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ABSTRACT

It has been observed that representations learned by distinct neural networks con-
ceal structural similarities when the models are trained under similar inductive
biases. From a geometric perspective, identifying the classes of transformations
and the related invariances that connect these representations is fundamental to
unlocking applications, such as merging, stitching, and reusing different neural
modules. However, estimating task-specific transformations a priori can be chal-
lenging and expensive due to several factors (e.g., weights initialization, training
hyperparameters, or data modality). To this end, we introduce a versatile method
to directly incorporate a set of invariances into the representations, constructing a
product space of invariant components on top of the latent representations without
requiring prior knowledge about the optimal invariance to infuse. We validate
our solution on classification and reconstruction tasks, observing consistent latent
similarity and downstream performance improvements in a zero-shot stitching
setting. The experimental analysis comprises three modalities (vision, text, and
graphs), twelve pretrained foundational models, nine benchmarks, and several
architectures trained from scratch.

1 INTRODUCTION

Discovering symmetries and conserved quantities is a core step for extracting meaningful repre-
sentations from raw data in biological and artificial systems (Higgins et al.l 2022; [Benton et al.,
2020; Lyle et al., 2020; Marchetti et al., |2023). Achieving invariance to specific groups of
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communication between latent spaces by projecting them into a shared relative space determined by
distances between data points. However, as shown in Figure(l] the transformations relating different
neural representations are not always consistent with a single class of transformations, such as the
one considered in Moschella et al.[(2023)). Determining a priori which class of transformations relates
distinct latent spaces is challenging due to complex interactions in the data, and multiple nuisance
factors that are typically irrelevant but can nevertheless affect the representation (e.g. random ini-
tialization, neural architecture, and data modality). To address this challenge, we expand upon the
method of RR, presenting a framework to efficiently incorporate a set of invariances into the learned
latent space. This is achieved by constructing a product space of invariant components on top of the
latent representations of, possibly pretrained, neural models. Each component of this product space is
obtained by projecting samples as a function of fixed data points, denoted as anchors. Using different
similarity functions for each subspace, we can infuse invariances to specific transformations into each
component of the product space. Our main contributions can be summarized as follows:

* We show that the class of transformation that relates representations learned by distinct
Neural Networks (NNs)—trained on semantically similar data—may vary and depends on
multiple factors;

* We introduce a framework for infusing multiple invariances into a single latent representation,
constructing a product space of invariant components to enhance latent communication;

» We validate our findings on stitching tasks across various data modalities, including images,
text, and graphs: product of invariances can capture complex transformations of the latent
space in a single representation, achieving the best performance without any prior knowledge
of the transformation or the factors that may affect it.

2 RELATED WORK

Representation Similarity. Several metrics have been proposed to compare latent spaces generated
by independent NNs, capturing their inherent similarity up to transformations that correlate the spaces.
A classical statistical method is Canonical Correlation Analysis (CCA) (Hotelling, |1992)), which is
invariant to linear transformations; variations of CCA seek to improve robustness through techniques
like Singular Value Decomposition (SVD) and Singular Value CCA (SVCCA) (Raghu et al.,2017) or
to reduce sensitivity to perturbations using methods such as Projection Weighted CCA (PWCCA)
(Morcos et al., 2018). Closely related to these metrics, the Centered Kernel Alignment (CKA)
(Kornblith et al., 2019) measures the similarity between latent spaces while disregarding orthogonal
transformations. However, recent research (Davari et al.,2022) demonstrates its sensitivity to shifts in
the latent space. Finally, [Limbeck et al.|(2023) proposes a novel family of magnitude-based measures
to quantify the intrinsic diversity of latent spaces, while |Wayland et al.| (2024)) employs persistent
homology to measure the (dis)similarity of different representations.

Learning and Incorporating Invariance and Equivariance into Representations. Invariances in
NN can be enforced through various techniques operating at different levels, including adjustments to
model architecture, training constraints, or input manipulation (Lyle et al.| [2020)). Benton et al.| (2020)
proposes a method to learn invariances and equivariances, Immer et al.[(2022) introduces a gradient-
based approach that effectively captures inherent invariances in the data. Meanwhile, |van der Ouderaa
& van der Wilk (2022) enables training of NNs with invariance to specific transformations by learning
weight-space equivalents instead of modifying the input data. Other works directly incorporate
invariances into the model through specific constraints. Rath & Condurache| (2023)) enforces a multi-
stream architecture to exhibit invariance to various symmetry transformations without relying on
data-driven learning; [Kandi et al.| (2019) propose an improved Convolutional Neural Network (CNN)
architecture for better rotation invariance;|Gandikota et al.| (2021) introduces a method for designing
architectures that are invariant or equivariant to structured transformations; Sanborn & Miolane
(2023) propose a general method to achieve robust group-invariance in Group-Equivariant CNNs;
and [Fumero et al.| (2021)) proposes to recover the factors of variation underlying the data distribution
by modeling them as a product manifold. Finally,[Moschella et al.| (2023) proposes an alternative
representation of the latent space that guarantees invariance to angle-preserving transformation
without requiring additional training but only a set of anchors, possibly very small (Cannistraci et al.}
2023)), or very large (Norelli et al.| 2023)). This approach has shown efficiency in different settings
(Crisostomi et al., 2023} [Ricciardi et al., 2023 |Chen et al., |2023)).
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Our work leverages the RR framework to directly incorporate a set of invariances into the learned
latent space, creating a product space of invariant components which, combined, can capture complex
transformations of the latent space.

3 INFUSING INVARIANCES
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Figure 2: Framework description. Given two latent spaces Z, Z’ related by an unknown transforma-
tion 7" (resp. T—1), we assume that there exist a manifold M where samples in Z, 2’ coincides when
projected into M, via 7. We approximate M building a product space M, where each space is a
RR computed using a similarity function d; invariant to a specific, known class of transformations.
Combining the resulting spaces, we recover a representation r which should approximate 7 4.

Setting. We consider NNs as parametric functions Fy compositions of encoding and decoding
maps Fyp = Dy, o Ejy,, where the encoder Ejy, is responsible for computing a latent representation
z = Ey,(z), = € X for some domain X, with dim(Z) << dim(X); and the decoder Dy, is
responsible for solving the task at hand (e.g., reconstruction, classification). In the following, we will
drop the dependence on parameters 6 for notational convenience. For a single module E (equivalently
for D), we indicate with Ey if the module E was trained on the domain X. In the upcoming, we will
summarize the necessary background to introduce our method.

Background. The RR framework (Moschella et al., 2023)) provides a straightforward approach to
represent each sample in the latent space according to its similarity to a set of fixed training samples,
denoted as anchors. Representing samples in the latent space as a function of the anchors corresponds
to transitioning from an absolute coordinate frame into a relative one defined by the anchors and
the similarity function. Given a domain X, an encoding function Fy : X — Z, a set of anchors
Ax C X, and a similarity or distance function d : Z x Z — R. The RR for each sample z € X is:

RR(z; Ax.d) = P d(z, Ex(a;)) (1)

a;€EAx

where z = Ex (), and € denotes row-wise concatenation. In|Moschella et al.| (2023), d was set as
Cosine similarity. This choice induces a representation invariant to angle-preserving transformations.
In this work, our focus is to leverage different choices of the similarity function to induce a set of
invariances into the representations to capture complex transformations between latent spaces.

Overview. When considering different NNs F, F’, we are interested in modeling the class of
transformations 7 that relates their latent spaces Z, Z’. T could be something known, e.g., rotations,
or a nontrivial, complex class of transformations. The two networks could differ by their initialization
seeds (i.e., training dynamics), by architectural changes, or even domain changes, i.e., X # X’,
which could affect the latent space in a different way (as observed in Figure[I)). The fundamental
assumption of this work is that these variations induce changes in the latent representations of the
models, but there exists an underlying manifold M where the representations are the same (see
Figure[2)). Formally:

Assumption. Given multiple models F1..F, we assume that there exists a manifold M which
identifies an equivalence class of encoders E1 induced by the class of transformation T (e.g. rota-
tions), defined as E :={E | npmTE =7nmE, VT € T}, where waq represent the projection
on M. M is equipped with a metric d g which is preserved under the action of elements of T, i.e.
dm(mmzs mmz') = dp(mmT(2), T T (2'), VT € T.
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What we look for is a function r which independently projects the latent spaces Z;..2,, into M and
is invariant to T, i.e. r(z) = r(T'z), foreach T € T, and for each z € Z,..Z,,. Generalizing the
framework of Moschella et al.| (2023) to arbitrary similarity functions, or distance metrics, gives us a
straightforward way to define representations r invariant to specific classes of transformations.

However, d is typically unknown a priori, and in general, it is challenging to capture 7 with a
single class of transformations (as observed in Figure [I|and empirical demonstrated in Section [4.)).
To overcome this challenge, in this work, we approximate M with a product space M := va:l M;,
where each component is obtained by projecting samples of Z in a RR space equipped with a different
similarity function d;. Each M; will have properties induced by a similarity function d; invariant to
a specific, known, class of transformations 7; (e.g. dilations). By combining this set of invariances,
we want to recover the representation 7 such that it approximates well 7 (see Figure[2). We define
r formally as the projection from Z to M:

Definition (Product projection). Given a set of latent spaces Z;..2Z,, related to one another by an
unknown class of transformation T, a set of similarity functions D each one invariant to a specific
known class of transformations T; (e.g. rotations), i.e. RR(z,d;) = RR(Tz,d;), YT € T;. We
define the product projection r : Z M as:

r(z) = ¢ o RR(z; Ax,d;), Vd; €D

where ¢ is an aggregation function (e.g. concatenation) responsible for merging the relative spaces
induced by each d; € D.

We give more details on different strategies on how to implement ¢ in section

Distance-induced invariances. We leverage the RR framework considering the following similarity
functions d: Cosine, Euclidean, Manhattan (L), Chebyshev (L), each one inducing invariances
to a specific, known class of transformations. For formal definitions, synthetic examples, and
visualizations, please refer to the Appendix [A.2]

Aggregation functions. This section summarizes different strategies to construct the product space
M, directly integrating a set of invariances into the representations. Consider a latent space Z image
of an encoder £ : X — Z, and a set of similarity functions D. For each d € D, we produce n = |D|
relative latent spaces. Every space is produced via a similarity function (i.e., Cosine, Euclidean, L,
or L), enforcing invariance to a specific class of transformations.

These spaces can be aggregated using diverse strategies, corresponding to different choices of ¢:

* Concatenation (Concat): the subspaces are independently normalized and concatenated,
giving to M the structure of a cartesian product space.

» Aggregation by sum (MLP+Sum): similar to DeepSet (Zhang et al., 2019), the spaces
are independently normalized and non-linearly projected. The resulting components are
summed.

 Self-Attention (SelfAttention): the spaces are independently normalized and aggregated via
a self-attention layer.

When not specified, all the results are obtained using the Aggregation by sum strategy. For the
implementation details of each strategy, please refer to the Appendix The product space M
yields a robust latent representation, made of invariant components which are combined to capture
nontrivial, complex transformations, boosting the performance on downstream tasks.

4 EXPERIMENTS

In this section, we perform qualitative and quantitative experiments to analyze the effectiveness of
our framework in constructing representations that can capture complex transformations of the latent
space. In Section[4.1] we empirically motivate our study by analyzing the similarity between latent
spaces generated by trained from scratch AutoEncoder (AE) and Variational AutoEncoder (VAE)
architectures, and pretrained foundation models. We analyze the emerging class of transformations
between different latent spaces by enforcing invariances into the representations. Additionally, in
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Section @ we assess the zero-shot stitching performance of our framework across text, vision,
and graph modalities. Finally, in Section[#.3] we conduct an ablation study on different aggregation
functions, and in Section[d.4] we investigate attention weights and their significance in selecting the
optimal relative space.

4.1 LATENT SPACE ANALYSIS
TRAINING FROM SCRATCH

Experimental setting. We perform image reconstruction on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), MNIST (Deng, 2012), and Fashion MNIST (Xiao et al., 2017} datasets (refer to
Table [7|for additional information). Using comparable convolutional architectures, we focus on AEs
and VAEs. We consider models with an unflattened latent image bottleneck (referred to as AE and
VAE) that preserve the image spatial structure, and models with linear projections into and out of a
flattened latent space (referred to as Linearized AutoEncoder (LinAE) and Linearized Variational
AutoEncoder (LinVAE)). Using different random seeds, we train five instances of each model until
convergence. Then we project each latent space into its relative counterpart using distinct projection
functions to infuse different invariances in each representation. Finally, for each combination, we
measure the cross-seed latent space similarity.

