
Loss, Binary Cross-Entropy Loss, or KL Divergence Loss. To solve this optimization problem, we
adopt the Projected Gradient Descent (PGD) method in Madry et al. (2017) to find the input δ. While
PGD is normally used to maximize empirical loss, in this case, we aim to minimize the loss, thus
taking the opposite direction of the gradient update:

δt+1
x = δtx − α · sign[∇δxD(fu(δ

t
x; θ

u), f(x; θ)], (5)

where α stands for the step size for each iteration. The pseudocode of UMA is provided in Algorithm
1. For simplicity, we only adopt the PGD-based mapping method as our baseline, though other
optimization techniques can be substituted for potentially better performance.

Though UMA and Robust Unlearning are consistent in principle, the optimization problem is typ-
ically non-convex. As a result, Algorithm 1 does not guarantee exploration of all possible pertur-
bations. Yet, it still provides a practical and actionable framework for identifying vulnerabilities in
unlearning methods. Even in cases where UMA does not succeed, the absence of successful attacks
strengthens the empirical evidence that the model may satisfy the robust unlearning criteria.

Algorithm 1 Unlearning Mapping Attack
1: Input: Pre-trained model f(·; θ), Unlearned model fu(·; θu), Unlearning dataset Du, Attack steps T ,

Attack step size η
2: Output: Attack dataset Datk

3: Random initialize attack noise {δx} for x ∈ Du

4: for k = 0 to T do
5: Calculate loss ψ ←

∑
x∈Du

D(f(x; θ), fu(δ
k
x; θ

u))

6: Update attack noise {δk+1
x } ← {δkx} − η · sign(∇δxψ)

7: {δk+1
x } ← clip({δk+1

x }, 0, 1)
8: end for
9: Construct attack dataset Datk ← (δk+1

x , yx)

A.2 ABLATION STUDY

We conduct ablation experiments on the two hyperparameters in UMA, the number of steps and
step size. All experiments are done using discriminative models on CIFAR10 dataset. SalUn (Fan
et al., 2024) is chosen as the unlearning algorithm. All ablation experiments on step sizes have a
fixed number of steps of 100, and all ablations on iteration numbers have a fixed step size of 1/255.
Attack strength is set to 16/255 across all ablations.

As shown in Figure 4, the attack efficacy generally increases as the number of steps goes up. How-
ever, higher iteration numbers result in greater computation costs, which form a trade-off that the
attacker needs to make. On the other hand, as shown in Figure 5, the attack step size reaches its
best performance, around 0.7/255 to 1/255. A larger step size will cause the attack to find an in-
correct direction, reducing the attack efficacy, while a smaller step size will generally cause a slow
convergence speed, requiring a larger iteration step to reach equivalent performance.

B DETAILS ON I2I UNLEARNING SETUP

In the experiments on image-to-image generative unlearning models, we evaluate whether our UMA
attacks could explore the residue information left in the model after unlearning and resurface the
"forgotten" knowledge. To this end, we follow the previous arts in I2I where the generative model is
used to recover the masked region in a query image. To ease the discussion, let’s first clarify the data
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Figure 4: Ablation on attack iteration numbers. The experiments are done on CIFAR10 using
SalUn (Fan et al., 2024) as the baseline unlearning algorithm. All experiments have a fixed step
size of 1/255 and an attack strength of 16/255.
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Figure 5: Ablation on attack step size. The experiments are done on CIFAR10 using SalUn (Fan
et al., 2024) as the baseline unlearning algorithm. All experiments have a fixed number of steps of
100 and an attack strength of 16/255.
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L1 per image
ISI (Li et al., 2024) SalUn (Fan et al., 2024)

No Attack 8/255 No Attack 8/255
Retain set 64,619 42,410 214,596 114,089
Forget set 1,140,778 48,317 2,790,552 242,029

Table 4: L1 norm between the outputs of the generative model before and after unlearning. The
values under no attack are calculated by L1(I2, I1), and the values under the attack strength 8/255
are computed by L1(I3, I1).

