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Abstract

Low-rank adaptations (LoRAs) have revolutionized the finetuning of large1

foundation models, enabling efficient adaptation even with limited computational2

resources. The resulting proliferation of LoRAs together with the recent advances3

of weight-space learning present exciting opportunities for applying machine4

learning techniques that take these low-rank weights themselves as inputs. In this5

paper, we investigate the potential of Learning on LoRAs (LoL), a setup where6

machine learning models learn and make predictions on datasets of LoRA weights.7

Motivated by previous weight-space learning works, we first identify the inherent8

parameter symmetries of our data – low-rank decompositions of weights – which9

differ significantly from the parameter symmetries of standard neural networks.10

To efficiently process LoRA weights, we develop several symmetry-aware11

invariant or equivariant LoL models. In diverse experiments, we show that our12

LoL architectures can process LoRA weights to predict CLIP scores, finetuning13

data attributes, finetuning data membership, and accuracy on downstream tasks.14

We also show that LoL models trained on LoRAs of one pretrained model can15

effectively generalize to LoRAs trained on other models from the same model16

family. As an example of the utility of LoL, our LoL models can accurately17

estimate CLIP scores of diffusion models and ARC-C test accuracy of LLMs over18

50,000 times faster than standard evaluation. As part of this work, we finetuned19

and will release datasets of more than ten thousand text-to-image diffusion-model20

and language-model LoRAs. Our anonymized code can be found here.21

1 Introduction22

Finetuning pretrained models such as large language models [6, 79, 15] and text-to-image generative23

models [31, 63] for improved performance on target tasks has become an extremely common and24

successful paradigm in deep learning. While full finetuning of all weights effectively boosts model25

capabilities, it requires large amounts of memory and computation time. In recent years, Low Rank26

Adaptation (LoRA) [35], a finetuning method where a learnable low rank decomposition is added to27

each weight matrix (Wi 7! Wi +UiV
>
i

), has been used as an alternative to other finetuning methods28

thanks to its increased efficiency. LoRA finetuning and its variants have become widespread; there are29

now software packages [51, 27], paid services [62], and online communities [7] in which countless30

LoRAs are trained and shared.31

Given the ubiquity of LoRA weights, one can imagine treating them as a data modality. Recent works32

in the emerging field of weight-space learning train neural networks to operate on the weights of33

other models. These networks, often termed meta-networks [43], neural functionals [83, 82], or deep34

weight-space networks [57], have demonstrated promise on diverse parameter-level tasks, including35

generating or editing neural fields [61], predicting pruning masks [83], merging models [58], learned36
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Figure 1: Overview of Learning on LoRAs (LoL). A pretrained model ✓base is finetuned to yield
LoRA weight matrices U1, V1, . . . , UL, VL. These LoRA weights are taken as input to an LoL model
f✓, which can make predictions such as the downstream accuracy of the finetuned model.

optimization [56, 82, 39, 25], and predicting performance of neural network checkpoints [76, 68].37

However, their reliance on processing the entire weight space limits their applicability to smaller38

models. Importantly, due to the unique structure of LoRAs, adapting previous weight-space methods39

to operate on LoRAs poses significant challenges, mainly due to the different symmetry these data40

types adhere to.41

Our approach. In this work, we extend weight-space learning to LoRA Weight-Spaces. We introduce42

and extensively study Learning on LoRAs (LoL), encompassing theory, architectural design, and43

a variety of applications. When developing LoL architectures for processing LoRA weights, we44

aim to account for the structure and symmetries of this unique data modality. First, the rank-r45

decomposition of an n⇥m matrix has only (n+m)r parameters compared to nm for the full dense46

matrix. This parameter efficiency (linear vs quadratic) is one of the main reasons for the popularity47

of LoRAs. Hence, we opt for using the low-rank decomposition representation (U, V ) in the place48

of the full matrix UV
>, so we can more efficiently learn on LoRA weights. As a consequence49

of choosing this efficient data representation, taking the geometric deep learning [5] blueprint as50

a guiding principle, we take into consideration its unique symmetry structure: for any invertible51

matrix R 2 GL(r), we have that URR
�1

V
> = UV

>, so the low rank decompositions (U, V )52

and (UR, V R
�>) are functionally equivalent 1. Because this transformation does not affect the53

underlying function represented by the LoRA, almost all relevant LoL problems are invariant to this54

action of GL(r). Therefore, an effective LoL model for any such task should be GL(r)-invariant.55

To this end, motivated by previous success in invariant and equivariant weight-space learning [57,56

39, 43, 82, 38] and geometric deep learning in general [5, 9, 81, 22, 40, 54, 42], we propose several57

GL(r)-equivariant and invariant neural architectures that can effectively process LoRA weights.58

These models are designed using multiple techniques from geometric deep learning (canonicalization,59

invariant featurization, and equivariant linear maps) and offer different trade-offs in terms of efficiency,60

expressivity, and generalization.61

To explore the feasibility of Learning on LoRAs tasks, and to analyze the effectiveness of our62

proposed architectures, we conduct experiments across various finetuned models. First, we create63

novel datasets for Learning on LoRAs; we train over ten thousand diverse LoRAs, which are finetuned64

from text-to-image diffusion generative models and language models. We then train LoL models on65

these LoRAs to predict various attributes of finetuned models, including: CLIP scores, finetuning66

data attributes, finetuning data membership, and accuracy on downstream tasks. We find that the67

GL(r)-invariant LoL models we propose in this paper can often perform these tasks well, and68

considerably better than standard non-invariant models and other naive approaches. We also show69

that our LoL models can generalize to LoRAs that were trained on top of other base models from the70

same model family, opening the opportunity to train single LoL models for entire model families.71

As an example application, trained LoL models offer a dramatically faster alternative to standard eval-72

uation methods for metrics like CLIP score and language model common-sense reasoning accuracy.73

In our experiments, an LoL model can estimate the CLIP score of a diffusion model 53,000 times74

1Throughout the paper, we use R
�> to denote (R

�1
)
>.
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faster than traditional methods, and assess the downstream LLM common-sense reasoning accuracy75

730,000 times faster. This speedup stems from the fact that standard model evaluation requires thou-76

sands of forward passes through a multi-billion parameter model, while an LoL model accomplishes77

the same task with a single forward pass through a much smaller network. This rapid evaluation can78

enable faster hyperparameter tuning and real-time performance monitoring during training.79