Result Analysis. In Figures 3] [I2|and[I3] we report the Pearson and Spearman cross-seed correlations
for various architectures on diverse datasets. These outcomes illustrate that it is impossible to unify
the latent spaces obtained with different initializations by means of a single invariance. For instance,
in Figure 3] we observe that the highest cross-seed similarity is achieved using different projection
types when considering the VAE or LinVAE architecture, even when keeping fixed all the other
parameters. Additionally, dataset variations significantly alter the trends in the behavior of all
the architectures. This discovery challenges the assumption in [Moschella et al.| (2023) that angle-
preserving transformations are the primary drivers of correlation among the latent spaces of models
trained with different seeds. Please refer to Figures|12|and|13|for additional results.
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Figure 3: Latent Spaces Cross-Seed Similarity. Cross-seed pearson correlation of latent spaces
for AEs trained on MNIST (left) and CIFAR-100 ((right)) until convergence. Notably, no single
projection consistently outperforms others across all settings. The L, projection is not displayed to
improve visualization.

PRETRAINED MODELS

Experimental setting. We analyze the similarity of latent spaces produced by pretrained foundational
models in both the vision and text domains. For the vision domain, we evaluate five distinct foun-
dational models (either convolutional or transformer-based) using the CIFAR-10, CIFAR-100,
MNIST, and F—MNIST datasets. Meanwhile, in the text domain, we assess seven different founda-
tional models using the DBpedia (Zhang et al.,[2015), TREC (Coarse) (Hovy et al.,2001), and
N24news (Text) (Wang et al.|[2022)) datasets. Refer to Table@for details on the pretrained models
and Table[7] for the datasets.

Result Analysis. In Figure ] we report the Linear CKA correlations for various pretrained models for
vision and text modalities. This analysis highlights the absence of a universally shared transformation
class that connects latent spaces of foundation models across distinct conditions. For example, on
CIFAR-10, the highest similarity is achieved with different projection functions when using different
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Figure 4: Latent Spaces Cross-Architecture Similarity. Linear CKA similarity of latent spaces
across several pretrained models on CIFAR-10 (left) and TREC (right). In each bar, we report the
space similarities distribution to the other models while infusing a specific invariance. There is no
singular projection that consistently outperforms others across all configurations.

architectures. Moreover, it is possible to see that similar architectures (i.e., ViT-based models) exhibit
similar trends when tested on the same dataset. Refer to Figure [I4] for further results.

Takeaway. The transformation class that correlates different latent spaces produced by both pretrained
and trained-from-scratch models depends on the dataset, architecture, task, and possibly other factors.

4.2 DOWNSTREAM TASK: ZERO-SHOT STITCHING

Experimental setting. We perform zero-shot stitching classification using text, vision, and graph
modalities with various models and datasets. For the vision and text domains, we used the same
datasets and pretrained models employed in Section[d.1] For the Graph domain, we employed the
CORA dataset (Sen et al., 2008) and a Graph Convolutional Network (GCN) trained from scratch
(refer to Tables [6| and 7| for additional details of models and datasets). Additionally, we perform zero-
shot stitching reconstruction using AEs on CIFAR-100. Relative decoders are trained with three
different seed values, and the resulting representations are transformed into relative representations by
projecting the encodings onto 1280 randomly selected but fixed anchors. It is important to highlight,
as demonstrated in Table [9]and Figure [I0] that varying the number of anchors results in different
emerging transformations, indicating that a single projection function cannot capture the desired
invariance. Nevertheless, our method achieves the highest score, regardless of the number of anchors.

Zero-Shot Model Stitching. The stitching methodology allows combining components of different
NN to obtain a new model. In this paper, we adopted the same setting proposed by [Moschella et al.
(2023)), where each element of the stitched model functions as an autonomous frozen module: the
encoder handles data embedding, while the dedicated relative decoder manages the downstream task.
Refer to Figure [TT]for a visual depiction of the procedure. The approach is termed zero-shot because
the stitching procedure is executed without any further training or fine-tuning.

Table 1: Graph and Text Classification Stitching Performance. Zero-shot accuracy scores across
various decoders, seeds, and datasets. For the text domain, we use pretrained models, while for the
graph domain, we train GCN models from scratch and evaluate the stitching across seeds. Additionally,
we calculate the stitching index for the graph modality, showing that composing different projections
using the Aggregation by sum enables zero-shot stitching without any performance drop in this setting,
ensuring competitive end-to-end performance. Refer to Tables [T and [T4] for complete results.

Text Graph
ALBERT GCN
Projection DBpediaf TRECT CORA T Stitching Index 1
Cosine 0.50 £ 0.02 0.54+0.03 0.53+0.06 0.71
Euclidean 0.50£0.00 0.60£0.03 0.27£0.06 0.58
L, 0.52+0.01 0.65+0.02 0.26 £ 0.06 0.58
Lo 0.18£0.02 0.29£0.06 0.12£0.03 1.00
Cosine, Euclidean, L1, Lo 0.53+0.01 0.65+0.02 0.77 £0.01 1.00
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Table 2: Image Classification Stitching Performance Cross-Architecture and Cross-Seed. Zero-
shot accuracy score across different pretrained models, seeds, and datasets. The proposed method
using the Aggregation by sum consistently achieves the highest accuracy score or comparable results,
without prior knowledge of the optimal projection to employ. See Table[T0|for complete results.

Accuracy T

Encoder Projection CIFAR-100 CIFAR-10 MNIST F-MNIST

CviT-B/32 Cosine 0.52+0.03 0.87+£0.02 0.61+£0.06 0.68=+0.02
Euclidean 0.53+0.02 0.87+0.02 0.66+0.05 0.70+0.03
Ly 0.53+£0.04 087+0.02 0.66+0.05 0.70+0.03
L 0.27+£0.04 0.524+0.04 0.57+£0.03 0.55+0.01
Cosine, Euclidean, L1, Lo 0.58 +0.03 0.88 +0.02 0.68+0.05 0.70 £0.01

RViT-B/16 Cosine 0.79£0.03 094£0.01 0.694+0.04 0.76+£0.03
Euclidean 0.79£0.03 094£0.01 0.71+£0.04 0.77+£0.03
L, 0.77+0.04 095+0.01 0.71+£0.04 0.79+0.03
Loo 0.31+0.03 0.754+0.04 0.61£0.05 0.60=+0.03

Cosine, Euclidean, L1, Lo«  0.81+£0.04 0.95+0.01 0.72+0.04 0.76+0.04

Results Analysis. Tables[T]and 2| present the performance for the classification downstream task of
various projection functions for different modalities. While Figure 5] shows the qualitative results for
the reconstruction task (see Table 23] for quantitative results). As previously observed in Section[&.1]
and Figure 3] the experiments reveal the absence of a single optimal projection function across archi-
tectures, modalities, and even within individual datasets. Our proposed framework, which leverages
a product space to harness multiple invariances, followed by a trainable aggregation mechanism,
consistently achieves superior accuracy across most scenarios. It is important to emphasize that the
dimensionality of each independent projection and the aggregated product space remains constant,
ensuring fair comparison. Additional stitching results on graphs and text in Appendix Table[T4]and
[T} moreover, in Tables [T5]to [21) we show the performance for each pair of encoder and decoder
without averaging over the architectures. The reference end-to-end performance are reported in
Tables 24]to[31]to better interpret the performance of the stitched models on the downstream tasks. To
this end, we propose an additional evaluation metric named the Stitching Index computed as the ratio
between the stitching score and the end-to-end score. It measures how closely the stitching accuracy
aligns with the original score, i.e., a stitching score of one indicates there is no drop in performance
when stitching modules. Results in Table [T|highlight that our method enables zero-shot stitching
without any performance drop in this setting while still ensuring competitive end-to-end performance.
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Figure 5: Reconstruction Qualitative Results on CIFAR-100 using AEs. The last two sets of
columns (D; o Eq and D o E5) are the end-to-end AEs with unique initialization seeds, while the
first two (D1 o E5 and D5 o Ey) illustrate the outputs of the zero-shot stitching of these independently
trained models. The first row displays the source images, the two subsequent rows show the results
from distinct combinations of projection aggregated through the Aggregation by sum, while the
last one shows the outputs from a baseline model that does not incorporate our methodology. It is
interesting to see that when using the L., projection (second to last row), the reconstructed images
are blurred, but when removing the L, space from the aggregation (third row) the reconstruction
drops in performance, meaning that it captures information not captured by the others.

Takeaway. A product space of invariant components can improve the zero-shot stitching performance
without any prior knowledge of the class of transformation that relates different spaces.
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4.3 AGGREGATION FUNCTIONS: ABLATION

Experimental setup. We perform an ablation study on the merging strategies presented in Section
In these experiments, we conduct zero-shot stitching classification on the three modalities using
the same datasets and models described in previous sections (refer to Tables [6] and[7] for additional
details of models and datasets). The relative decoders are trained using three different seeds, and the
accuracy score is assessed on each assembled model.

Table 3: Ablation Study on the Aggregation Functions. Zero-shot classification accuracy score
across different architectures, seeds, and datasets. The Aggregation by sum (third row) obtains
consistently the best accuracy score. See Appendix Tables [I2] to[T4] for the complete results.

Vision Text Graph
Aggregation RViT-B/16 BERT-C GCN
Concat* 0.81£0.00 0.54+0.03 0.75+0.02
MLP+SelfAttention  0.84 £0.01 0.51+0.03 0.63+0.13
MLP+Sum 0.85+0.00 055+£0.04 0.77£0.01
SelfAttention 0.76 £0.03 0.36 £0.22 0.76 £0.02

Result Analysis. Table[3|presents the results of the ablation study conducted using various aggregation
methodologies (complete results can be found in Tables[I2]to[I4). Among the different methodologies,
MLP+Sum outperforms the others consistently. This method preprocesses each subspace with an
independent MultiLayer Perceptron (MLP), which includes a normalization layer, a linear layer, and
tanh activation, and then sums the resulting representations. It is essential to highlight that the Concat
aggregation method is not directly comparable to the others since it increases the dimensionality of
the space linearly with the number of subspaces (refer to Appendix [A.4]for more details).

Takeaway. The aggregation by sum methodology consistently guarantees the highest performance
between merging strategies without increasing the dimensionality of the space.

4.4 SPACE SELECTION

In the preceding sections, we discussed integrating individual and multiple invariances into the
representation through various projection functions and appropriate aggregation strategies. In this
section, we aim to analyze and understand if tuning only the aggregation strategy at stitching time is
a reasonable cost for selecting the optimal space. We focus on the Self-attention aggregation, which
is a single self-attention layer as described in Section [3| and finetune only the Query, Key, Value
(QKV) parameters (i.e., the ones responsible for space blending). Each space is generated by its own
projection function. We remark that stitching-time fine-tuning is exclusive to this experiment.

Experimental setup. We identify two crucial components within the stitched model: (1) the linear
projections associated with QKV in the attention mechanism, which is responsible for selecting and
blending the spaces, and (2) the MLP in the classification head following the attention mechanism,
which classifies the aggregated embeddings. We examine two distinct approaches: the first approach
fine-tunes only the first component (QKV opt), while the second one fine-tunes the second one
(MLP opt). All the experiments in this section are conducted on the CIFAR-100 dataset using the
RexNet as encoder and the ViT-B/16 as decoder.

Result Analysis. Table 4] summarizes downstream classification accuracy for the stitched model
using various projection functions and aggregation strategies. Incorporating multiple invariances
and aggregating them via Self-attention (fifth row) does not perform well; meanwhile, using the
MLP+Sum or the Cosine projection alone is more effective. This is expected, considering the attention
mechanism is trained to improve end-to-end performance rather than to maximize compatibility
between different spaces. Incorporating the adaptation strategies at stitching time significantly
boosts performance, either focusing on the optimal space selection and blending (QKV opt) or the
classification head (MLP opt). We find that an informed fine-tuning of the parameters responsible
for the space blending (i.e., only the QKV projections) significantly impacts performances, even
more than tuning the whole classifier. Figure [f]illustrates the attention weights averaged over the
test dataset, the attention weights of the zero-shot stitched model (left) remain unchanged when
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fine-tuning only the classifier (right). Meanwhile, fine-tuning the QKV projections (center) shifts the
attention weights to allocate less importance to worse-performing projections (i.e., Lo).

Table 4: Optimal Space Selection. Classification accuracy for the stitched model with RexNet
as encoder and ViT-B/16 as decoder on CIFAR-100, using different projection functions and
aggregation strategies. Fine-tuning the space selection and blending module (QKV opt) has a more
significant effect on performance improvement than fine-tuning the MLP head (MLP opt).