flow and pipeline of the generative model experiment. In our experiments, the generative unlearning
pipeline involves the following steps:

• I0: The ground truth image from the forget set.
• Im: The masked version of the image I0, which serves as the input to the generative model.
• I1: The output of the original generative model (before unlearning), where the masked

regions in Im are reconstructed.
• I2: The output of the unlearned generative model, which cannot reconstruct the masked

regions for the forget set and instead generates gray or noisy outputs.
• I3: The output of the unlearned generative model when attacked with UMA, which aims to

resurface the forgotten information and reconstruct the masked regions as I1.

By design, I1, I2, and I3 are naturally different from the masked input Im, as the goal of the gener-
ative model is to reconstruct the missing regions. Additionally, for the forget set, I2 differs signifi-
cantly from I1, as the unlearned model is intended to "forget" the knowledge and cannot recover I0
from Im. UMA’s goal is to probe whether the unlearned model can generate I3 that closely resem-
bles I1, thereby bypassing the unlearning mechanism. Based on the above context, UMA’s efficacy
is evaluated by how closely I3 (the UMA output) resembles I1 (the output of the original generative
model before unlearning). This indicates whether the unlearned model retains residual knowledge
of the forget set, effectively failing to fully "forget."

To verify UMA’s impact, we directly computed the L1 distance between I3 and I1 per image. As
shown in the Table 4, the L1 differences between I1 and I3 are very small after the attack (e.g. for
the 224x224x3 image, average 0.3 intensity difference per pixel for the forget set with I2I (Li et al.,
2024) and 1.6 intensity difference per pixel for the SalUn (Fan et al., 2024)), indicating that UMA
can prompt the unlearned model to output information it was supposed to forget. This provides
strong evidence that UMA effectively bypasses the unlearning process.

In addition, we include multiple visual examples in Figure 6 and 7. These examples present images
for I0, Im, I1, I2, and I3, providing a clear comparison of the reconstruction results across all stages
of the pipeline. These visualizations demonstrate how UMA successfully recovers information that
should have been forgotten, illustrating its effectiveness in attacking the unlearning mechanism.

C EXPERIMENTAL EVALUATION ON DISCRIMINATIVE UNLEARNING

C.1 MIA IMPLEMENTATION

For the MIA evaluation of discriminative unlearning, we adopt a shadow-model-based MIA strat-
egy Shokri et al. (2017) for the quantitative measurement. Specifically, 10% of the total dataset is
randomly sampled to train 10 shadow models, each implemented as a ResNet50 and trained for 10
epochs(20 epochs for Tiny-ImageNet). We then collect the logit outputs of these shadow models
on both their seen and unseen data to construct the shadow dataset. Using this dataset, we train
simple attack models designed to determine whether a given logit is from seen or unseen data. To
ensure fine-grained discrimination, we employ one independent attack model per class. Finally, the
attack recall is recorded and reported. To address the randomness in MIA for reliable evaluation,
we randomly sampled 10 fixed random seeds for executing unlearning and 5 fixed random seeds
for training MIA attack models. In total, we have 50 sets of results, and their average and standard
deviation are reported in Table 5.
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Ground Truth Masked Input Output before Unlearning Output after Unlearning UMA Attacked Output Ground Truth Masked Input Output before Unlearning Output after Unlearning UMA Attacked Output

Figure 6: Examples of the generated images using I2I (Li et al., 2024) unlearning methods. Ground
truth, I0, Masked Input, Im, Output before Unlearning, I1, Output after Unlearning, I2, UMA
Attacked Output, I3, are represented here as discussed in Section A.3

Ground Truth Masked Input Output before Unlearning Output after Unlearning UMA Attacked Output Ground Truth Masked Input Output before Unlearning Output after Unlearning UMA Attacked Output