Our contributions. In this paper, we (1) introduce Learning on LoRAs (LoL), extending weight-80

space learning to low rank weight spaces; (2) characterize the inherent GL(r) symmetries in LoRAs81

that pose unique challenges and develop several GL(r)-invariant and equivariant architectures that82

effectively and efficiently process LoRA weights; (3) create and release datasets of over ten thousand83

text-to-image and language model LoRAs; (4) demonstrate that our symmetry-aware LoL models84

perform well across a range of tasks.85

2 Background and Related Work86

LoRA background and symmetries Hu et al. [35] introduced the LoRA method, which is a87

parameter-efficient method for finetuning (typically large) models [51, 28]. Consider a weight matrix88

W 2 Rn⇥m of some pretrained neural network. Directly finetuning W would require training nm89

parameters on additional data, which could be quite expensive. LoRA instead trains low-rank matrices90

U 2 Rn⇥r and V 2 Rm⇥r so that the new finetuned weight matrix is given by W + UV
>. This91

only requires tuning (n+m)r parameters, which is efficient as the rank r is taken to be significantly92

lower than n or m (for instance a rank of r = 8 can be sufficient to finetune a 7B-parameter language93

model with n = m = 4096 [47]).94

As mentioned in the introduction, for any invertible matrix R 2 GL(r), W + (UR)(V R
�>)> =95

W +UV
>, so the LoRA update given by (UR, V R

�>) is functionally equivalent to the one given by96

(U, V ). As a special case, when Q 2 O(r) < GL(r) is orthogonal, (UQ, V Q) is also functionally97

equivalent. Many variants of the original LoRA work have been proposed, and they often have98

comparable symmetries that can be handled similarly in our framework [51, 28]; we discuss LoRA99

variants and their symmetries in Appendix E.100

Prior works in the geometric deep learning community [5] have also studied continuous symme-101

tries [74, 4, 17, 66, 44, 59, 41] such as rotation and scaling symmetries, especially for applications in102

the chemical and physical sciences. However, they study different classes of symmetries, such as103

O(n), E(n), and SP(n), none of which contain GL(n). To the best of our knowledge, we are the104

first to study GL(n) equivariant and invariant architectures.105

Weight-space learning. Several neural network architectures have been developed that take in neural106

network weights as input [76, 20, 68, 69, 70, 71, 56, 60, 57, 58, 2, 72]. In many tasks, equivariance107

or invariance to parameter transformations that leave the network functionally unchanged has been108

found to be useful for empirical performance of weight-space networks [57, 83, 43, 38, 75]. However,109

these works are not specialized for LoRA weight spaces, since they consider different symmetry110

groups: many such works focus only on discrete permutation symmetries [57, 83, 43, 82], or111

scaling symmetries induced by nonlinearities [38, 75]. As covered in the previous section, LoRA112

weights have general linear group (invertible matrices) symmetry, which includes as special cases113

certain permutations and scaling symmetries between U and V
>. While LoRAs contain inner114

permutation symmetries of the form UP
>
PV

> = UV
>, we emphasize that they generally do not115

have outer permutation symmetries of the more recognizable form P1UV
>
P2, which would resemble116

those of standard weight spaces (e.g. MLPs or CNNs) more. This is an important difference; for117

instance, the outer permutation symmetries significantly harm linear merging of models trained from118

scratch [21, 1, 45], whereas finetuned models can be merged well with simple methods [78, 36].119

Recently, two works have explored the weight space of LoRA finetuned models for certain tasks.120

Salama et al. [65] develop an attack that predicts the size of the dataset used to finetune the model121

given its finetuned weights. Inspired by correlations between finetuning dataset size and singular122

value magnitudes, they define a very specific type of LoL model that takes the singular values of dense,123

multiplied-out LoRA weights �1(UiV
>
i
), . . . ,�r(UiV

>
i
) as input. In contrast, we study more tasks,124

consider the problem of general LoL model design, and develop more expressive and efficient LoL125

models in our paper. In another context, Dravid et al. [13] study the LoRA weight space of finetuned126

personalized text-to-image diffusion models. They do not define LoL models, but instead study127

operations such as linear edits in the principal component space of their rank-one LoRA weights.128
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3 Learning on LoRAs Architectures129

Table 1: Properties of LoL architectures proposed in this paper. Runtimes are for one LoRA layer with
U 2 Rn⇥r and V 2 Rm⇥r, so the rank r is generally much lower than n and m. Expressivity refers
to a notion of the ability to approximate GL-invariant functions, which is formalized in Definition C.1.

LoL Model GL-Inv. O-Inv. Expressive Preprocess Time Forward Time

Naive architectures
MLP([U, V ]) 7 7 3 O((m+ n)r) O((m+ n)r)
Transformer([U, V ]) 7 7 3 O((m+ n)r) O((m+ n)r)
MLP(UV

>) 3 3 3 O(mnr) O(mn)2

Efficient symmetry-aware architectures
MLP(O-Align([U, V ])) 7 3 3 O((m+ n)r2) O((m+ n)r)
MLP(�(UV

>)) 3 3 7 O((m+ n)r2) O((m+ n)r)
GL-net 3 3 3 O((m+ n)r) O((m+ n)r)

In this section, we develop several neural network architectures for Learning on LoRAs. These130

have different trade-offs and properties, which we summarize in Table 1. First, we mathematically131

formalize the LoL learning problem. Next, we describe three naive methods that apply standard132

architectures to the LoRA weights and discuss their limitations. We then derive three efficient and133

symmetry aware architectures. The first two process LoRA weights by canonicalizing the weights or134

generating invariant features. Finally, we derive a third invariant approach, GL-net, an architecture135

based on a composition of equivariant and invariant modules. In the experimental section, we136

demonstrate that symmetry aware architectures significantly outperform the naive baselines.137

3.1 Learning Setup138

Suppose L matrices in the base model are finetuned via LoRA. The LoRA weights are139

(U1, V1), . . . , (UL, VL), where Ui 2 Rni⇥r and Vi 2 Rmi⇥r. An LoL model with parameters140

✓ and output space Y is a function f✓ : R
P

i(ni+mi)r ! Y . An LoL model can output a scalar pre-141

diction (Y = R) or latent LoRA weight representations (Ũ1, Ṽ1), . . . , (ŨL, ṼL) where Ũi 2 Rn
0
i⇥r142

and Ṽi 2 Rm
0
i⇥r (Y = R

P
i(n

0
i+m

0
i)r).143

For (U1, V1, . . . , UL, VL) 2 R
P

i(ni+mi)r and R1, . . . , RL 2 GL(r) we denote the action by144

(R1, . . . , RL) ? (U1, V1, . . . , UL, VL) = (U1R1, V1R
�>
1

, . . . , ULRL, VLR
�>
L

). (1)