Projection Aggregation Accuracy T
Cosine - 0.50
Euclidean - 0.38
Ly - 0.24
Lo - 0.21
Cosine, Euclidean, L1, Lo,  SelfAttention 0.17
Cosine, Euclidean, L1, Loo MLP+Sum 0.45
Cosine, Euclidean, L1, Lo,  SelfAttention + QKV opt 0.75
Cosine, Euclidean, L1, Loc  SelfAttention + MLP opt 0.52
Original QOKV opt MLP opt

Cosine JUCER 0.00 0.00 0.00 Cosine 0.02 0.10 0.00 0.00 0.00

Cosine

Euclidean 4 (IR 0.09 0.10 | Euclidean 0.01 0.00 | Euclidean (IR0 0.09 0.10

L1 4 0.01 KUX=N 0.28 0.06 L1 0.08 0.00 L1 (IX=y 0.28 0.06

Linf 4 0.05 10.38 0.03 HOSZ Linf 0.07 0.02 Linf 0:38% 0.03 gUSE

T T
< IR & o RO R\ o IR S
Cog\‘\ 6\‘0\.\&) v W Cog\“ Q)\)C\.\éeb % W C°$\“ 6\&\.\&‘5 v W

Figure 6: Attention Weights Visualization. Comparison of attention weights for the stitched model
with RexNet as encoder and ViT-B/16 as decoder on CIFAR-100, before and after fine-tuning.
(left) the attention weights of the initial zero-shot stitched model, which remain unchanged when
fine-tuning the classifier (MLP opt) (right). Conversely, fine-tuning the QKV projections (QKV
opt) (center) leads to a notable shift in attention weights, assigning lower importance to the space
that performs worst individually.

Takeaway. Appropriate selection and aggregation of the optimal invariant spaces are crucial in
enhancing latent communication between neural models.

5 CONCLUSION

In this paper, we introduced a framework to incorporate invariances into neural representations
to enhance latent space communication without prior knowledge of the optimal invariance to be
enforced. Constructing a product space with invariant components, we showed that it is possible to
capture a large class of complex transformations between latent spaces within a single representation
that is robust to multiple changing factors such as dataset, architecture, and training hyperparameter
variations.

Limitations and Future Works. Our framework allows to incorporate multiple invariances in a
single latent representation, induced by specific similarity functions. However, this can become
limiting when a similarity function cannot be modeled analytically, or expressed in closed form. In
such cases, an interesting direction would be to /earn the similarity functions, paving the way to an
even more extensive set of possible invariances to be enforced in the representation. Furthermore,
while our method achieves good results on the tested benchmarks, we observed that selecting the
optimal invariant spaces can yield equivalent performance using fewer components. Therefore,
integrating a better space selection strategy holds promise for future research.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

In Section Section[d] we provide a detailed description of the proposed framework and the experimen-
tal settings for the various scenarios. In the following sections, we present all implementation details
that are not described in the main manuscript. Additionally, we are releasing a modular PyTorch
implementation |

A.2 DISTANCE-INDUCED INVARIANCES DETAILS
A.2.1 DISTANCES DEFINITION

This section provides additional details about the metrics described in section Section

Cosine. Given two vectors u, v, the cosine similarity is defined as:
u-v

cos(u,v) = Tall el )

Euclidean. Given two vectors u, v, the Euclidean distance is defined as:

3)
Manhattan (). Given two vectors u, v, the L; distance is defined as:
d(u,v) = |(u;i — ;)| “
i=1
Chebyshev (L.). Given two vectors u, v, the L, distance is defined as:
1

= PR— — | . |P

d(u,v) = max(|u; - yil) = lim (; i — il ) : )

and can be approximated in a differentiable way employing high values for p.

Geodesic distance. Given a manifold M and its parametrization g : Z — X we can represent the
Riemannian metric as symmetric, positive definite matrix G(z) defined at each point in Z. G(z) can
be obtained as G(z) = J,(2)7 J,(2), where J,(z) indicates the Jacobian of g evaluated at z. This
metric enables us to define an inner product on tangent spaces on M. Considering a smooth curve
v : [a,b] — Z, this corresponds to a curve on M via g o y(¢). Its arc length is defined as:

b
Lmozi/ SO (Dt ©)

A geodesic curve is a curve that locally minimizes the arc length, corresponding to minimizing the
following energy functional:

1 [t

B0 = [ 107Gt ™
In Figure[7] we show how geodesic distance is preserved under several classes of transformations,
including manifold isometries, i.e., possibly nonlinear transformations that preserve the metric on M.
In the synthetic experiment, geodesic distances are computed using the heat method of (Crane et al.
(2017), and the manifold isometry is calculated using Isomap (Tenenbaum et al., 2000). Possible
approaches to extend geodesic computation to real cases when dim(Z) > 3 include |Shao et al.
(2017). We leave this promising direction for future work.

3https://github.com/icannistraci/latent-invariances
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Original Isometry IS oT TR LT

Figure 7: Qualitative Synthetic Results. We show invariances induced using a geodesic distance-
based representation. We plot geodesic distances (fop row) from the violet star point with values going
from blue (closer) to red (farther). On the bottom row, we compare with Euclidean distances, showing
that the latter does not estimate nor preserve well the metric information under transformations of the
manifold.

A.2.2 INFUSED INVARIANCES

In Table[5] we summarize the invariances guaranteed by different distance metrics concerning the
following standard classes of transformations: Isotropic Scaling (IS), Orthogonal Transformation
(OT), Translation (TR), Permutation (PT), Affine Transformation (AT), Linear Transformation (LT),
and Manifold Isometry (MIS). Where MIS is an isometric deformation of the manifold that preserves
the geodesic distances between points, see Figure [7]for a synthetic example. In general, capturing
the set of invariances induced by a similarity function is not straightforward. For example, the L,
distance does not enforce isometry invariance in the representation but, simultaneously, induces an
invariance to perturbations in dimensions other than the maximum one. Formalizing and analyzing
such types of invariances presents challenges since these transformations cannot be neatly classified
into a specific simple class of transformations.

Table 5: Invariances. Overview of the different distance-induced invariances.

Similarity  Isotropic  Orthogonal Affine  Linear  Manifold

Function Scaling Transf. Translation Permutation Transf. Transf. Isometry
Absolute X X X X X X X
Cosine N4 Vv X v X X X
Euclidean X Va Vv Vv X X X
Manhattan X X v/ v/ X X X
Chebyshev X X Vi Vv X X X
Geodesic v v Vv v/ X X v/

A.3 AGGREGATION FUNCTIONS

In this section, we report the implementation details of the aggregation functions ¢ described in
Section[3] There are two possible preprocessing strategies applied to each subspace independently:

* Normalization layer: an independent LayerNorm for each subspace.

* MLP: a compact, independent, fully connected network defined for each subspace, comprised
of LayerNorm, a Linear layer, and a Tanh activation function.

These preprocessing modules can be applied before either the (Sum) or (Self-attention) aggregation
strategies.
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Figure 8: Qualitative synthetic experiments using a grid initialization. We consider a synthetic
absolute latent space by initializing points in a grid shape (top left). We then apply various transfor-
mations to the absolute space, converting it into different transformed spaces (first row). We convert
the entire first row into the corresponding relative space for all the different similarity functions con-
sidered (i.e. Cosine, Euclidean, L, and L,). Observing which transformation does not change the
original relative space (left column), shows which projections induce an invariance to each considered
transformation.

A.4 IMPLEMENTATION DETAILS

This section details the experiments conducted in Section [d Table [f] contains the full list of the
pretrained models, while Tablem contains dataset information.

A.4.1 ToOOLS & TECHNOLOGIES
All the experiments presented in this work employ the following tools:
» PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;
* NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;

* Transformers by HuggingFace, to get ready-to-use transformers for both text and images;

* Datasets by HuggingFace, to access most of the datasets;

DVC (Kuprieiev et al.} 2022), for data versioning;
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Table 6: Pretrained models details. Details of the pretrained feature extractors with their Hugging-
Face key, their alias, and their latent space dimensionality.

Modality  HuggingFace model name Alias Enc. Dim
bert-base-cased BERT-C (Devlin et al.|[2019) 768
bert-base-uncased BERT-U (Devlin et al.|[2019) 768
google/electra-base-discriminator ELECTRA (Clark et al.|2020) 768

Language roberta-base RoBERTa (Liu et al.|[2019) 768
albert-base-v2 ALBERT (Lan et al.][2019) 768
xIm-roberta-base XLM-R (Conneau et al.|[2019) 768
openai/clip-vit-base-patch32 CviT-B/32 (Radford et al.||2021) 768
rexnet_100 RexNet (Han et al.|[2020) 1280
vit_small_patch16_224 ViT-S/16 (Dosovitskiy et al.|[2021) 384

Vision vit_base_patch16_384 ViT-B/16 (Dosovitskiy et al.|[2021) 768
vit_base_resnet50_384 RViT-B/16 (Dosovitskiy et al./[2021) 768
openai/clip-vit-base-patch32 CviT-B/32 (Radford et al.[|2021) 768

Graph GCN GCN 300

Table 7: Dataset details. Details of the HuggingFace datasets used in the classification and recon-
struction experiments, with the associated number of classes.

Modality Name Number of Classes
MNIST 10
Fashion MNIST 10
Image CIFAR-10 10
CIFAR-100 20 (coarse) — 100 (fine)
ImageNetlk 1000
TREC 6 (coarse) — 50 (fine)
Text DBpedia 14

N24news (Text) 24

Graph CORA 7

A.5 LATENT SPACE ANALYSIS
RECONSTRUCTION

This experiment adopts convolution-based AE and VAE. The design variations encompass 2D-
bottleneck architectures with a dimensionality of 16 x 7 x 7 and 1D-bottleneck architectures with
a dimensionality of 784 = 16 x 7 x 7 for fair comparison. The models with 2D bottlenecks are
endowed with approximately 50k parameters (AE) and 60k parameters (VAE), while their linearized
counterparts possess 1.3 million parameters (LinAE) and 1.9 million parameters (LinVAE). Intrigu-
ingly, the variants preserving spatial structure in the latent space demonstrate superior performance
despite having significantly fewer parameters. All models undergo training using the Adam optimizer
(Kingma & Ba,[2015) with a learning rate set to 1e—3. Early stopping is employed based on validation
reconstruction error, quantified by mean squared error.

A.6 SPACE SELECTION

In Table [8|and Figure 9] we present similar results to the ones reported in Section[4.4] but using a
more expressive classifier. This choice establishes a less favorable scenario since we are fine-tuning
more parameters in the SelfArtention+MLP opt setting. It illustrates that is still better to fine-tune the
QKYV rather than the whole classifier.
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Table 8: Optimal Space Selection. Classification accuracy for the stitched model with RexNet
as encoder and ViT-B/16 as decoder on CIFAR-100, using different projection functions and
aggregation strategies. Fine-tuning the subspace selection and blending part (OKV opt) has a more
significant effect on performance improvement than fine-tuning only the larger MLP (MLP opt).

Projection Aggregation Accuracy T
Cosine - 0.52
Euclidean - 0.42
L4 - 0.34
Lo - 0.22
Cosine, Euclidean, L1, Lo,  SelfAttention 0.25
Cosine, Euclidean, L1, Loo MLP+Sum 0.43
Cosine, Euclidean, L1, Loc  SelfAttention + QKV opt 0.75
Cosine, Euclidean, L1, Lo,  SelfAttention + MLP opt 0.65
Original QKV opt MLP opt

JMUN 0.00 0.00

Cosine Cosine | 0.00 0.03 Cosine 0.00 0.00 0.00

Euclidean 4 0.00 JOM[® 0.16 Euclidean 0.14 0.00 | Euclidean (W[l 0.16 0.07
L1 4 0.01 JUsES 0.39 L1 041 0.00 L1 SRR 0.39 0.06
Linf 4 0.02 10.32 0.03 Linf 0.11 0.01 Linf 0.32 0.03 NI}

T T
Coé"‘\a C\_\&%\\ W \}(\’i Coé\(\e C\_\&@ W \;\& ccé“\e
o o

hY IR\
IEC R

Figure 9: Attention Weights Visualization. Comparison of attention weights for the stitched model
between RexNet and ViT-B/16 on CIFAR-100, before and after fine-tuning. (left) the attention
weights of the initial zero-shot stitched model, which remain unchanged when fine-tuning the classifier
(MLP opt) (right). Conversely, fine-tuning the QKV projections (WKV opt) (center) leads to a
notable shift in attention weights, assigning greater importance to the subspace that performs better
individually.

A.7 ANCHOR SELECTION ANALYSIS

In this section, we present the analysis performed on the anchor choice. In Section[d.2) when referring
to random but fixed anchors, we mean that the anchors are uniformly randomly sampled from the
training set, but with a fixed seed value. Thus, we conducted an analysis on the number of randomly
selected anchors for the stitching task using CIFAR-100 across three different anchor selection
seeds. The results in Table [9] and Figure [T0] reveal that varying the number of anchors leads to
different transformations, indicating that a single projection function cannot incorporate the desired
invariance. In contrast, our method enables the attainment of the highest score regardless of the
number of anchors or the seed value employed for the uniform random sampling of anchors.