Figure 7: Examples of the generated images using SalUn (Fan et al., 2024) unlearning methods.
Ground truth, I0, Masked Input, Im, Output before Unlearning, I1, Output after Unlearning, I2,
UMA Attacked Output, I3, are represented here as discussed in Section A.3
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CIFAR10
No Atk ϵ = 8/255 ϵ = 16/255

TA↑ UA↓ MIA↓ UA↓ MIA↓ UA↓ MIA↓
Original 94.13 100 0.9796 - - - -
retrain 94.14±0.20 0±0 0±0 0±0 0±0 0±0 0±0

FT 91.82±0.42 20.55±4.18 0.088±0.029 99.96±0.03 0.995±0.034 99.98±0.02 0.995±0.003

RL 92.19±0.43 0±0 0±0 5.82±5.23 0.024±0.024 26.64±18.28 0.135±0.111

IU 88.06±2.51 8.76±5.70 0.058±0.040 99.12±0.38 0.965±0.012 99.87±0.09 0.983±0.008

l1-sparse 90.00±0.16 0±0.01 0±0 98.30±0.41 0.871±0.081 99.90±0.04 0.978±0.018

SalUn 92.70±0.25 0±0 0±0 7.13±9.59 0.036±0.062 26.87±16.39 0.148±0.150

CIFAR100
No Atk ϵ = 8/255 ϵ = 16/255

TA↑ UA↓ MIA↓ UA↓ MIA↓ UA↓ MIA↓
Original 75.25 100 0.9908 - - - -
retrain 75.40±1.04 0±0 0.024±0.015 0±0 0.014±0.010 0±0 0.014±0.011

FT 67.64±1.22 0.48±0.26 0.306±0.060 99.28±0.17 0.977±0.031 99.89±0.03 0.992±0.015

RL 69.96±0.51 3.20±2.88 0.269±0.060 51.53±3.62 0.688±0.080 80.50±3.08 0.790±0.074

IU 66.42±2.47 53.37±7.11 0.848±0.054 99.93±0.03 1±0 99.93±0.02 1±0

l1-sparse 70.70±0.61 1.30±0.25 0.402±0.099 99.77±0.05 0.925±0.056 99.91±0.03 0.945±0.049

SalUn 73.89±0.34 4.13±3.55 0.221±0.038 61.57±5.04 0.788±0.045 85.16±3.43 0.888±0.035

Tiny-ImageNet
No Atk ϵ = 8/255 ϵ = 16/255

TA↑ UA↓ MIA↓ UA↓ MIA↓ UA↓ MIA↓
Original 64.17 99.96 1 - - - -
retrain 57.74±0.67 0±0 0±0 0±0 0±0 0±0 0±0

FT 60.48±0.19 79.01±0.69 0.721±0.014 99.99±0.01 0.991±0.004 99.99±0.01 0.991±0.003

RL 56.23±0.31 2.09±0.31 0.028±0.009 99.78±0.11 0.859±0.023 99.99±0.01 0.917±0.028

IU 57.71±1.82 94.44±4.26 0.882±0.052 99.99±0.01 0.991±0.004 99.99±0.01 0.991±0.003

l1-sparse 58.28±0.35 45.99±0.67 0.228±0.028 99.99±0.01 0.833±0.017 99.99±0.01 0.843±0.019

SalUn 57.82±0.15 5.95±0.78 0.084±0.019 99.98±0.01 0.964±0.017 99.99±0.01 0.982±0.010

Table 5: Full evaluation of Test Accuracy (TA), Unlearning Accuracy (UA), and MIA scores before
and after Unlearning Mapping Attack for the Class Unlearning scenario. Attack is bounded with
8/255 and 16/255. The original here indicates the model performance before unlearning.

C.2 INSTANCE-LEVEL UNLEARNING RESULTS

For instance-level classification unlearning, as shown in Table 6, all baseline methods display limited
robustness against unlearning mapping attacks. While the retraining method performs the best, it
still lacks sufficient robustness, even with ϵ = 8/255. This suggests that attackers can easily manip-
ulate unlearned images, causing the model to re-recognize them, thus compromising the unlearning
process.