An LoL model is called GL-invariant if for all R1, . . . , RL 2 GL(r)145

f✓((R1, . . . , RL) ? (U1, V1, . . . , UL, VL)) = f✓(U1, V1, . . . , UL, VL). (2)

This represents invariance to the action of the direct product GL(r) ⇥ · · · ⇥ GL(r) of146

GL(r) with itself L-times (GL(r)L). When the output space has decomposition structure, i.e.147

f✓(U1, V1, . . . , UL, VL) = (Ũ1, Ṽ1, . . . , ŨL, ṼL), we say that the model is GL(r)-equivariant if for148

all R1, . . . , RL 2 GL(r),149

f✓((R1, . . . , RL) ? (U1, V1, . . . , UL, VL)) = (R1, . . . , RL) ? (Ũ1, Ṽ1, . . . , ŨL, ṼL). (3)

Expressivity is an important property of invariant and equivariant models [81, 53], and LoL models in150

particular. Informally, an LoL model is universally expressive if it can fit any continuous GL-invariant151

function to arbitrary accuracy on compact domains. We give a formal definition in Definition C.1,152

and prove our results in the context of this formal definition.153

3.2 Naive Architectures154

Simple MLP/transformer on LoRA weights. The simplest LoL model is a standard deep learning155

model, such as an MLP, that takes the flattened LoRA weights as input: MLP✓(U1, V1, . . . , UL, VL).156

This method is efficient (as it doesn’t need to form the n-by-m dense matrices UiV
>
i

), and expressive157

(as a result of the universal approximation theorem [10]), but is not invariant to the LoRA param-158

eter symmetries, and thus lacks inductive bias. In the experimental section, we also implement a159

2In practice, due to memory constraints UV
> must be recomputed each batch, so forward time is O(mnr).
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variant that uses a Transformer instead of an MLP. We refer to these methods as MLP([U, V ]), and160

Transformer([U, V ]). Note that we include these models mainly for comparison purposes. Since they161

lack the necessary inductive biases to effectively learn from LoRA data, we do not expect them to162

perform well in practical applications. This observation is confirmed in the experimental section.163

Multiplying-out LoRA weights. Another simple and natural method is to first perform matrix164

multiplications to compute the full dense matrices UiV
>
i

, and then apply a model to these dense165

matrices. In this paper, we flatten and concatenate these dense matrices, and then apply a simple166

MLP. This approach is fully GL-invariant, and is universally expressive, but it is significantly more167

computationally expensive since the dense matrices are of size nm as opposed to the size (n+m)r168

of the low rank decomposition. Furthermore, data pre-processing must be redone for each batch due169

to memory constraints, so in practice the forward time is O(mnr). Thus, the computational cost of170

this method makes it inapplicable to real-world LoRAs. This method is denoted by MLP(UV
>).171

3.3 Efficient Symmetry-Aware Architectures172

In this subsection we propose three efficient and symmetry-aware architectures. The first two process173

the input LoRAs before applying standard architectures. The last architecture, GL-net, is more174

sophisticated and is a composition of equivariant and invariant building blocks that we suggest.175

3.3.1 Symmetry-Aware Methods Based on Standard Architectures176

MLP(O-Align([U, V ])): alignment for canonicalization One popular method for designing invari-177

ant or equivariant networks is to canonicalize the input by using a symmetry-invariant transformation178

to convert it into a canonical form [37, 18, 50]. For example, to canonicalize a dataset of point clouds179

with respect to rotations, one might choose one specific point cloud and then rotate all other point180

clouds in the dataset to it to maximize their relative similarity. After this alignment, any standard181

architecture can process the point clouds in an invariant manner without taking rotation into account.182

This kind of rotation alignment, known as O(r) canonicalization, admits a closed from solution and183

is significantly simpler than GL(r) canonicalization.184

We canonicalize LoRA weights Ui, Vi into O(r)-invariant representatives UiQi, ViQi as follows.185

First, we select template weights Ui,Vi of the same shape as Ui and Vi (in our experiments we186

randomly select Ui and Vi from our training set of LoRAs). Then we align Ui, Vi to the templates by187

finding the orthogonal matrix Qi’s that most closely match them in Frobenius norm:188

Qi = argmin
Qi2O(r)

kUiQi �Uik
2

F
+ kViQi � Vik

2

F
. (4)

This is an instance of the well-known Orthogonal Procrustes problem [67], which has a closed189

form solution: Qi can be computed from the singular value decomposition of the r-by-r matrix190

U
>
i
Ui + V

>
i
Vi, which can be computed efficiently when the rank r is low. After computing these191

Qi’s for each pair of LoRA weights, we input the UiQi, ViQi into an MLP to compute predictions.192

This architecture, denoted by MLP(O-Align([U, V ])), is fully expressive but is invariant only to the193

action of the orthogonal group O(r) < GL(r), and does not capture full general linear symmetries.194

Singular values as features Similarly to Salama et al. [65], we also consider an LoL architecture195

that feeds the singular values of the multiplied-out LoRA weights, �1(UiV
>
i
), . . . ,�r(UiV

>
i
) into196

an MLP to compute predictions (though Salama et al. [65] mostly use nearest neighbor predictors197

instead of an MLP). Since UiV
>
i

is rank r, there are at most r nonzero singular values. This method198

is denoted by MLP(�(UV
>)). The singular values, and thus the method, are GL-invariant, but199

they are not fully expressive. For instance, negating Ui does not affect the singular values, but can200

completely change the functionality and destroy the performance of the finetuned model.201

3.3.2 GL-net: Constructing GL-invariant Models using Equivariant and invariant Layers202

A common and effective method for parameterizing invariant neural networks is processing the input203

with equivariant layers and then making the final prediction with invariant modules [9, 52, 53, 5].204

In this vein, we develop GL-net, which consists of a series of GL-equivariant linear layers and205

nonlinearities followed by a GL-invariant head to predict invariant characteristics of the input, as206

seen in Figure 2.207
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Equivariant linear layers We parameterize GL-equivariant linear layers LLinear that map208

(U1, V1, . . . , UL, VL) to (Ũ1, Ṽ1, . . . , ŨL, ṼL) as209

FLinear (U1, V1, . . . , UL, VL) = (�1U1, 1V1, . . . ,�LUL, LVL) , (5)
where �i 2 Rn