A.8 STITCHING PROCEDURE

In Figure[TT] we illustrate in detail the stitching procedure introduced in Section[4.2]
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Figure 10: Accuracy vs. Number of Anchors. Each box represents a stitched model using
CViT-B/32 and ViT-B/16 on CIFAR-100. The proposed methodology using the Aggregation
by sum consistently outperforms other results regardless of the number of anchors.
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Figure 11: Stitching Procedure Description. Given two trained models (/eft and center columns),
the zero-shot stitched model (right column) is formed by combining the encoder of the first model
with the decoder of the second one. The zero-shot stitched model does not require additional training
or fine-tuning. Although certain components of our module have learnable parameters (e.g., @), these
parameters are exclusively trained during their respective network training phase and are subsequently
utilized in their trained, frozen state in the stitched model.
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Table 9: Number of Anchors Ablation. Zero-shot stitching classification performance results
using CViT-B/32 and ViT-B/16 on CIFAR-100. The proposed methodologies utilizing the
Aggregation by sum consistently outperform the other results regardless of the number of anchors.

Number of Anchors |  Projection Accuracy T
Cosine 0.05 +0.02

Euclidean 0.05 4+ 0.02

2 Ly 0.06 = 0.02
Lo 0.04 £+ 0.02

Cosine, Euclidean, L1, Lo 0.07 &= 0.02

Cosine 0.24 +0.04

Euclidean 0.19 +0.02

10 Ly 0.16 = 0.02
Lo 0.14 +0.02

Cosine, Euclidean, L1, Lo, 0.28 4= 0.02

Cosine 0.51 £ 0.02

Euclidean 0.46 + 0.04

50 14 0.44 +0.03
L 0.25 +0.03

Cosine, Euclidean, L1, Lo, 0.58 4+ 0.05

Cosine 0.54 +0.02

Euclidean 0.55 +£0.05

70 I 0.54 £+ 0.05
Lo 0.27 +0.04

Cosine, Euclidean, Ly, Lo, 0.63 £ 0.06

Cosine 0.59 + 0.02

Euclidean 0.58 £0.05

100 Ly 0.59 +0.05
Lo 0.28 +0.03

Cosine, Euclidean, L1, Lo, 0.67 &= 0.04

Cosine 0.72 +£0.03

Euclidean 0.67 £ 0.08

300 Ly 0.70 = 0.06
L 0.34 +0.04

Cosine, Euclidean, Ly, Lo 0.76 = 0.05

Cosine 0.78 £+ 0.02

Euclidean 0.73 £0.08

800 Ly 0.77 £ 0.05
Lo 0.38 = 0.05

Cosine, Euclidean, L1, Lo 0.82 4+ 0.04

Cosine 0.80 £+ 0.02

Euclidean 0.75 £0.09

1280 Ly 0.79 +0.05
Lo 0.38 = 0.05

Cosine, Euclidean, L1, Lo 0.83 = 0.04

Cosine 0.80 £+ 0.02

Euclidean 0.76 £0.09

2000 L4 0.79 4+ 0.06
Lo 0.39 +0.05

Cosine, Euclidean, L1, Lo, 0.83 +0.05
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A.9 ADDITIONAL RESULTS
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Figure 12: Latent Spaces Cross-Seed Similarity. Pearson correlation, measuring the similarity of
latent spaces across different seeds for various architectures and datasets.
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Figure 13: Latent Spaces Cross-Seed Similarity. Spearman correlation, measuring the similarity of
latent spaces across different seeds for various architectures and datasets.

21



Published as a conference paper at ICLR 2024

Mnist Fashion
0.7 N
X [ XX 0.9
06 0s
N = — I 3
. 07 o ¢
g 05 < 4y ¢ (2N
S 00 ¢ ¢
8 04 LX) = ¢ g 05 I I l
£ 'Y £
- 0.4
0.3 . ‘
. Invariance 0.3 0 Invariance
¢ ¢ i i
0o S ‘. . ¢ = 005|.ne — | 02 = ¢ ] COSIII'Ie | — |
¢ " ¢ [ Euclidean I L, Iy [ Euclidean L,
i 0.1 i
RexNet ViT-B/16 ViT-S/16 RViT-B/16  CViT-B/32 RexNet ViT-B/16 ViT-S/16 RViT-B/16  CViT-B/32
Cifar100 Dbpedia
0.8 0.8
¢ ’ ¢, e L Y
0.7 LX) ¢ 0.7 0 ¢
¢ g
0.6 0.6
$os g 00
Q 2 04
3 04 3
£ .ﬁl £03
0.3 i .
. ‘ 0.2 ,
02 Invariance Invariance
& ¢ ¢ 0 = Cosine —u 0.1 @ Cosine —u
01 '-%-v 1 ¢ 1 Euclidean BN L. 00 NO, o 0l Euclidean = L. |
RexNet ViT-B/16 ViT-S/16 RViT-B/16  CViT-B/32 BERT-C BERT-U ELECTRAROBERTa ALBERT XLM-R CViT-B/32

Figure 14: Latent Spaces Cross-Architecture Similarity. Linear CKA, measuring the similarity of
latent spaces of pretrained models across different architectures and datasets.

Table 10: Image Stitching Performance Cross-Architecture and Cross-Seed. Zero-shot accuracy
score for image classification task across different pretrained models, seeds, and datasets. The
proposed method using the Aggregation by sum consistently achieves the highest accuracy score or
comparable results, even without prior knowledge of the optimal projection to employ.

Accuracy T
Encoder Projection CIFAR-100 CIFAR-10 MNIST Fashion MNIST
CcviT-B/32 Cosine 0.52+0.03 0.87+£0.02 0.61+0.06 0.68 £ 0.02
Euclidean 0.53+0.02 0.87+£0.02 0.66 +0.05 0.70 + 0.03
Ly 0.53+0.04 0.87+£0.02 0.66+0.05 0.70 £ 0.03
Lo 0.27+0.04 0.52+£0.04 0.57+0.03 0.55 £ 0.01
Cosine, Euclidean, L, Lo, 0.58 £0.03 0.88 +£0.02 0.68 & 0.05 0.70 +0.01
RViT-B/16 Cosine 0.79+£0.03 0.94+£0.01 0.69=+0.04 0.76 £ 0.03
Euclidean 0.79 +£0.03 0.944+0.01 0.71 +£0.04 0.77 £0.03
Ly 0.77+0.04 095+0.01 0.714+0.04 0.79 +0.03
Lo 0.31+£0.03 0.75+£0.04 0.61=+0.05 0.60 £ 0.03
Cosine, Euclidean, L1, Lo, 0.81£0.04 0.95+0.01 0.72+0.04 0.76 £ 0.04
RexNet Cosine 0.50 +£0.02 0.79+0.01 0.71 +0.02 0.74 £ 0.01
Euclidean 0.43+0.06 0.72+£0.02 0.69+0.04 0.76 + 0.01
Ly 0.33+0.06 0.70£0.01 0.69+0.04 0.76 + 0.02
Lo 0.19+0.03 0.48+0.03 0.48+0.02 0.60 £+ 0.05
Cosine, Euclidean, L, Lo, 0.52+0.05 0.754+0.01 0.70£0.03 0.75 £+ 0.02
ViT-B/16 Cosine 0.75+0.05 0.96 +£0.01 0.59 +0.05 0.79 +£0.03
Euclidean 0.76 +0.05 0.96 +0.01 0.65+ 0.06 0.81 + 0.02
Ly 0.76 + 0.06  0.96 +0.01 0.66 + 0.07 0.81 + 0.02
Lo 0.42 +0.02 0.70 £0.05 0.42 £0.05 0.52 +0.04
Cosine, Euclidean, Ly, Lo,  0.81 =0.05 0.96 £0.01 0.66 + 0.04 0.80 £+ 0.04
ViT-S/32 Cosine 0.73+0.04 0.93+0.01 0.68+0.04 0.77 £0.02
Euclidean 0.64+0.03 0.93+0.01 0.70+0.02 0.77 £0.02
Ly 0.58+£0.09 0.93+0.01 0.70+0.03 0.78 + 0.02
Leo 0.33+0.04 0.69+0.03 0.48+0.02 0.53 £0.02
Cosine, Euclidean, Ly, L,  0.73+0.05 093 +0.01 0.69+0.02 0.76 £ 0.02
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Table 11: Text Stitching Performance Cross-Architecture and Cross-Seed. Zero-shot accuracy
score for text classification task across different pretrained models, seeds, and datasets. The aggre-
gation function is the Aggregation by sum and the results are obtained using a linear classifier as a
decoder, instead of a MLP as in|Moschella et al.| (2023)).

Accuracy T
Encoder Projection DBpedia TREC N24news (Text)
ALBERT Cosine 0.48 £0.05 0.49 +0.08 0.09 + 0.02
Euclidean 0.494+0.05 0.54 +0.06 0.09 +0.03
Ly 0.51 £0.04 0.59 4 0.06 0.09 +£0.03
Lo 0.174+0.02 0.32+0.07 0.07 +£0.01
Cosine, Euclidean, L1, Lo, 0.50 +=0.06 0.55 + 0.06 0.09 +£0.03
BERT-C Cosine 0.46 =0.07 0.46 £0.11 0.21 £0.09
Euclidean 0.48 £0.09 0.57 +0.05 0.22 +0.09
Iy 0.50 £0.10 0.59 4+ 0.06 0.21 £0.09
Lo 0.134+0.04 0.21+0.04 0.11 £0.04
Cosine, Euclidean, L1, L, 0.50 +0.13 0.54 +0.07 0.21 £0.09
BERT-U Cosine 0.51 £0.05 0.46 +0.12 0.15£0.06
Euclidean 0.36 =0.05 0.56 &= 0.07 0.17 £ 0.06
Ly 0.36 = 0.06 0.58 4+ 0.09 0.16 = 0.06
Lo 0.124+0.02 0.28 +0.07 0.06 = 0.01
Cosine, Euclidean, L1, Lo, 0.43+0.07 0.51 +0.10 0.17 + 0.07
CvViT-B/32 Cosine 0.20+£0.02 0.50 +0.04 0.08 £ 0.03
Euclidean 0.22 +£0.02 0.48+£0.10 0.12 + 0.05
L4 0.22 +£0.02 0.57 £0.07 0.11 +£0.03
Lo 0.124+0.02 0.25+0.09 0.07 £0.02
Cosine, Euclidean, L1, Lo, 0.224+0.01 0.50 & 0.09 0.10 £0.03
ELECTRA Cosine 0.27 £0.05 0.39+£0.11 0.04 +0.01
Euclidean 0.254+0.05 0.53 +0.05 0.04 +=0.01
Ly 0.33+0.06 0.50+0.10 0.05 +£0.01
L 0.114+£0.02 0.26 +£0.11 0.05 £0.01
Cosine, Euclidean, L1, Lo, 0.32+0.07 0.52+0.14 0.04 £0.01
RoBERTa Cosine 0.31 £0.07 0.43+0.05 0.41 +0.18
Euclidean 0.26 £0.05 0.52+0.11 0.39 £0.18
Ly 0.30+£0.06 0.56 +0.07 0.45+0.20
L 0.134+0.01 0.20 +0.07 0.08 £0.02
Cosine, Euclidean, L1, Lo, 0.34 +0.08 0.53 +0.09 0.43 +0.20
XLM-R Cosine 0.134+0.03 0.39+0.10 0.20 £0.10
Euclidean 0.16 =0.03 0.53 & 0.06 0.26 == 0.11
Ly 0.32+0.06 0.61+0.10 0.32+0.14
L 0.08 £0.01 0.30 +=0.08 0.07 +£0.01
Cosine, Euclidean, L1, Lo, 0.21 £0.03 0.55+0.07 0.27£0.14
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Table 12: Image Classification Ablation on the Aggregation Functions. Zero-shot accuracy score
across different architectures, seeds, and datasets. The proposed aggregation function obtains the
best accuracy score. It is essential to highlight that the Concat aggregation method is not directly
comparable to the others because it increases the dimensionality of the space linearly with the number
of subspaces. The standard deviation is high because it accounts for the average across all possible
image datasets.

Encoder Aggregation Function  Accuracy 1
CViT-B/32 Concat* 0.68 £0.13
MLP+SelfAttention 0.66 £0.13
MLP+Sum 0.71 £0.11
SelfAttention 0.54 +0.18
RViT-B/16 Concat* 0.72+£0.18
MLP+SelfAttention 0.72+£0.18
MLP+Sum 0.74 £0.18
SelfAttention 0.61 £0.24
RexNet Concat* 0.58 £0.20
MLP+SelfAttention 0.54 +0.21
MLP+Sum 0.61 = 0.20
SelfAttention 0.40 +0.22
ViT-B/16  Concat* 0.72+£0.19
MLP+SelfAttention 0.70 £0.20
MLP+Sum 0.74 £0.19
SelfAttention 0.60 £0.24
viT-s/16  Concat* 0.69 £0.18
MLP+SelfAttention 0.67 £0.19
MLP+Sum 0.71 £0.18
SelfAttention 0.57 +0.22
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Table 13: Text Classification Ablation on the Aggregation Functions. Zero-shot accuracy score
across different architectures, seeds, and datasets. The proposed aggregation function obtains the
best accuracy score. It is essential to highlight that the Concat aggregation method is not directly
comparable to the others because it increases the dimensionality of the space linearly with the number
of subspaces. The standard deviation is high because it accounts for the average across all possible
text datasets.

