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1 TEXT PREPROCESSING
We enhance the pre-trained visual model with PACL by training
on TumEmo [12], a social media post dataset. However, the texts of
samples from TumEmo [12] contain many characters that are unin-
formative or cannot be encoded, including web URLs, usernames,
emojis, and tokens from rare languages. To effectively leverage the
factual and emotional connections between images and texts, we
preprocess texts by replacing or removing these characters. (1). For
web URLs, we replace them with [URL] characters. (2). For user-
names, we replace them with [USER] characters. (3). For emojis
and rare languages, we remove them. (4). For hashtags starting
with “#”, we remove “#” and retain the contents of them.

2 DATASET PARTITION TOOLS
In dataset partition, the first stage of PACL, we employ CLIP [9] as
the grounding evaluator of the factual connection, and DeepSen-
tiBank [2], BERTweet [8] as the grounding evaluator of the emo-
tional connection. We treat these models as off-the-shelf tools to
approximate the accurate partition at low computational costs.
Therefore, these models are replaceable by other tools. To prove
this, we adopt other tools as the evaluators to enhance pre-trained
ResNet-50 [5] with PACL and report the experimental results on FI
[13] under linear evaluation in Table 1.

Table 1: PACL’s emotional enhancement of ResNet-50 on FI
[13] under linear evaluation by adopting different tools as
factual and emotional evaluators.

Factual Emotional FI
Image Text Image Text Acc-8 F1-8

CLIP [9] DeepSentiBank [2] BERTweet [8] 59.50 59.03
CLIP [9] Affection [1] BERTweet [8] 60.12 59.60
CLIP [9] DeepSentiBank [2] SKEP [11] 59.37 58.96
CLIP [9] Affection [1] SKEP [11] 59.91 59.65

M2 [3] BERT [4] DeepSentiBank [2] BERTweet [8] 59.24 58.86
M2 [3] RoBerta [6] DeepSentiBank [2] BERTweet [8] 59.43 59.07
GRIT [7] BERT [4] DeepSentiBank [2] BERTweet [8] 59.57 59.22
GRIT [7] RoBerta [6] DeepSentiBank [2] BERTweet [8] 59.70 59.13

We use a pair of image and text tools as the evaluators except
for CLIP. The image tools convert images into texts, while the text
tools calculate the cosine similarities to assess the factual or emo-
tional connections. As shown in Table 1, the emotional perception
of ResNet-50 is consistently enhanced by PACL with different eval-
uators. Additionally, the enhancements across these evaluators are
quite stable. Compared to our adopted tools, other tools bring at
most 0.62% accuracy improvements or 0.26% accuracy degradations.
These results confirm the robustness of PACL in the selection of
evaluators.

3 DATASET SELECTION
To transfer knowledge from texts to images, we train PACL on
TumEmo [12], a dataset rarely adopted in vision-language pre-
training. In this section, we explain why we choose it. Specifically,
we comprehensively compare it with CC3M [10] to demonstrate its
advantages. CC3M is popular in vision language pre-training and
contains approximately 3.3M image-text pairs. It is also collected
from the web, yet undergoes heavy pre-processing that removes
noun modifiers and weakens the emotional information linked to
them. This results in its samples having strong factual connections
but relatively weak emotional connections.

Figure 1: Distributions of the quantitatively assessed factual
connections (left) and the emotional connections (right) of
samples from TumEmo and CC3M.

We visualize the distributions of factual and emotional connec-
tions of samples from two datasets in Fig. 1. Under our partition,
the percentage of factual-matched to factual-mismatched samples
is 39%/61% in TumEmo and 91%/9% in CC3M, the percentage of
emotional-matched to emotional-mismatched samples is 56%/44%
in TumEmo and 29%/71% in CC3M. Samples in TumEmo possess
relatively strong factual connections, though not as strong as those
in CC3M, and simultaneously relatively stronger emotional con-
nections, which makes them more suitable for our goal of bridging
the visual ‘affective gap”.

Father reading a book to his kids.
Here’s a scene that makes me smile. 

It’s a small window to my world.

Figure 2: Examples from TumEmo (left) and CC3M (right).
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Table 2: Emotional enhancement of ResNet-50 on various emotion-related downstream tasks. PACL (CC3M) and PACL (TumEmo)
represent training PACL on CC3M and TumEmo, respectively. The best results are marked in bold.

Model
Single-label Hierarchical-label Multi-label VAD

FI Emotion-6 UnbiasedEmo WebEmo Emotic Emotic IAPS
Acc-8 F1-8 Acc-6 F1-6 Acc-6 F1-6 Acc-2 F1-2 Acc-6 F1-6 Acc-25 F1-25 mAP AUC MSE 𝑅2 MSE 𝑅2

Linear Evaluation:
ResNet-50 57.72 56.72 46.47 45.18 60.20 60.08 66.25 66.21 41.08 39.03 24.94 22.80 25.85 66.36 2.825 0.1267 2.130 0.2790
ResNet-50 + PACL (CC3M) 58.03 57.33 46.98 46.20 64.22 64.16 66.54 66.46 41.27 38.68 24.10 21.94 26.32 66.40 2.843 0.1255 2.107 0.2836
ResNet-50 + PACL (TumEmo) 59.50 59.03 51.14 50.59 66.78 66.39 67.53 67.42 43.60 40.95 25.85 24.32 27.02 67.60 2.646 0.1404 1.982 0.3104
Fine-tuning:
ResNet-50 65.14 64.84 53.46 53.25 73.68 73.15 73.81 73.80 48.88 48.34 30.85 29.89 28.36 68.43 2.757 0.1337 2.114 0.2842
ResNet-50 + PACL (CC3M) 66.35 65.42 56.94 56.72 75.81 75.03 74.26 74.17 49.35 48.60 31.24 30.67 29.14 69.22 2.599 0.1382 2.043 0.2916
ResNet-50 + PACL (TumEmo) 67.11 66.79 58.60 58.16 77.30 76.65 74.76 74.75 50.18 49.21 32.72 31.42 30.39 70.12 2.531 0.1460 1.927 0.3130

We present examples from two datasets in Fig. 2 to provide a
more intuitive explanation. In images depicting similar scenes of a
father interacting with their children, the text in TumEmo tends to
focus on emotional interpretation. In contrast, the text in CC3M is
more inclined toward factual descriptions. These differences em-
phasize the potential of TumEmo in conducting emotional knowl-
edge transfer, which is also validated by the zero-shot performance
achieved by the enhanced ResNet-50.

In addition to qualitative analysis, we provide quantitative re-
sults by directly training PACL on CC3M to enhance ResNet-50 [5].
As shown in Table 2, although training PACL on CC3M enhances
ResNet-50 in most cases, especially under fine-tuning, training
PACL on TumEmo can always achieve more effective enhance-
ments. It proves that compared to solely strong factual connections,
relatively strong factual and emotional connections are more bene-
ficial to emotional knowledge transfer. Given all these reasons, we
adopt TumEmo as the training dataset of PACL.
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