0
i⇥ni and  i 2 Rm

0
i⇥mi are learnable LoL model parameters. That is, a GL-210

equivariant linear layer consists of left matrix multiplying each Ui by a learnable�i, and left matrix211

multiplying each Vi by a learnable  i. In practice, we choose the same hidden dimension for212

every Ũi and Ṽi for simplicity, so n
0
1
= m

0
1
= . . . = n

0
L
= m

0
L

. It’s easy to verify that FLinear is213

GL-equivariant. For instance, if there is only one layer (L = 1), we have214

FLinear(R ? (U1, V1)) = (�1U1R, 1V1R
�>) = (Ũ1R, Ṽ1R

�>) = R ? FLinear(U1, V1), (6)
where (Ũ1, Ṽ1) = FLinear(U1, V1), and R ? (Ũ1, Ṽ1) = (Ũ1R, Ṽ1R

�>) is the action of R on the215

LoRA space. In fact, we show a stronger statement – the linear maps defined by (5) constitute all216

possible GL-equivariant linear maps. See Appendix A for the proof.217

Proposition 3.1. All linear GL-equivariant layers can be written in the form of (5).218

Concurrently with our work, [33] develop linear probing models for learning on model finetunes,219

including LoRAs. While equivariant, their probing map is less expressive, and does not include220

GL-equivariant nonlinearities.221

Extension to convolution LoRAs Low rank convolution decompositions are generally represented222

as two consecutive convolutions where CB projects the input down from m to r channels and CA223

projects the input up to n. For our architecture we flatten all dimensions of the convolutions except224

the hidden channel dimension, and then we apply equivariant linear layers.225

Equivariant non-linearity Equivariant networks often interleave pointwise non-linearities with226

linear equivariant layers. Unfortunately, non-trivial pointwise non-linearities are not equivariant to227

our symmetry group. A general recipe for designing equivariant non-linearities is taking fequi(x) =228

finv(x) · x, for some scalar invariant function finv [74, 77, 3]. In our case, given any non-linearity229

� : R ! R, we define a GL-equivariant non-linearity by230

�GL(U)i = �

⇣X
j
(UV

>)ij
⌘
Ui, �GL(V )i = �

⇣X
j
(UV

>)ji
⌘
Vi. (7)

In other words, we scale the i-th row of Ui by a quantity that depends on the the i-th row sum of231

UV
>, and scale the i-th row of Vi by a quantity that depends on the i-th column sum of UV

>. Since232

the representation UV
> is GL-invariant, �GL is GL-equivariant (see proof in Appendix B). In our233

experiments, we often take �(x) = ReLU(sign(x)), which has the effect of zero-ing out entire rows234

of U or V in a GL-equivariant way – this is a natural GL-equivariant generalization of ReLU. In235

our experiments we tune the number of equivariant linear layers and frequently find that only one is236

required, so we often do not use this equivariant non-linearity; nonetheless, it may be necessary in237

other applications, such as GL-equivariant tasks.238

Figure 2: GL-net architecture. Blue boxes are equiv-
ariant representations, red boxes are invariant repre-
sentations. Features are processed through equivari-
ant linear maps, GL equivariant nonlinearities, and a
matrix multiplication head with MLP.

...

MLP

Invariant head For invariant classifica-239

tion tasks, we use an invariant head240

which consists of computing the LoRA241

matrix products, concatenating them, and242

then applying an MLP. Explicitly, this243

is given as finv(U1, V1, . . . , UL, VL) =244

MLP(cat[U1V
>
1
, . . . , ULV

>
L
]), where cat245

concatenates the entries of the inputs into a246

flattened vector. For the matrices in the shape247

of the input, computing UiV
>
i

would be ex-248

pensive in both memory and compute. To249

avoid this, we use our equivariant linear lay-250

ers to lower the dimension of Ui, Vi to about251

32⇥ r, such that ŨiṼ
>
i

2 R32⇥32 is efficient252

to compute – see Figure 2 for an illustration.253

3.4 Theoretical Analysis254

Here, we restate the properties of our models as described in Section 3 and Table 1. All proofs are255

provided in the Appendix.256
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Theorem 3.2 (Invariance). MLP(UV
>), MLP(�(UV

>)), and GL-net are GL-Invariant.257

MLP(O-Align([U, V ])) is O-Invariant, not GL-Invariant. MLP([U, V ]) is not GL or O-Invariant.258

Theorem 3.3 (Universality). MLP([U, V ]), MLP(O-Align([U, V ])), MLP(UV
>), and GL-net can259

arbitrarily approximate any GL-invariant continuous function on a compact set of full rank matrices.260

4 Experimental Results261

In this section, we present experimental results evaluating our five LoL models across tasks involving262

finetuned diffusion and language models (Subsections 4.2- 4.3). Our experiments demonstrate the263

efficacy of LoL models in solving GL-invariant tasks on LoRAs. Additionally, we explore these264

models’ ability to generalize to LoRAs trained for other models and for LoRAs with previously265

unseen ranks, with detailed findings presented in Subsection F.1.266

4.1 Datasets of Trained LoRA Weights267

Table 2: Summary of LoRA datasets, base models, number of LoRAs, and LoRA rank.

Dataset Name Base Model(s) Total # LoRAs LoRA Rank
CelebA-LoRA Stable Diffusion 1.4 4,900 1,2,4,8,16,32
Imagenette-LoRA Stable Diffusion 1.4, 1.5 6,138 4, 32
Qwen2-ARC-LoRA Qwen2-1.5B 2,000 4
Llama3.2-ARC-LoRA Llama3.2-3B 2,000 4

We generate four new datasets of LoRAs for varying tasks and base models. Two of these datasets268

correspond to finetunes of diffusion models on image datasets, while the other two are finetunes of a269

language model on text. Our datasets have diversity in terms of LoRA rank, training hyperparameters270

(three datasets have randomly sampled hyperparameters, whereas one has fixed hyperparameters),271

and base model architecture.272

4.2 Learning on Diffusion Model LoRAs273

4.2.1 CLIP Score Prediction274

(a) Best Model (b) Worst Model

“toy cars"

(c) Best Model (d) Worst Model

“a volcano"

(e) Best Model (f) Worst Model

“two wine bottles"

Figure 3: Images generated by diffusion models in the test set. (a), (c), and (e) are images generated
by the model with the highest CLIP score predicted by GL-net. (b), (d), and (f) are outputs of the
model with the lowest CLIP score predicted by GL-net.