Encoder Aggregation Function  Accuracy 1
ALBERT Concat* 0.38 £0.22
MLP+SelfAttention 0.35+0.21
MLP+Sum 0.38 +0.21
SelfAttention 0.21 £0.17
BERT-C Concat* 0.41 +£0.17
MLP+SelfAttention 0.36 £0.17
MLP+Sum 0.42 £0.18
SelfAttention 0.20 +0.16
BERT-U Concat* 0.36 +0.17
MLP+SelfAttention 0.31 £0.15
MLP+Sum 0.37 +£0.17
SelfAttention 0.19 £0.15
CviT-B/32 Concat* 0.23£0.18
MLP+SelfAttention 0.22 +£0.18
MLP+Sum 0.26 £ 0.21
SelfAttention 0.15+0.13
ELECTRA Concat* 0.30 £0.18
MLP+SelfAttention 0.27 +£0.16
MLP+Sum 0.30 +£0.18
SelfAttention 0.14 +0.11
RoBERTa Concat* 0.41 +0.15
MLP+SelfAttention 0.36 =0.14
MLP+Sum 0.44 +0.15
SelfAttention 0.23 +0.16
XLM-R Concat* 0.35+0.17
MLP+SelfAttention 0.29 +£0.17
MLP+Sum 0.35 +0.17
SelfAttention 0.18 £0.16
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Table 14: Graph Classification Ablation Study. Zero-shot accuracy score across different ar-
chitectures and seeds. We analyzed the effect of selecting only specific spaces and including all
available spaces. Furthermore, we assessed all the possible aggregation functions and calculated the
stitching index to validate stitching performance. Our proposed aggregation function achieved the
highest accuracy score. It is important to note that the Concat aggregation method cannot be directly
compared to others as it linearly increases the dimensionality of the space with the number of spaces.

Aggregation Projection Accuracy T Stitching index 7
- Absolute 0.14 £ 0.04 0.18
Cosine 0.53 +£0.06 0.71
Euclidean 0.27 £ 0.06 0.58
Ly 0.26 £+ 0.06 0.58
Lo 0.12£0.03 1.00
Concat* Cosine,Euclidean 0.69 £0.04 0.90
Cosine, L1 0.69 £0.04 0.90
Cosine, L, 0.65 +0.05 0.87
Euclidean, L, 0.40 £0.07 0.72
Euclidean, L, 0.30 4+ 0.09 0.65
Lq,L 0.32 +0.09 0.67
Cosine, Euclidean, L1, Lo, 0.75 4+ 0.02 0.97
SelfAttention Cosine,Euclidean 0.72 +£0.04 0.96
Cosine, L 0.72 +0.04 0.96
Cosine, L, 0.76 = 0.02 1.00
Euclidean, 0.68 +0.03 0.92
Euclidean, L 0.69 4+ 0.04 0.93
Li,L 0.68 4+ 0.04 0.91
Cosine, Euclidean, L1, Lo, 0.63 £0.13 0.85
MLP+SelfAttention Cosine,Euclidean 0.76 = 0.01 1.00
Cosine, L 0.76 + 0.01 1.00
Cosine, L, 0.76 + 0.01 1.00
Euclidean, L, 0.68 = 0.06 0.92
Euclidean, L. 0.71 £ 0.03 0.95
Li,L 0.69 4+ 0.03 0.93
Cosine, Euclidean, L1, Lo, 0.76 = 0.02 0.99
MLP+Sum Cosine,Euclidean 0.78 £+ 0.02 1.00
Cosine, 0.78 - 0.01 1.00
Cosine, L, 0.77 - 0.01 1.00
Euclidean, L 0.72 +0.03 0.97
Euclidean, L 0.68 = 0.04 0.94
Lq,L 0.67 +0.01 0.94
Cosine, Euclidean, L1, Lo, 0.77 = 0.01 1.00
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Table 15: Zero-Shot Stitching Results on CIFAR-10. The table shows the mean and standard
deviation of the test accuracy for the different projection methods sorted by maximum difference

between projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean 14 Lo
RexNet RViT-B/16 0.11£0.01 0.80£0.01 0.74£0.02 0.69+£0.02 0.46=+0.02
ViT-B/16 0.114+£0.00 0.794+0.01 0.694+0.02 0.69+0.01 0.51+0.03
CViT-B/32 0.09£0.01 0.79+£0.01 0.73£0.01 0.70£0.01 0.48£0.03
ViT-S/16 0.09+0.02 0.79+0.01 0.72£0.02 0.704+0.02 0.45+0.02
ViT-B/16 RexNet 0.024+0.01 0.944+0.01 0.954+0.00 0.964+0.00 0.63+0.01
CViT-B/32 ViT-B/16 0.024+0.01 0.874+0.01 0.874+0.01 0.87+0.01 0.56=+0.00
RViT-B/16 0.02+£0.00 0.844+0.01 0.844+0.01 0.84+0.01 0.54+0.02
RViT-B/16 RexNet 0.01 £0.00 0.934+0.00 0.944+0.00 0.944+0.00 0.70=+0.02
CViT-B/32 RexNet 0.01 £0.00 0.87+0.00 0.88+0.00 0.87+0.00 0.47+0.01
ViT-S/16 0.01 £0.01 0.894+0.01 0.894+0.01 0.894+0.01 0.52+0.01
ViT-S/16 RViT-B/16 0.01£0.00 0.93+£0.00 0.93£0.00 0.92+0.00 0.73+0.00
RViT-B/16 ViT-B/16 0.01 £0.00 0.954+0.00 0.954+0.00 0.954+0.00 0.74+0.01
ViT-S/16 ViT-B/16 0.01 £0.00 0.944+0.00 0.934+0.00 0.944+0.00 0.69=+0.01
RViT-B/16 CViT-B/32 0.01+0.01 0.93+£0.00 0.94+0.00 0.94+0.00 0.78+0.03
ViT-S/16 CViT-B/32 0.01£0.00 0.93+£0.00 0.93+£0.00 0.92+0.00 0.66=+0.03
RexNet 0.01 £0.00 0.924+0.00 0.914+0.00 0.924+0.00 0.66=+0.02
ViT-B/16 RViT-B/16 0.01£0.00 0.96+0.00 0.96+0.00 0.97+0.00 0.76+0.00
CViT-B/32 0.014+0.00 0.95£0.00 0.96=+0.00 0.96=40.00 0.67=£0.02
RViT-B/16 ViT-S/16 0.00£0.00 0.954+0.00 0.95+£0.00 0.95+0.00 0.7940.02
ViT-B/16 ViT-S/16 0.00£0.00 0.97+0.00 0.97£0.00 0.97+0.00 0.7340.03

Table 16: Zero-Shot Stitching Results on CIFAR-100.

The table shows the mean and standard

deviation of the test accuracy for the different projection methods sorted by maximum difference
between projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean 14 Lo
RexNet ViT-B/16 0.24+0.01 0.50£0.01 0.40£0.02 0.254+0.02 0.21+0.02
ViT-S/16 RexNet 0.23+£0.01 0.73+0.00 0.63+0.01 0.50+0.01 0.3140.00
RexNet RViT-B/16 0.20£0.02 0.524+0.01 0.424+0.02 0.31+0.02 0.22+£0.01
ViT-S/16 CViT-B/32 0.174+0.03 0.68£0.00 0.61+0.01 0.514+0.03 0.30+£0.00
ViT-B/16 0.14+£0.00 0.77+0.00 0.64+£0.00 0.71+0.01 0.33+0.01
RViT-B/16 0.134+0.01 0.75£0.00 0.67+0.01 0.624+0.01 0.39+0.00
RexNet ViT-S/16 0.12+0.01 0.47+£0.01 0.40£0.02 0.344+0.01 0.17+0.00
CViT-B/32 0.11+£0.01 0.50£0.01 0.524+0.02 0.41+0.02 0.17+£0.02
CViT-B/32 RViT-B/16 0.07+£0.03 0.484+0.04 0.52£0.02 0.49+0.03 0.32+0.01
RViT-B/16 RexNet 0.06 £0.00 0.794+0.00 0.77+£0.00 0.72+0.00 0.3340.00
CViT-B/32 ViT-S/16 0.05+0.01 0.53+£0.02 0.544+0.02 0.57+0.02 0.22+0.01
ViT-B/16 0.05+0.02 0.53+£0.02 0.524+0.02 0.56+0.01 0.26+0.01
ViT-B/16 RexNet 0.04+0.01 0.72+£0.01 0.72£0.01 0.684+0.00 0.40=+0.02
CvViT-B/32 0.044+0.01 0.70£0.01 0.71+0.01 0.734+0.01 0.39+0.01
ViT-S/16 0.03+£0.00 0.80+0.00 0.83+0.00 0.84+0.00 0.444+0.01
CViT-B/32 RexNet 0.03+£0.02 0.524+0.01 0.55+0.02 0.53+0.00 0.27+0.01
RViT-B/16 ViT-S/16 0.03+£0.01 0.794+0.01 0.82+0.00 0.81+0.01 0.3440.00
ViT-B/16 RViT-B/16 0.024+0.01 0.78+0.01 0.80+0.01 0.794+0.00 0.44+0.01
RViT-B/16 ViT-B/16 0.01£0.00 0.824+0.01 0.81£0.00 0.82+0.00 0.2640.01
CviT-B/32 0.014+0.01 0.75+£0.00 0.75+0.01 0.754+0.00 0.30+0.01
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Table 17: Zero-Shot Stitching Results on Fashion MNIST. The table shows the mean and
standard deviation of the test accuracy for the different projection methods sorted by maximum
difference between projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean L4 Lo

CViT-B/32 RexNet 0.05+0.00 0.67£0.00 0.72+0.01 0.72£0.00 0.54+0.00
RViT-B/16 RexNet 0.04+0.01 0.76+0.01 0.79+£0.01 0.80+0.01 0.59+0.01
ViT-B/16 CviT-B/32 0.03+£0.00 0.76+0.01 0.78£0.00 0.79+0.00 0.50=+£0.01
CViT-B/32 RViT-B/16 0.03£0.02 0.68+£0.01 0.72+£0.01 0.71£0.01 0.56 £ 0.00
RViT-B/1l6 ViT-B/16 0.03+0.01 0.78+0.01 0.79+£0.01 0.81+0.00 0.61+£0.01
ViT-S/16 RViT-B/16 0.03+£0.00 0.76+0.00 0.77£0.00 0.78 £0.00 0.52+£0.01
RViT-B/16 CViT-B/32 0.03x£0.01 0.72+£0.01 0.72+£0.01 0.74+£0.01 0.57£0.01
ViT-B/16 RexNet 0.03+0.01 0.79+0.00 0.81+£0.00 0.81+0.00 0.48+0.01
RexNet RViT-B/16 0.03+£0.01 0.74+0.01 0.77£0.00 0.76+0.00 0.53+£0.02
CViT-B/32 ViT-S/16 0.03+0.01 0.66=+0.02 0.65+0.01 0.65£0.01 0.56=+0.00
RexNet ViT-S/16 0.02+0.01 0.74+0.00 0.77£0.00 0.76+0.01 0.64+£0.01
ViT-S/16 RexNet 0.02+0.01 0.78+0.01 0.78+£0.01 0.78£0.01 0.51+£0.01
ViT-B/16 ViT-S/16 0.02+0.01 0.79+0.01 0.80+£0.01 0.80+0.01 0.57+£0.01
CViT-B/32 ViT-B/16 0.02+0.01 0.70£0.01 0.71+£0.01 0.724+0.00 0.55+£0.01
RexNet CviT-B/32 0.01£0.01 0.72£0.01 0.74£0.01 0.73£0.01 0.63 £ 0.00
RViT-B/16 ViT-S/16 0.01+0.01 0.79£0.00 0.79+0.00 0.80=£0.01 0.63=+0.00
ViT-S/16 ViT-B/16 0.01+£0.00 0.79+0.00 0.80+£0.00 0.80+0.01 0.54+£0.01
RexNet ViT-B/16 0.01+0.01 0.76£0.00 0.77+£0.01 0.77£0.00 0.60=+0.02
ViT-S/16 CviT-B/32 0.01+£0.00 0.75+0.00 0.75£0.00 0.75+0.01 0.55+0.02
ViT-B/16 RViT-B/16 0.01+£0.00 0.84+0.00 0.84+£0.00 0.84+0.00 0.52=+£0.00
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Table 18: Zero-Shot Stitching Results on MNIST. The table shows the mean and standard deviation
of the test accuracy for the different projection methods sorted by maximum difference between

projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean Ly Lo
CViT-B/32 ViT-B/16 0.09+0.01 0.57+0.00 0.65+£0.01 0.66=+0.01 0.55+£0.01
ViT-S/16 RexNet 0.08+0.01 0.62+0.01 0.69+£0.01 0.71+0.00 0.48+£0.01
ViT-B/16 RexNet 0.08+0.01 0.56+0.00 0.62+£0.01 0.64+0.00 0.43+£0.01
CviT-B/32 0.07£0.02 0.62£0.02 0.69£0.01 0.69£0.01 0.47=£0.00
RexNet ViT-S/16 0.07+£0.01 0.71£0.00 0.65+0.01 0.64=£0.01 0.51=+0.00
ViT-B/16 ViT-S/16 0.07+0.01 0.66+0.01 0.71+0.00 0.73£0.00 0.42=+0.00
CViT-B/32 RViT-B/16 0.05+£0.03 0.57+0.01 0.62+£0.02 0.60+0.02 0.54+0.01
ViT-B/16 RViT-B/16 0.056+£0.03 0.53+0.02 0.58+£0.02 0.56+0.02 0.33+£0.00
ViT-S/16 RViT-B/16 0.06+£0.02 0.69+0.01 0.73£0.01 0.74+0.01 0.49+0.02
CViT-B/32 ViT-S/16 0.04+0.01 0.60+£0.01 0.65+£0.01 0.65+0.01 0.57+£0.01
ViT-S/16 CviT-B/32 0.04£0.01 0.71£0.01 0.69£0.01 0.67+0.00 0.49=+0.01
RViT-B/16 RexNet 0.04+0.02 0.63+0.00 0.66+0.01 0.67+0.01 0.65+0.01
RexNet CviT-B/32 0.04£0.01 0.71£0.01 0.74£0.01 0.74£0.00 0.48=£0.00
RViT-B/1l6 ViT-S/16 0.03+0.01 0.74+0.01 0.77£0.00 0.77+0.00 0.63+£0.01
ViT-B/16 0.03+0.01 0.69£0.01 0.71+£0.00 0.72£0.00 0.53+0.00
CViT-B/32 RexNet 0.02+0.01 0.71£0.00 0.73+0.01 0.73£0.02 0.61=+0.00
RViT-B/16 CViT-B/32 0.02+0.01 0.69+0.01 0.68+£0.01 0.68+0.01 0.61+£0.01
RexNet RViT-B/16 0.02£0.01 0.67£0.01 0.67£0.01 0.66+0.01 0.47+0.01
ViT-S/16 ViT-B/16 0.01+0.01 0.68£0.01 0.69+0.00 0.68=£0.00 0.46=+0.02
RexNet ViT-B/16 0.01+£0.01 0.73£0.01 0.724+0.01 0.724+0.00 0.46+0.01
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Table 19: Zero-Shot Stitching Results on DBpedia. The table shows the mean and standard
deviation of the test accuracy for the different projection methods sorted by maximum difference

between projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean L1 Lo
XLM-R BERT-C 0.25+0.01 0.144+0.00 0.19£0.01 0.39+0.01 0.09+0.01
ALBERT 0.22+0.03 0.154+0.03 0.17£0.02 0.36+0.02 0.1040.00
ELECTRA 0.22+0.02 0.08+0.00 0.13£0.01 0.304+0.02 0.06+0.01
BERT-U RoBERTa 0.20+0.01 0.53+0.01 0.36+0.01 0.334+0.01 0.14+0.01
XLM-R RoBERTa 0.19+0.02 0.16£0.02 0.19£0.01 0.354+0.01 0.08+0.01
BERT-U ELECTRA 0.19+0.02 0.50+£0.01 0.31£0.01 0.354+0.00 0.14+0.01
XLM-R BERT-U 0.16 £0.01 0.12+0.00 0.14+£0.01 0.274+0.01 0.10=+0.00
BERT-U BERT-C 0.15+0.01 0.57+0.00 0.43+£0.00 0.4240.01 0.13+0.01
CViT-B/32 0.15+£0.03 0.414+0.02 0.304+0.01 0.26+0.01 0.11+£0.00
XLM-R 0.15+£0.01 0.50+0.02 0.35+£0.01 0.36+0.01 0.0840.01
RoBERTa BERT-C 0.12+0.02 0.40+£0.03 0.30£0.02 0.2840.01 0.13+0.01
BERT-C ELECTRA 0.12+0.02 0.49+£0.02 0.46+0.01 0.5840.02 0.11+0.01
XLM-R CViT-B/32 0.12+£0.02 0.124£0.01 0.124+0.02 0.23+0.00 0.08£0.00
RoBERTa BERT-U 0.11+0.05 0.31£0.06 0.27£0.06 0.314+0.06 0.15+0.01
ELECTRA ALBERT 0.11+0.01 0.25+£0.01 0.27£0.02 0.364+0.02 0.11+0.00
BERT-U ALBERT 0.11+0.04 0.53+£0.01 0.42+0.03 0.434+0.02 0.11+0.00
ELECTRA BERT-C 0.11+0.01 0.31£0.01 0.27£0.01 0.384+0.03 0.10+0.00
ALBERT XLM-R 0.09+0.01 0.40+£0.00 0.42£0.00 0.4940.01 0.14+0.00
RoBERTa ELECTRA 0.09+0.02 0.36£0.03 0.29£0.01 0.374+0.02 0.13+0.01
BERT-C XLM-R 0.09+0.05 0.49+0.03 0.57£0.04 0.514+0.03 0.12+0.01
RoOBERTa 0.08£0.05 0.524+0.03 0.56=+0.02 0.60+0.02 0.14 4+0.00
ELECTRA BERT-U 0.08+0.03 0.24+£0.01 0.21£0.01 0.2940.02 0.14+0.00
RoBERTa 0.08+0.01 0.35+£0.02 0.34£0.01 0.414+0.01 0.10+0.01
ROBERTa CViT-B/32 0.07£0.02 0.224+0.02 0.214+0.01 0.24+0.06 0.11+£0.01
BERT-C ALBERT 0.07+0.03 0.43+£0.04 0.43£0.05 0.424+0.05 0.13+0.00
BERT-U 0.06 £0.06 0.49+0.04 0.534+0.04 0.544+0.04 0.21+£0.01
ELECTRA CViT-B/32 0.06£0.01 0.224+0.01 0.1940.01 0.254+0.01 0.10+£0.01
BERT-C CViT-B/32 0.064+0.05 0.33£0.02 0.34+0.03 0.354+0.07 0.09+0.01
RoBERTa ALBERT 0.06 £0.00 0.32+0.04 0.31£0.01 0.364+0.01 0.14+0.00
ELECTRA XLM-R 0.05+0.01 0.25+£0.00 0.254+0.00 0.30+0.01 0.13+£0.01
RoBERTa XLM-R 0.05+0.01 0.24+0.02 0.214+£0.01 0.26+0.00 0.12+0.01
ALBERT ELECTRA 0.04+£0.01 0.50£0.00 0.50£0.01 0.53+0.01 0.17+£0.01
CViT-B/32 ELECTRA 0.04+0.01 0.20£0.00 0.234£0.00 0.214+0.00 0.11+£0.01
ROBERTa 0.03£0.00 0.214+0.00 0.24£0.00 0.24+0.01 0.154+0.01
BERT-U 0.03+0.01 0.19+£0.01 0.224+0.01 0.214+0.00 0.12+0.00
ALBERT BERT-U 0.03£0.02 0.54+0.01 0.55+0.00 0.57+0.01 0.184+0.00
CViT-B/32 ALBERT 0.03+£0.01 0.174+0.01 0.19£0.00 0.20+0.01 0.0940.01
ALBERT RoBERTa 0.02+0.02 0.50+£0.02 0.50£0.00 0.5240.01 0.18+0.02
BERT-C 0.02+0.02 0.51+£0.01 0.53+£0.01 0.534+0.01 0.18+0.00
CViT-B/32 0.024+0.00 0.43+0.00 0.45+0.01 0.434+0.01 0.15+£0.00
CViT-B/32 BERT-C 0.02+0.01 0.20£0.00 0.21£0.01 0.2240.01 0.14+0.02
XLM-R 0.02+0.00 0.22+£0.00 0.23£0.00 0.244+0.00 0.13+0.00
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Table 20: Zero-Shot Stitching Results on TREC. The table shows the mean and standard deviation
of the test accuracy for the different projection methods sorted by maximum difference between

projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean L4 Lo
XLM-R RoBERTa 0.324+0.11 0.40£+0.10 0.46+0.04 0.69+0.06 0.33=+0.09
BERT-U 0.30£0.13 0.36 £0.18 0.53+0.04 0.64+0.01 0.31+0.04
BERT-C XLM-R 0.30+0.14 0.34£0.08 0.55+0.03 0.64£0.06 0.17+0.03
XLM-R BERT-C 0.26 £0.08 0.424+0.09 0.56+0.02 0.68+0.02 0.26=+0.11
CViT-B/32 BERT-C 0.254+0.16 0.244+0.12 0.454+0.03 0.454+0.12 0.33+0.01
RoBERTa XLM-R 0.25+0.03 037£0.03 0.36+0.01 0.60£0.02 0.27+0.08
XLM-R CviT-B/32 0.25+£0.12 0.30+0.06 0.47+£0.04 0.55+0.07 0.34+£0.03
ALBERT XLM-R 0.244+0.12 0.37£0.09 0.50£0.02 0.61+0.03 0.284+0.04
BERT-U XLM-R 0.24+0.08 0.34£0.08 0.53+0.03 0.58£0.00 0.27+0.10
ELECTRA 0.23+0.09 035+0.06 0.57+£0.06 0.43+0.07 0.32+£0.01
ROBERTa ALBERT 0.23+0.04 042+0.01 0.65+0.03 0.62+0.03 0.14+0.04
ELECTRA ALBERT 0.21+0.11 0.51+0.04 0.48=+0.11 0.65+0.04 0.16=+0.04
CViT-B/32 RoOBERTa 0.20£0.02 0.454£0.02 0.54+0.01 0.65+0.01 0.32+0.09
ELECTRA 0.20+0.07 0.334+0.07 0.524+0.01 0.394+0.01 0.31+0.01
BERT-C ELECTRA 0.20+0.06 0.40£0.04 0.60+0.02 0.53£0.03 0.20=+0.02
ELECTRA RoOBERTa 0.20+0.00 0.52+0.02 0.33+0.01 0.45+0.05 0.32+0.07
XLM-R ALBERT 0.194+0.12 0.464+0.08 0.584+0.07 0.644+0.07 0.21 +£0.01
ROBERTa BERT-U 0.194+0.02 0.444+0.02 0.60+0.02 0.624+0.03 0.21 +£0.01
XLM-R ELECTRA 0.19+0.07 037£0.06 0.56+0.02 0.45+£0.02 0.38=+0.03
CViT-B/32 ALBERT 0.184+0.08 0.454+0.10 0.60+0.04 0.484+0.03 0.11+0.01
XLM-R 0.17+0.06 0.36+0.06 0.51+£0.04 0.534+0.03 0.34+£0.01
ELECTRA BERT-U 0.16 £0.05 0.524+0.02 0.444+0.10 0.594+0.05 0.204+0.04
BERT-U RoBERTa 0.14+0.02 0.56=+0.00 0.64+0.03 0.70+£0.02 0.29+0.08
CViT-B/32 0.14+£0.06 0.46+0.03 0.52+£0.01 0.60+0.04 0.25+0.08
BERT-C BERT-U 0.144+0.18 0.53+0.13 0.614+0.03 0.654+0.06 0.234+0.04
RoBERTa CvViT-B/32 0.13£0.05 0.42+£0.04 0.51£0.07 0.54+£0.03 0.27+£0.10
ALBERT CviT-B/32 0.12+£0.04 0.51+£0.08 0.47+£0.02 0.56+£0.02 0.30+£0.02
BERT-C ALBERT 0.12+0.10 0.53£0.10 0.54+0.06 0.59=£0.08 0.23+0.03
BERT-U BERT-C 0.114+0.02 0.414+0.00 0.484+0.01 0.534+0.02 0.35+0.02
BERT-C CViT-B/32 0.11+£0.09 0.43+0.07 0.53£0.01 0.554+0.03 0.18£0.06
ALBERT RoBERTa 0.11+0.06 0.54£0.03 0.60+0.03 0.65£0.02 0.29=+0.06
ELECTRA CViT-B/32 0.10£0.08 0.48+0.05 0.50£0.04 0.57+0.05 0.33+£0.05
XLM-R 0.10+0.08 0.48£0.08 0.55+0.02 0.57£0.02 0.30=+0.07
BERT-C RoBERTa 0.10£0.09 0.56+0.11 0.59+0.04 0.60+0.02 0.24 £0.01
BERT-U ALBERT 0.09+0.05 0.63£0.07 0.64+0.05 0.64£0.05 0.22+0.06
ALBERT BERT-U 0.08+0.05 0.54+0.04 0.57£0.03 0.60+0.04 0.47+£0.01
CViT-B/32 BERT-U 0.08+0.01 0.51£0.00 0.58+0.02 0.53£0.05 0.12+0.00
ROBERTa BERT-C 0.07+£0.03 0.52£0.03 0.59+0.00 0.57=£0.01 0.18+0.03
ELECTRA BERT-C 0.07+£0.02 049£0.02 0.56+0.02 0.56=£0.01 0.17=+0.05
ALBERT BERT-C 0.07+£0.01 0.43+0.00 0.49+0.02 0.494+0.01 0.32+0.01
ELECTRA 0.06 £0.01 0.57+0.02 0.61+0.02 0.62+0.01 0.29=+0.01
RoOBERTa ELECTRA 0.02+0.01 0.414+0.00 0.40+0.01 0.424+0.01 0.16=+0.01

31



Published as a conference paper at ICLR 2024

Table 21: Zero-Shot Stitching Results on N24news (Text). The table shows the mean and
standard deviation of the test accuracy for the different projection methods sorted by maximum
difference between projections, reported in the first column.