D HYPERPARAMETER SETTINGS OF OUR PRE-TRAINED UNLEARNINGS

We perform the Discriminative Unlearning and Image-to-Image Unlearning by our-
selves. Specifically, we adopt the discriminative unlearning code from SalUn’s project,
https://github.com/OPTML-Group/Unlearn-Saliency, and we use code from I2I (Li et al., 2024),
https://github.com/jpmorganchase/i2i_mage/tree/i2i, as reference when constructing Image-to-
Image unlearning evaluations, as well as the unlearning class index when performing Image-to-
Image Unlearning. We list our detailed hyperparameter selection for discriminative unlearning in
Table 7. For Image-to-Image Unlearning, we use the SGD optimizer, learning rate 0.01 for Salun,
and the AdamW optimizer, base learning rate 1e-4 for I2I. For the Text-to-Image task, we uti-
lize the unlearned model checkpoint from UnlearnDiffAtk (Zhang et al., 2024d)’s project page,
https://github.com/OPTML-Group/Diffusion-MU-Attack, for evaluation.
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CIFAR10
No Atk 8/255 16/255

TA UA MIA UA MIA UA MIA

Original 94.13 100 0.9732 - - - -
retrain 93.34 93.78 0.8636 99.98 0.9774 99.98 0.9728

FT 92.13 98.02 0.9124 99.98 0.9794 99.96 0.9810
RL 89.22 91.88 0.8012 99.96 0.9896 100 0.9866
IU 89.82 97.92 0.8926 99.98 0.9630 99.98 0.9628

l1-sparse 91.32 95.76 0.8848 99.98 0.9842 100 0.9814
SalUn 90.55 93.48 0.8140 100 0.9884 99.98 0.9872

CIFAR100
No Atk 8/255 16/255

TA UA MIA UA MIA UA MIA

Original 75.25 100 0.9924 - - - -
retrain 73.92 72.72 0.7354 99.92 0.9910 100 0.9932

FT 70.90 96.44 0.9436 99.96 0.9970 100 0.9972
RL 71.05 86.04 0.7786 99.98 0.9946 100 0.9956
IU 71.89 99.20 0.9702 100 0.9894 100 0.9912

l1-sparse 69.60 90.10 0.7404 99.98 0.9704 99.98 0.9756
SalUn 71.99 88.72 0.7936 99.94 0.9890 100 0.9914

Tiny-ImageNet
No Atk 8/255 16/255

TA UA MIA UA MIA UA MIA

Original 64.17 99.98 0.9978 - - - -
retrain 61.81 60.17 0.6387 99.97 0.9735 100 0.9811

FT 55.66 85.42 0.8908 99.99 0.9969 99.97 0.9969
RL 55.36 72.88 0.8002 99.99 0.9962 99.98 0.9968
IU 56.33 94.85 0.9591 99.97 0.9967 99.98 0.9969

l1-sparse 56.04 61.71 0.3836 99.99 0.7597 100 0.7614
SalUn 54.94 66.99 0.6237 99.99 0.9654 99.99 0.9681

Table 6: Test Accuracy (TA), Unlearning Accuracy (UA), and MIA scores before and after Unlearn-
ing Mapping Attack for the Instance Unlearning scenario. Attack is bounded with 8/255 and 16/255.
The original here indicates the model performance before unlearning.

CIFAR10 CIFAR100 Tiny-ImageNet

FT epoch=10
lr=0.013

epoch=10
lr=0.013

epoch=10
lr=0.0023

RL epoch=10
lr=0.013

epoch=10
lr=0.02

epoch=10
lr=0.0025

IU α = 20 α = 20 α = 10

l1-sparse
epoch=10
lr=0.001
α = 0.001

epoch=10
lr=0.001
α = 0.0007

epoch=10
lr=0.001
α = 0.0001

SalUn epoch=10
lr=0.013

epoch=10
lr=0.022

epoch=10
lr=0.0015

Table 7: Detailed hyperparameters used for discriminative unlearning evaluations.
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