CLIP scores were introduced by [30] as an automated method for measuring text-image-alignment in275

diffusion models by evaluating the semantic similarity between their prompts and generated images.276

Higher CLIP scores generally correspond to better diffusion models, so CLIP score is a useful metric277

for evaluating these models. We calculate the CLIP score of each of our 3,900 rank 4 CelebA-LoRA278

diffusion models (with 33 fixed prompts) and train LoL models on the task of determining the CLIP279

score of a model given its finetuned weights; see Appendix D.1.1 for more details.280

The results are shown in Table 7. All of the invariant LoL models can effectively predict the CLIP281

score of diffusion LoRAs using only their decomposed low-rank matrices. The poor performance282

of vanilla MLP demonstrates the importance of GL symmetries, whereas the relatively good perfor-283

mance of MLP(UV
>) suggests “outer" permutation symmetries are less important for LoL models,284

confirming two of our hypotheses from Section 2. GL-net is able to calculate CLIP score signifi-285

cantly faster than generating images, which requires 660 score-network forward passes per finetuned286
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model. Other baselines, including MLP(�(UV
>)), MLP(O-Align([U, V ])), and MLP(UV

>) are287

less predictive. To demonstrate the utility of this task, we generate images from the two models in288

our test set predicted by GL-net to have the highest and lowest CLIP scores, respectively. As shown289

in Figure 3, GL-net’s predictions are highly correlated with the actual quality of model output.290

4.2.2 Training Data Property Prediction291

Table 3: Results for using LoL models to predict CelebA attributes (left) and Imagenette classes
(right) of the finetuning data of diffusion models, given only the LoRA weights. The tasks are to
predict (left) 5 different binary attributes of the CelebA celebrity that each LoRA was finetuned on
and (right) which subset of 10 Imagenette classes appeared in each LoRA’s finetuning dataset.

CelebA Attributes Imagenette Classes

LoL Model Test Loss (#) Test Acc (") Test Loss (#) Test Acc (")

N
ai

ve
M

od
el

s MLP([U, V ]) .554± .000 72.4± 0.0 .709± .004 49.6± 1.3

Transformer([U, V ]) .586± .014 73.2± 0.9 .695± .001 50.0± 1.3

MLP(UV
>
) .267± .007 89.1± 0.4 .264± .011 88.9± 0.6

Ef
fic

ie
nt

In
va

ri
an

t

MLP(O-Align([U, V ])) .333± .008 87.2± 0.5 .278± .008 87.8± 0.3

MLP(�(UV
>
)) .509± .013 77.3± 1.3 .638± .013 65.6± 0.6

GL-net .232 ± .007 91.3 ± 0.1 .244 ± .005 90.4 ± 0.3

Dataset attribute prediction On our CelebA-LoRA dataset, we train LoL models to classify at-292

tributes of the celebrity that each rank 4 LoRA was finetuned on. Due to the noisy nature of CelebA293

labels, we follow Lingenfelter et al. [46] and only train and test on the five CelebA attributes they de-294

termine to be least noisy. We also train and test LoL models on our Imagenette-LoRA rank 32 dataset295

to predict which subset of Imagenette classes each LoRA was finetuned on. Our results are in Table 3.296

4.3 Learning on Language Model LoRAs297

Table 4: LoL model performance on language models LoRAs. The left column is prediction of which
data sources the input LoRA was finetuned on, the middle column is prediction of the validation loss
for the finetuning task, and the right column is prediction of the LoRA’s accuracy on the ARC-C [8]
test set. All metrics are reported on the LoL task’s test set (on held-out LoRAs). Higher numbers are
better on all metrics. OOM refers to out of memory on a 2080 Ti GPU with 11 GB memory.

Qwen2-ARC-LoRA Llama3.2-ARC-LoRA

LoL Model Data Memb. (Acc) Val Loss (R2) ARC-C Acc (R2) Data Memb. (Acc) Val Loss (R2)

N
ai

ve
M

od
el

s MLP([U, V ]) .516± .006 .113± .059 .107± .035 .522± .008 .091± .030
Transformer([U, V ]) .515± .000 .856± .061 .630± .045 .536± .003 .828± .120
MLP(UV

>) .625± .008 .987± .003 .981± .002 OOM OOM

Ef
fic

ie
nt

In
va

ri
an

t MLP(O-Align([U, V ])) .550± .016 .821± .078 .965± .004 .620± .007 .562± .103
MLP(�(UV

>)) .551± .001 .999± .000 .983± .002 .560± .008 .998± .000
GL-net .605± .007 .998± .000 .987± .001 .652± .006 .995± .000

In this section, we experiment with LoL models on our Qwen2-ARC-LoRA and Llama3.2-ARC298

datasets of finetuned language models. For our first task, we consider a type of data membership299

inference task: we aim to predict whether each of the 19 data sources was used to train a given300

LoRA (this is a 19-label binary classification task). We also consider two performance prediction301

tasks: we train LoL models to predict, for each LoRA, the validation loss on the finetuning objective,302

and the downstream accuracy on the ARC-C test set [8]. Results are in Table 4. Our invariant LoL303

models are very successful at predicting the finetuning validation loss and ARC-C test accuracy of304

LoRA-finetuned language models, with some of them achieving .99 R
2 on finetuning validation loss305

regression and over .98 R
2 on ARC-C test accuracy regression. This could be useful in evaluations of306

finetuned models, as standard evaluations of language models can require a lot of time and resources,307

whereas our LoL models can evaluate these models with one quick forward pass. However, data308

membership inference is a harder task for the LoL models, with the best model achieving only 65.2%309

test accuracy in predicting which data sources were present in the finetuning dataset. Though our310

setup is quite different, these results could be related to work showing that model-based membership311

inference attacks are challenging for LLMs [14, 11].312
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4.4 OOD Generalization: Different Base Models and LoRA Ranks313

In the previous sections, we showed that LoL models succeed at various tasks on Stable Diffusion 1.4,314

Qwen2, and Llama3.2 LoRAs, where each LoL model is specialized to one base model and LoRAs315

of a fixed rank r. Now, we discuss several experiments that show promising scalability and broad316

applicability of LoL models in several senses: generalizing to different base models, processing larger317

models, and processing LoRAs of different ranks.318

Generalization to different base models from the same family To test LoL model generalization319

across base models, we train LoL models on Stable Diffusion v1.4 (SD1.4) LoRAs and then test320

them on SD1.5, and vise versa. SD versions 1.4 and 1.5 were each created by continued training321

of SD1.2 for hundreds of thousands of additional steps (according to the model card). Our results322

in Table 5 show that, without any further training, LoL models trained on classifying SD1.4 LoRAs323

generalize to SD1.5 LoRAs and vice versa, with GL-net’s performance remaining the highest among324

all LoL models across all tasks.325

Table 5: Results for OOD finetuning dataset membership prediction. LoL Models are trained on
LoRA finetunes of Stable Diffusion v1.4 or v1.5, and then evaluated on finetunes of both versions.