Encoder Decoder MaxDiff Cosine Euclidean Ly Lo
XLM-R ALBERT 0.18+0.01 0.16+0.01 0.29+0.02 0.34+0.01 0.0740.00
BERT-C 0.174+0.01 0.224+0.01 0.334+0.02 0.394+0.02 0.07+0.00
BERT-U 0.154+0.00 0.214+0.01 0.294+0.01 0.36+0.01 0.08 &0.00
ELECTRA 0.154+0.01 0.184+0.01 0.26+0.01 0.334+0.01 0.06 +0.00
RoBERTa XLM-R 0.11+£0.00 0.534+0.00 0.554+0.00 0.6440.00 0.084+0.00
XLM-R RoOBERTa 0.094+0.02 0.37+0.01 0.37+0.02 0.454+0.02 0.06+0.01
RoBERTa ELECTRA 0.094+0.01 0.384+0.01 0.35+0.00 0.444+0.00 0.11+0.01
ALBERT 0.084+0.01 0.384+0.02 0.394+0.01 0.464+0.01 0.084+0.00
BERT-U 0.084+0.01 0.504+0.01 0.444+0.02 0.514+0.01 0.0840.01
ELECTRA ROBERTa 0.084+0.01 0.114+0.01 0.194+0.01 0.134+0.01 0.06 +0.01
BERT-U 0.074+0.04 0.054+0.03 0.104+0.02 0.114+0.01 0.09 +0.01
BERT-C 0.06 0.02 0.074+0.01 0.134+0.01 0.114+0.01 0.09+0.01
BERT-C BERT-U 0.044+0.04 0.214+0.02 0.234+0.04 0.234+0.04 0.134+0.01
ELECTRA XLM-R 0.044+0.01 0.0940.00 0.124+0.01 0.114+0.01 0.0740.00
BERT-C ELECTRA 0.034+0.01 0.184+0.01 0.204+0.01 0.214+0.01 0.1040.01
RoBERTa BERT-C 0.034+0.00 0.594+0.01 0.574+0.00 0.60+0.01 0.0840.00
BERT-C RoBERTa 0.034+0.01 0.264+0.00 0.254+0.01 0.234+0.01 0.144+0.01
BERT-U ELECTRA 0.034+0.02 0.144+0.02 0.164+0.01 0.174+0.01 0.07+0.01
ALBERT 0.03+0.01 0.15+£0.01 0.18£0.00 0.184+0.01 0.07+0.00
BERT-C CViT-B/32 0.03+£0.01 0.054+0.02 0.044+0.02 0.04+0.02 0.04+0.01
CViT-B/32 RoOBERTa 0.034+0.01 0.044+0.01 0.044+0.02 0.054+0.00 0.05=40.00
RoBERTa CViT-B/32 0.03£0.03 0.06+0.02 0.04+0.01 0.04+0.01 0.04=+0.01
ELECTRA CViT-B/32 0.02+£0.02 0.054+0.02 0.044+0.02 0.04+0.02 0.05+0.01
BERT-U XLM-R 0.02+0.01 0.18+0.01 0.19£0.01 0.184+0.02 0.07+0.00
ALBERT CViT-B/32 0.02£0.00 0.05£0.02 0.04+0.01 0.04+0.01 0.05+0.01
BERT-U ROBERTa 0.02+£0.00 0.18+0.01 0.20£0.01 0.17+0.01 0.07+0.01
BERT-C 0.024+£0.02 0.20£0.01 0.224+0.01 0.224+0.01 0.06 &= 0.00
XLM-R CViT-B/32 0.02£0.01 0.06£0.01 0.05+0.01 0.04+0.01 0.05+0.01
ELECTRA ALBERT 0.024+£0.02 0.114+0.02 0.134+£0.01 0.134+£0.01 0.06 £ 0.00
BERT-U CViT-B/32 0.01£0.01 0.04+£0.01 0.05£0.01 0.05£0.01 0.04=+0.00
ALBERT RoBERTa 0.01 £0.00 0.084+0.00 0.0940.00 0.07+0.01 0.08 4+0.00
BERT-C XLM-R 0.01+£0.01 0.29+£0.00 0.29£0.00 0.2840.01 0.14+0.00
ALBERT 0.014+£0.01 0.284+0.01 0.294+0.00 0.294+0.01 0.10+0.01
ALBERT BERT-C 0.01 £0.01 0.084+0.00 0.0940.01 0.094+0.01 0.06=40.00
ELECTRA 0.01 £0.01 0.114+0.00 0.124+0.01 0.124+0.01 0.08+0.01
BERT-U 0.01 £0.01 0.114+0.01 0.114+0.00 0.114+0.00 0.074+0.00
CViT-B/32 XLM-R 0.01 £0.01 0.044+0.01 0.054+0.00 0.054+0.00 0.05=40.00
ALBERT XLM-R 0.01 £0.01 0.094+0.00 0.104+0.00 0.094+0.01 0.07+0.00
CViT-B/32 ELECTRA 0.00 £0.00 0.054+0.00 0.054+0.00 0.0540.00 0.05=40.00
BERT-U 0.00 £0.00 0.054+0.00 0.054+0.00 0.054+0.00 0.0540.00
BERT-C 0.00 £0.00 0.034+0.00 0.034+0.00 0.034+0.00 0.0340.00
ALBERT 0.00 £0.00 0.054+0.00 0.054+0.00 0.054+0.00 0.05=40.00
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Table 22: Zero-Shot Stitching Results on ImageNet 1k. Zero-shot accuracy score across different
architectures and seeds. The standard deviation is provided for each accuracy score. The proposed
methodology utilizing the Aggregation by sum consistently outperforms the other results.

Encoder Aggregation Function Accuracy T
RViT-B/16 Cosine 0.50 4+ 0.01
Euclidean 0.52 + 0.01
Ly 0.45 +0.01
Lo 0.01 +0.00
Cosine, Euclidean, L1, Lo, 0.67 £ 0.01
ViT-B/16 Cosine 0.27 +£0.03
Euclidean 0.25 +£0.02
Ly 0.43 4+ 0.02
Lo 0.02 £ 0.01
Cosine, Euclidean, L, Lo, 0.56 + 0.02
ViT-S/16 Cosine 0.34 £0.02
Euclidean 0.33 £0.03
Ly 0.35 +0.02
L 0.02 +0.01

Cosine, Euclidean, L, Lo, 0.51 £+ 0.02

Table 23: Zero-Shot Stitching Reconstruction Performance. Zero-shot L; and MSE score for the
reconstruction task across different seeds on CIFAR-100 using AEs. The proposed methodology
utilizing the Aggregation by sum consistently matches or outperforms the other results.

Aggregation Projection Ly MSE
MLP+Sum  Cosine, Euclidean, L1, Lo, 0.01 =0.00 0.06 &= 0.00
MLP+Sum  Cosine,Euclidean, ¢ 0.02£0.00 0.1040.01

- Cosine 0.06 £0.02 0.20£0.03
- Euclidean 0.01 +0.00 0.06 £ 0.00
- Ly 0.01 +0.00 0.09+0.00
- Lo 0.03+0.01 0.14+0.01
- Absolute 0.26 +£0.06 0.43 +0.06
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Table 24: End-to-end Performance Results on CIFAR-10. The classifier head is a simple Linear

layer.
Model Aggregation  Projection
CViT-B/32 - Absolute 0.92 £ 0.05
Cosine 0.90 + 0.06
Euclidean 0.90 £ 0.06
I 0.90 £ 0.06
Lo 0.79 £0.13
MLP+Sum Cosine, Euclidean, L1, Lo 0.91 4+ 0.05
SelfAttention  Cosine, Euclidean, L1, Lo 0.90 = 0.06
RViT-B/16 - Absolute 0.85+0.19
Cosine 0.83+£0.18
Euclidean 0.83+0.18
Ly 0.83 £0.19
Lo 0.79 £0.20
MLP+Sum Cosine, Euclidean, L1, Lo 0.84 +0.19
SelfAttention  Cosine, Euclidean, L1, Lo 0.82 4+ 0.20
RexNet - Absolute 0.80 £ 0.21
Cosine 0.76 £ 0.20
Euclidean 0.76 +0.20
L1 0.77 £0.20
Lo 0.72£0.20
MLP+Sum Cosine, Euclidean, L1, Lo, 0.79 £ 0.21
SelfAttention  Cosine, Euclidean, L1, Lo, 0.76 & 0.21
ViT-B/16 - Absolute 0.86 £0.18
Cosine 0.84 £ 0.18
Euclidean 0.84 £0.18
Ly 0.85£0.18
Lo 0.73 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo, 0.86 & 0.18
SelfAttention  Cosine, Euclidean, L1, Lo« 0.84 +0.19
ViT-S/16 - Absolute 0.83 +£0.19
Cosine 0.82+0.19
Euclidean 0.82 +0.18
Ly 0.82 £0.19
L 0.74 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.83 +0.18

SelfAttention  Cosine, Euclidean, L1, Lo, 0.82 4 0.20
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Table 25: End-to-end Performance Results on CIFAR-100. The classifier head is a simple Linear

layer.
Model Aggregation  Projection
CViT-B/32 - Absolute 0.92 £ 0.05
Cosine 0.90 + 0.06
Euclidean 0.90 £ 0.06
I 0.90 £ 0.06
Lo 0.79 £0.13
MLP+Sum Cosine, Euclidean, L1, Lo 0.91 4+ 0.05
SelfAttention  Cosine, Euclidean, L1, Lo 0.90 = 0.06
RViT-B/16 - Absolute 0.85+0.19
Cosine 0.83+£0.18
Euclidean 0.83+0.18
Ly 0.83 £0.19
Lo 0.79 £0.20
MLP+Sum Cosine, Euclidean, L1, Lo 0.84 +0.19
SelfAttention  Cosine, Euclidean, L1, Lo 0.82 4+ 0.20
RexNet - Absolute 0.80 £ 0.21
Cosine 0.76 £ 0.20
Euclidean 0.76 +0.20
L1 0.77 £0.20
Lo 0.72£0.20
MLP+Sum Cosine, Euclidean, L1, Lo, 0.79 £ 0.21
SelfAttention  Cosine, Euclidean, L1, Lo, 0.76 & 0.21
ViT-B/16 - Absolute 0.86 £0.18
Cosine 0.84 £ 0.18
Euclidean 0.84 £0.18
Ly 0.85£0.18
Lo 0.73 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo, 0.86 & 0.18
SelfAttention  Cosine, Euclidean, L1, Lo« 0.84 +0.19
ViT-S/16 - Absolute 0.83 +£0.19
Cosine 0.82+0.19
Euclidean 0.82 +0.18
Ly 0.82 £0.19
L 0.74 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.83 +0.18

SelfAttention  Cosine, Euclidean, L1, Lo, 0.82 4 0.20
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Table 26: End-to-end Performance Results on Fashion MNIST. The classifier head is a simple

Linear layer.