Trained on SD 1.4 Trained on SD 1.5

LoL Model SD 1.4 Acc SD 1.5 Acc SD 1.4 Acc SD 1.5 Acc

N
ai

ve
M

od
el

s MLP([U, V ]) 50.4± 1.0 50.8± 0.7 50.1± 0.4 50.4± 0.8

Transformer([U, V ]) 52.8± 1.3 52.3± 0.9 52.9± 1.2 52.8± 1.5

MLP(UV
>
) 80.4± 0.7 81.2± 0.7 79.4± 1.3 79.9± 1.3

Ef
fic

ie
nt

In
va

ri
an

t

MLP(O-Align([U, V ])) 74.9± 1.9 73.3± 1.1 72.2± 2.1 73.3± 1.5

MLP(�(UV
>
)) 60.9± 0.7 61.0± 0.6 61.1± 0.6 60.8± 0.7

GL-net 87.8± 0.4 87.6± 0.5 87.5± 0.4 88.5± 0.2

Generalization to a different LoRA rank For another type of out of distribution generalization,326

in Appendix F.1 we show that LoL models trained on LoRAs of rank 4 can generalize to LoRAs327

of ranks between 1 and 32. MLP(UV
>) and GL-net both show little to no performance degradation328

when tested on different ranks.329

4.5 Training on Larger Models330

Figure 4: Timing comparison for different LoL
models. Each point in the graph represents the
total time (in minutes) spent on preprocessing and
forward passes when training a LoL model on a
dataset of 4096 LoRAs for 10 epochs. The x-axis
indicates the size of the base model that the LoRAs
were finetuned from, and the y-axis shows the cor-
responding total runtime.

In Appendix F.2, we show that all LoL models–331

except for MLP(UV
>)–can process LoRAs of332

base models up to GPT-3 scale (175B parame-333

ters) within practical runtime and memory lim-334

its. Figure 4 reports the combined preprocessing335

and forward-pass time over 10 epochs for dif-336

ferent LoL models and base model sizes. All337

models run on a single NVIDIA 2080 Ti GPU338

(11GB memory). Notably, MLP(UV
>) runs339

out of memory when the base model exceeds 7B340

parameters.341

5 Conclusion342

In this work, we introduced the Learning on Lo-343

RAs (LoL) framework. We developed different344

LoL architectures, established theoretical foun-345

dations, and demonstrated LoL’s practical ap-346

plications. A key finding is that GL-invariance347

plays a crucial role in enabling effective learning348

over low-rank weight spaces. There are many potential applications and future directions for using349

LoL models to process finetunes of large models. For instance, future work could explore equivariant350

tasks, such as those that involve editing or merging LoRAs.351
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NeurIPS Paper Checklist587

1. Claims588

Question: Do the main claims made in the abstract and introduction accurately reflect the589

paper’s contributions and scope?590

Answer: [Yes]591

Justification: In Sections B and 4, we include theoretical proofs, a description of the methods592

and experimental setup, and experimental results to support the claims.593

Guidelines:594

• The answer NA means that the abstract and introduction do not include the claims595

made in the paper.596

• The abstract and/or introduction should clearly state the claims made, including the597

contributions made in the paper and important assumptions and limitations. A No or598

NA answer to this question will not be perceived well by the reviewers.599

• The claims made should match theoretical and experimental results, and reflect how600

much the results can be expected to generalize to other settings.601

• It is fine to include aspirational goals as motivation as long as it is clear that these goals602

are not attained by the paper.603

2. Limitations604

Question: Does the paper discuss the limitations of the work performed by the authors?605

Answer: [Yes]606

Justification: In Appendix G, we detail empirical and theoretical limitations of our work.607

Guidelines:608

• The answer NA means that the paper has no limitation while the answer No means that609

the paper has limitations, but those are not discussed in the paper.610

• The authors are encouraged to create a separate "Limitations" section in their paper.611

• The paper should point out any strong assumptions and how robust the results are to612

violations of these assumptions (e.g., independence assumptions, noiseless settings,613

model well-specification, asymptotic approximations only holding locally). The authors614

should reflect on how these assumptions might be violated in practice and what the615

implications would be.616

• The authors should reflect on the scope of the claims made, e.g., if the approach was617

only tested on a few datasets or with a few runs. In general, empirical results often618

depend on implicit assumptions, which should be articulated.619

• The authors should reflect on the factors that influence the performance of the approach.620

For example, a facial recognition algorithm may perform poorly when image resolution621

is low or images are taken in low lighting. Or a speech-to-text system might not be622

used reliably to provide closed captions for online lectures because it fails to handle623

technical jargon.624

• The authors should discuss the computational efficiency of the proposed algorithms625

and how they scale with dataset size.626

• If applicable, the authors should discuss possible limitations of their approach to627

address problems of privacy and fairness.628

• While the authors might fear that complete honesty about limitations might be used by629

reviewers as grounds for rejection, a worse outcome might be that reviewers discover630

limitations that aren’t acknowledged in the paper. The authors should use their best631

judgment and recognize that individual actions in favor of transparency play an impor-632

tant role in developing norms that preserve the integrity of the community. Reviewers633

will be specifically instructed to not penalize honesty concerning limitations.634

3. Theory Assumptions and Proofs635

Question: For each theoretical result, does the paper provide the full set of assumptions and636

a complete (and correct) proof?637

Answer: [Yes]638
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Justification: We give the full set of assumptions and proofs for each result in Appendix B.639

Guidelines:640

• The answer NA means that the paper does not include theoretical results.641

• All the theorems, formulas, and proofs in the paper should be numbered and cross-642

referenced.643

• All assumptions should be clearly stated or referenced in the statement of any theorems.644

• The proofs can either appear in the main paper or the supplemental material, but if645

they appear in the supplemental material, the authors are encouraged to provide a short646

proof sketch to provide intuition.647

• Inversely, any informal proof provided in the core of the paper should be complemented648

by formal proofs provided in appendix or supplemental material.649

• Theorems and Lemmas that the proof relies upon should be properly referenced.650

4. Experimental Result Reproducibility651

Question: Does the paper fully disclose all the information needed to reproduce the main ex-652

perimental results of the paper to the extent that it affects the main claims and/or conclusions653

of the paper (regardless of whether the code and data are provided or not)?654

Answer: [Yes]655

Justification: We give high-level experimental setup information in the main paper (Sec-656

tion 4), and more detailed information about experiments in the Appendix D.657

Guidelines:658

• The answer NA means that the paper does not include experiments.659

• If the paper includes experiments, a No answer to this question will not be perceived660

well by the reviewers: Making the paper reproducible is important, regardless of661

whether the code and data are provided or not.662

• If the contribution is a dataset and/or model, the authors should describe the steps taken663

to make their results reproducible or verifiable.664

• Depending on the contribution, reproducibility can be accomplished in various ways.665

For example, if the contribution is a novel architecture, describing the architecture fully666

might suffice, or if the contribution is a specific model and empirical evaluation, it may667

be necessary to either make it possible for others to replicate the model with the same668

dataset, or provide access to the model. In general. releasing code and data is often669

one good way to accomplish this, but reproducibility can also be provided via detailed670

instructions for how to replicate the results, access to a hosted model (e.g., in the case671

of a large language model), releasing of a model checkpoint, or other means that are672

appropriate to the research performed.673

• While NeurIPS does not require releasing code, the conference does require all submis-674

sions to provide some reasonable avenue for reproducibility, which may depend on the675

nature of the contribution. For example676

(a) If the contribution is primarily a new algorithm, the paper should make it clear how677

to reproduce that algorithm.678

(b) If the contribution is primarily a new model architecture, the paper should describe679

the architecture clearly and fully.680

(c) If the contribution is a new model (e.g., a large language model), then there should681

either be a way to access this model for reproducing the results or a way to reproduce682

the model (e.g., with an open-source dataset or instructions for how to construct683

the dataset).684

(d) We recognize that reproducibility may be tricky in some cases, in which case685

authors are welcome to describe the particular way they provide for reproducibility.686

In the case of closed-source models, it may be that access to the model is limited in687

some way (e.g., to registered users), but it should be possible for other researchers688

to have some path to reproducing or verifying the results.689

5. Open access to data and code690

Question: Does the paper provide open access to the data and code, with sufficient instruc-691

tions to faithfully reproduce the main experimental results, as described in supplemental692

material?693
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Answer: [No]694

Justification: We have published our code here, but have not yet published the data we use.695

We commit to publishing the data once anonymity constraints are no longer relevant.696

Guidelines:697

• The answer NA means that paper does not include experiments requiring code.698

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/699

public/guides/CodeSubmissionPolicy) for more details.700

• While we encourage the release of code and data, we understand that this might not be701

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not702

including code, unless this is central to the contribution (e.g., for a new open-source703

benchmark).704

• The instructions should contain the exact command and environment needed to run to705

reproduce the results. See the NeurIPS code and data submission guidelines (https:706

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.707

• The authors should provide instructions on data access and preparation, including how708

to access the raw data, preprocessed data, intermediate data, and generated data, etc.709

• The authors should provide scripts to reproduce all experimental results for the new710

proposed method and baselines. If only a subset of experiments are reproducible, they711

should state which ones are omitted from the script and why.712

• At submission time, to preserve anonymity, the authors should release anonymized713

versions (if applicable).714

• Providing as much information as possible in supplemental material (appended to the715

paper) is recommended, but including URLs to data and code is permitted.716

6. Experimental Setting/Details717

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-718

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the719

results?720

Answer: [Yes]721

Justification: We describe high-level experimental setup in Section 4, and fine-grained722

experimental details in Appendix D.723

Guidelines:724

• The answer NA means that the paper does not include experiments.725

• The experimental setting should be presented in the core of the paper to a level of detail726

that is necessary to appreciate the results and make sense of them.727

• The full details can be provided either with the code, in appendix, or as supplemental728

material.729

7. Experiment Statistical Significance730

Question: Does the paper report error bars suitably and correctly defined or other appropriate731

information about the statistical significance of the experiments?732

Answer: [Yes]733

Justification: We generally do several runs of experiments, and report error bars that measure734

the standard deviation in the results.735

Guidelines:736

• The answer NA means that the paper does not include experiments.737

• The authors should answer "Yes" if the results are accompanied by error bars, confi-738

dence intervals, or statistical significance tests, at least for the experiments that support739

the main claims of the paper.740

• The factors of variability that the error bars are capturing should be clearly stated (for741

example, train/test split, initialization, random drawing of some parameter, or overall742

run with given experimental conditions).743

• The method for calculating the error bars should be explained (closed form formula,744

call to a library function, bootstrap, etc.)745
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• The assumptions made should be given (e.g., Normally distributed errors).746

• It should be clear whether the error bar is the standard deviation or the standard error747

of the mean.748

• It is OK to report 1-sigma error bars, but one should state it. The authors should749

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis750

of Normality of errors is not verified.751

• For asymmetric distributions, the authors should be careful not to show in tables or752

figures symmetric error bars that would yield results that are out of range (e.g. negative753

error rates).754

• If error bars are reported in tables or plots, The authors should explain in the text how755

they were calculated and reference the corresponding figures or tables in the text.756

8. Experiments Compute Resources757

Question: For each experiment, does the paper provide sufficient information on the com-758

puter resources (type of compute workers, memory, time of execution) needed to reproduce759

the experiments?760

Answer: [Yes]761

Justification: We include details on compute in F.2 and D.5.762

Guidelines:763

• The answer NA means that the paper does not include experiments.764

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,765

or cloud provider, including relevant memory and storage.766

• The paper should provide the amount of compute required for each of the individual767

experimental runs as well as estimate the total compute.768

• The paper should disclose whether the full research project required more compute769

than the experiments reported in the paper (e.g., preliminary or failed experiments that770

didn’t make it into the paper).771

9. Code Of Ethics772

Question: Does the research conducted in the paper conform, in every respect, with the773

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?774

Answer: [Yes]775

Justification: We have read and complied with the NeurIPS Code of Ethics.776

Guidelines:777

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.778

• If the authors answer No, they should explain the special circumstances that require a779

deviation from the Code of Ethics.780

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-781

eration due to laws or regulations in their jurisdiction).782

10. Broader Impacts783

Question: Does the paper discuss both potential positive societal impacts and negative784

societal impacts of the work performed?785

Answer: [Yes]786

Justification: Yes, we discuss both potential positive and negative societal impacts in787

Appendix H.788

Guidelines:789

• The answer NA means that there is no societal impact of the work performed.790

• If the authors answer NA or No, they should explain why their work has no societal791

impact or why the paper does not address societal impact.792

• Examples of negative societal impacts include potential malicious or unintended uses793