Model Aggregation Projection
CViT-B/32 - Absolute 0.92 £ 0.05
Cosine 0.90 + 0.06
Euclidean 0.90 £ 0.06
I 0.90 £ 0.06
Lo 0.79 £0.13
MLP+Sum Cosine, Euclidean, L1, Lo 0.91 4+ 0.05
SelfAttention  Cosine, Euclidean, L1, Lo 0.90 = 0.06
RViT-B/16 - Absolute 0.85+0.19
Cosine 0.83+£0.18
Euclidean 0.83+0.18
Ly 0.83 £0.19
Lo 0.79 £0.20
MLP+Sum Cosine, Euclidean, L1, Lo 0.84 +0.19
SelfAttention  Cosine, Euclidean, L1, Lo 0.82 +0.20
RexNet - Absolute 0.80 £ 0.21
Cosine 0.76 £ 0.20
Euclidean 0.76 +0.20
L1 0.77 £0.20
Lo 0.72£0.20
MLP+Sum Cosine, Euclidean, L1, Lo, 0.79 £ 0.21
SelfAttention  Cosine, Euclidean, L1, Lo, 0.76 & 0.21
ViT-B/16 - Absolute 0.86 £0.18
Cosine 0.84 £ 0.18
Euclidean 0.84 £0.18
Ly 0.85£0.18
Lo 0.73 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo, 0.86 & 0.18
SelfAttention  Cosine, Euclidean, L1, Lo« 0.84 +0.19
ViT-S/16 - Absolute 0.83 £0.19
Cosine 0.82+0.19
Euclidean 0.82 +0.18
Ly 0.82 £0.19
L 0.74 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.83 +0.18
SelfAttention  Cosine, Euclidean, L1, Lo, 0.82 4 0.20
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Table 27: End-to-end Performance Results on MNIST. The classifier head is a simple Linear layer.

Model Aggregation Projection
CViT-B/32 - Absolute 0.92 £ 0.05
Cosine 0.90 £+ 0.06
Euclidean 0.90 £ 0.06
L4 0.90 £+ 0.06
Lo 0.79£0.13
MLP+Sum Cosine, Euclidean, L1, Lo 0.91 £ 0.05
SelfAttention  Cosine, Euclidean, L1, Lo 0.90 4 0.06
RViT-B/16 - Absolute 0.85£+0.19
Cosine 0.83 £ 0.18
Euclidean 0.83+0.18
Ly 0.83 £0.19
Lo 0.79 £ 0.20
MLP+Sum Cosine, Euclidean, L1, Lo 0.84 +0.19
SelfAttention  Cosine, Euclidean, L1, Lo« 0.82 4+ 0.20
RexNet - Absolute 0.80 £ 0.21
Cosine 0.76 £ 0.20
Euclidean 0.76 = 0.20
Ly 0.77 £0.20
Lo 0.72 £0.20
MLP+Sum Cosine, Euclidean, L1, Lo« 0.79 4+ 0.21
SelfAttention  Cosine, Euclidean, L1, Lo, 0.76 & 0.21
ViT-B/16 - Absolute 0.86 £ 0.18
Cosine 0.84 £ 0.18
Euclidean 0.84 £0.18
Ly 0.85 £0.18
Lo 0.73+£0.19
MLP+Sum Cosine, Euclidean, L1, Lo, 0.86 & 0.18
SelfAttention  Cosine, Euclidean, L1, Lo 0.84 +0.19
ViT-S/16 - Absolute 0.83 £0.19
Cosine 0.82+£0.19
Euclidean 0.82 +0.18
L4 0.82+£0.19
Lo 0.74 +£0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.83 4+ 0.18
SelfAttention  Cosine, Euclidean, L1, Lo 0.82 4+ 0.20
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Table 28: End-to-end Performance Results on DBpedia. The classifier head is a simple Linear

layer.
Model Aggregation  Projection
ALBERT - Absolute 0.71+£0.21
Cosine 0.61 £0.23
Euclidean 0.62 +0.22
Ly 0.63 £0.23
L 0.49 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.63 & 0.22
SelfAttention  Cosine, Euclidean, L1, Lo, 0.61 4 0.23
BERT-C - Absolute 0.84 £ 0.11
Cosine 0.78 £ 0.13
Euclidean 0.80 £0.13
Ly 0.81 £0.13
Lo 0.56 £0.12
MLP+Sum Cosine, Euclidean, L1, Lo, 0.814+0.11
SelfAttention  Cosine, Euclidean, L1, Lo 0.77 = 0.13
BERT-U - Absolute 0.77 £ 0.17
Cosine 0.73+£0.17
Euclidean 0.74 £ 0.17
L4 0.74 £0.18
Lo 0.46 £+ 0.08
MLP+Sum Cosine, Euclidean, L1, Lo 0.74 4+ 0.16
SelfAttention  Cosine, Euclidean, L1, Lo 0.66 4+ 0.18
CViT-B/32 - Absolute 0.33+£0.24
Cosine 0.31 £0.23
Euclidean 0.33 £ 0.26
L1 0.33 £0.26
Lo 0.23+0.14
MLP+Sum Cosine, Euclidean, L1, Lo 0.33 +£0.25
SelfAttention  Cosine, Euclidean, L1, Lo 0.20 & 0.16
ELECTRA - Absolute 0.76 = 0.14
Cosine 0.58 £ 0.15
Euclidean 0.59 £+ 0.09
Ly 0.64 £0.13
Lo 0.32 £ 0.07
MLP+Sum Cosine, Euclidean, L1, Lo, 0.65 4 0.10
SelfAttention  Cosine, Euclidean, L1, Lo« 0.61 +0.14
RoBERTa - Absolute 0.81 +0.10
Cosine 0.75 £ 0.04
Euclidean 0.77 £ 0.01
L4 0.81 £0.02
Lo 0.36 = 0.07
MLP+Sum Cosine, Euclidean, L1, Lo 0.80 & 0.04
SelfAttention  Cosine, Euclidean, L1, Lo, 0.61 +0.27
XLM-R - Absolute 0.74 £0.12
Cosine 0.58 £ 0.07
Euclidean 0.64 £ 0.07
L4 0.78 £0.05
Lo 0.26 £ 0.09
MLP+Sum Cosine, Euclidean, L1, Lo, 0.78 = 0.06

SelfAttention  Cosine, Euclidean, L1, Lo 0.71 & 0.22
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Table 29: End-to-end Performance Results on TREC. The classifier head is a simple Linear layer.

Model Aggregation Projection
ALBERT - Absolute 0.71+£0.21
Cosine 0.61 £0.23
Euclidean 0.62 £ 0.22
L4 0.63 £0.23
Lo 0.49 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.63 &= 0.22
SelfAttention  Cosine, Euclidean, L1, Lo 0.61 +0.23
BERT-C - Absolute 0.84 £0.11
Cosine 0.78 £0.13
Euclidean 0.80 £0.13
L1 0.81 £0.13
Lo 0.56 £0.12
MLP+Sum Cosine, Euclidean, L1, Lo, 0.81 £0.11
SelfAttention  Cosine, Euclidean, L1, Lo 0.77 £ 0.13
BERT-U - Absolute 0.77 £0.17
Cosine 0.73+£0.17
Euclidean 0.74 £ 0.17
Ly 0.74 £0.18
Lo 0.46 £ 0.08
MLP+Sum Cosine, Euclidean, L1, Lo 0.74 4+ 0.16
SelfAttention  Cosine, Euclidean, L1, Lo« 0.66 & 0.18
CViT-B/32 - Absolute 0.33 £0.24
Cosine 0.31 £0.23
Euclidean 0.33 £ 0.26
Ly 0.33 £0.26
L 0.23+0.14
MLP+Sum Cosine, Euclidean, L1, Lo 0.33 +£0.25
SelfAttention  Cosine, Euclidean, L1, Lo, 0.20 4+ 0.16
ELECTRA - Absolute 0.76 = 0.14
Cosine 0.58 £ 0.15
Euclidean 0.59 £ 0.09
Ly 0.64 £0.13
Lo 0.32 £0.07
MLP+Sum Cosine, Euclidean, L1, Lo, 0.65 4 0.10
SelfAttention  Cosine, Euclidean, L1, Lo 0.61 +=0.14
RoBERTa - Absolute 0.81 +0.10
Cosine 0.75 £ 0.04
Euclidean 0.77 £ 0.01
L4 0.81 £0.02
Lo 0.36 = 0.07
MLP+Sum Cosine, Euclidean, L1, Lo 0.80 & 0.04
SelfAttention  Cosine, Euclidean, L1, Lo 0.61 +0.27
XLM-R - Absolute 0.74 £0.12
Cosine 0.58 £ 0.07
Euclidean 0.64 £ 0.07
Is 0.78 £ 0.05
Lo 0.26 = 0.09
MLP+Sum Cosine, Euclidean, L1, Lo 0.78 = 0.06
SelfAttention  Cosine, Euclidean, L1, Lo, 0.71 4 0.22
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Table 30: End-to-end Performance Results on N24news (Text). The classifier head is a simple

Linear layer.

Model Aggregation  Projection
ALBERT - Absolute 0.71+£0.21
Cosine 0.61 £0.23
Euclidean 0.62 +0.22
Ly 0.63 £0.23
L 0.49 £0.19
MLP+Sum Cosine, Euclidean, L1, Lo 0.63 & 0.22
SelfAttention  Cosine, Euclidean, L1, Lo, 0.61 4 0.23
BERT-C - Absolute 0.84 £ 0.11
Cosine 0.78 £ 0.13
Euclidean 0.80 £0.13
Ly 0.81 £0.13
Lo 0.56 £0.12
MLP+Sum Cosine, Euclidean, L1, Lo, 0.814+0.11
SelfAttention  Cosine, Euclidean, L1, Lo 0.77 = 0.13
BERT-U - Absolute 0.77 £ 0.17
Cosine 0.73+£0.17
Euclidean 0.74 £ 0.17
L4 0.74 £0.18
Lo 0.46 £+ 0.08
MLP+Sum Cosine, Euclidean, L1, Lo 0.74 4+ 0.16
SelfAttention  Cosine, Euclidean, L1, Lo 0.66 4+ 0.18
CViT-B/32 - Absolute 0.33+£0.24
Cosine 0.31 £0.23
Euclidean 0.33 £ 0.26
L1 0.33 £0.26
Lo 0.23+0.14
MLP+Sum Cosine, Euclidean, L1, Lo 0.33 +£0.25
SelfAttention  Cosine, Euclidean, L1, Lo 0.20 & 0.16
ELECTRA - Absolute 0.76 = 0.14
Cosine 0.58 £ 0.15
Euclidean 0.59 £+ 0.09
Ly 0.64 £0.13
Lo 0.32 £ 0.07
MLP+Sum Cosine, Euclidean, L1, Lo, 0.65 4 0.10
SelfAttention  Cosine, Euclidean, L1, Lo« 0.61 +0.14
RoBERTa - Absolute 0.81 +0.10
Cosine 0.75 £ 0.04
Euclidean 0.77 £ 0.01
L4 0.81 £0.02
Lo 0.36 = 0.07
MLP+Sum Cosine, Euclidean, L1, Lo 0.80 & 0.04
SelfAttention  Cosine, Euclidean, L1, Lo, 0.61 +0.27
XLM-R - Absolute 0.74 £0.12
Cosine 0.58 £ 0.07
Euclidean 0.64 £ 0.07
L4 0.78 £0.05
Lo 0.26 £ 0.09
MLP+Sum Cosine, Euclidean, L1, Lo, 0.78 = 0.06
SelfAttention  Cosine, Euclidean, L1, Lo 0.71 & 0.22
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Table 31: Graph End-to-End Classification Score. Accuracy score across different architectures
and seeds. The aggregation function is the Aggregation by sum.

Aggregation Projection Accuracy T
- Absolute 0.79 4+ 0.01
Cosine 0.74 £ 0.01
Euclidean 0.46 £ 0.06
Ly 0.44 £+ 0.06
Lo 0.12 £0.03
Concat* Cosine,Euclidean 0.76 £ 0.01
Cosine, L 0.77 £ 0.01
Cosine, Lo 0.75+0.01
Euclidean, L, 0.55 £+ 0.06
Euclidean, L 0.46 £ 0.11
L1, Lo 0.48 £0.11
Cosine, Euclidean, L1, Lo  0.77 £ 0.00
SelfAttention Cosine,Euclidean 0.75 £+ 0.01
Cosine, L 0.75 £ 0.01
Cosine, Lo 0.76 = 0.02
Euclidean, L 0.74 4+ 0.02
Euclidean, L 0.75 £ 0.02
L1,Lo 0.75+£0.02
Cosine, Euclidean, L1, Lo 0.74 +0.02
MLP+SelfAttention  Cosine,Euclidean 0.76 + 0.02
Cosine, L 0.76 + 0.02
Cosine, Lo 0.76 = 0.02
Euclidean, 0.73 +£0.01
Euclidean, L 0.74 £0.01
L1, L 0.74 £0.01
Cosine, Euclidean, L1, Lo 0.77 £0.01
MLP+Sum Cosine,Euclidean 0.77 = 0.01
Cosine, L1 0.77 £ 0.01
Cosine, L 0.77 £ 0.02
Euclidean, L 0.75 £ 0.02
Euclidean, L o 0.72 +£0.02
L1, L 0.71 £0.03

Cosine, Euclidean, L1, Lo 0.76 & 0.01
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