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations794

(e.g., deployment of technologies that could make decisions that unfairly impact specific795

groups), privacy considerations, and security considerations.796
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• The conference expects that many papers will be foundational research and not tied797

to particular applications, let alone deployments. However, if there is a direct path to798

any negative applications, the authors should point it out. For example, it is legitimate799

to point out that an improvement in the quality of generative models could be used to800

generate deepfakes for disinformation. On the other hand, it is not needed to point out801

that a generic algorithm for optimizing neural networks could enable people to train802

models that generate Deepfakes faster.803

• The authors should consider possible harms that could arise when the technology is804

being used as intended and functioning correctly, harms that could arise when the805

technology is being used as intended but gives incorrect results, and harms following806

from (intentional or unintentional) misuse of the technology.807

• If there are negative societal impacts, the authors could also discuss possible mitigation808

strategies (e.g., gated release of models, providing defenses in addition to attacks,809

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from810

feedback over time, improving the efficiency and accessibility of ML).811

11. Safeguards812

Question: Does the paper describe safeguards that have been put in place for responsible813

release of data or models that have a high risk for misuse (e.g., pretrained language models,814

image generators, or scraped datasets)?815

Answer: [NA]816

Justification: We do not train models or use data that have a high risk of misuse.817

Guidelines:818

• The answer NA means that the paper poses no such risks.819

• Released models that have a high risk for misuse or dual-use should be released with820

necessary safeguards to allow for controlled use of the model, for example by requiring821

that users adhere to usage guidelines or restrictions to access the model or implementing822

safety filters.823

• Datasets that have been scraped from the Internet could pose safety risks. The authors824

should describe how they avoided releasing unsafe images.825

• We recognize that providing effective safeguards is challenging, and many papers do826

not require this, but we encourage authors to take this into account and make a best827

faith effort.828

12. Licenses for existing assets829

Question: Are the creators or original owners of assets (e.g., code, data, models), used in830

the paper, properly credited and are the license and terms of use explicitly mentioned and831

properly respected?832

Answer: [Yes]833

Justification: We credit code and data used throughout the paper. For other types of models,834

we cite papers in which they were introduced.835

Guidelines:836

• The answer NA means that the paper does not use existing assets.837

• The authors should cite the original paper that produced the code package or dataset.838

• The authors should state which version of the asset is used and, if possible, include a839

URL.840

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.841

• For scraped data from a particular source (e.g., website), the copyright and terms of842

service of that source should be provided.843

• If assets are released, the license, copyright information, and terms of use in the844

package should be provided. For popular datasets, paperswithcode.com/datasets845

has curated licenses for some datasets. Their licensing guide can help determine the846

license of a dataset.847

• For existing datasets that are re-packaged, both the original license and the license of848

the derived asset (if it has changed) should be provided.849
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• If this information is not available online, the authors are encouraged to reach out to850

the asset’s creators.851

13. New Assets852

Question: Are new assets introduced in the paper well documented and is the documentation853

provided alongside the assets?854

Answer: [Yes]855

Justification: We have released our code, which in turn provides source code for generating856

the datasets which we use.857

Guidelines:858

• The answer NA means that the paper does not release new assets.859

• Researchers should communicate the details of the dataset/code/model as part of their860

submissions via structured templates. This includes details about training, license,861

limitations, etc.862

• The paper should discuss whether and how consent was obtained from people whose863

asset is used.864

• At submission time, remember to anonymize your assets (if applicable). You can either865

create an anonymized URL or include an anonymized zip file.866

14. Crowdsourcing and Research with Human Subjects867

Question: For crowdsourcing experiments and research with human subjects, does the paper868

include the full text of instructions given to participants and screenshots, if applicable, as869

well as details about compensation (if any)?870

Answer: [NA]871

Justification: No crowdsourcing or human subjects were used.872

Guidelines:873

• The answer NA means that the paper does not involve crowdsourcing nor research with874

human subjects.875

• Including this information in the supplemental material is fine, but if the main contribu-876

tion of the paper involves human subjects, then as much detail as possible should be877

included in the main paper.878

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,879

or other labor should be paid at least the minimum wage in the country of the data880

collector.881

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human882

Subjects883

Question: Does the paper describe potential risks incurred by study participants, whether884

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)885

approvals (or an equivalent approval/review based on the requirements of your country or886

institution) were obtained?887

Answer: [NA]888

Justification: No crowdsourcing or human subjects were used.889

Guidelines:890

• The answer NA means that the paper does not involve crowdsourcing nor research with891

human subjects.892

• Depending on the country in which research is conducted, IRB approval (or equivalent)893

may be required for any human subjects research. If you obtained IRB approval, you894

should clearly state this in the paper.895

• We recognize that the procedures for this may vary significantly between institutions896

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the897

guidelines for their institution.898

• For initial submissions, do not include any information that would break anonymity (if899

applicable), such as the institution conducting the review.900
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16. Declaration of LLM usage901

Question: Does the paper describe the usage of LLMs if it is an important, original, or902

non-standard component of the core methods in this research? Note that if the LLM is used903

only for writing, editing, or formatting purposes and does not impact the core methodology,904

scientific rigorousness, or originality of the research, declaration is not required.905

Answer: [NA]906

Justification: We did not use LLMs for non-standard purposes.907

Guidelines:908

• The answer NA means that the core method development in this research does not909

involve LLMs as any important, original, or non-standard components.910

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)911

for what should or should not be described.912
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A GL Equivariant Linear Maps Characterization913

Here, we characterize the form of GL-equivariant linear maps, and provide the proof of Propo-914

sition 3.1. We use basic representation theory techniques, which are similar to the ones used to915

characterize equivariant linear maps in the geometric deep learning literature [52, 23, 57].916

A.1 Proof of Proposition 3.1917

First, we prove a lemma, that allows us to analyze equivariant linear maps between direct sums of918

spaces in terms of a direct sum of equivariant linear maps between the constituent spaces. For a group919

G, we denote the vector space of G-equivariant linear maps from V to W by HomG(V,W). This920

is closely related to a result from Navon et al. [58] that characterizes the matrices underlying linear921

maps between direct sums.922

Lemma A.1. Let G be a group and let V1, . . . ,Vn, W1, . . . ,Wm be G-representations. If V =923

V1 � · · ·� Vn and W = W1 � · · ·�Wm are direct sums of representations then924

HomG(V,W) ⇠=
M

i,j

HomG(Vi,Wj). (8)

Proof. We construct an explicit isomorphism F : HomG(V,W) !
L

i,j
HomG(Vi,Wj). Let925

inci : Vi ! V denote the inclusion of Vi in V , and projj : W ! Wj denote the projection from W926

to Wj . For � 2 HomG(V,W), define:927

F (�) = (projj � � � inci)i,j (9)

F is clearly linear, being defined by composition of linear maps. Moreover, since �, inci, and projj928

are all G-equivariant, their composition �i,j = projj � � � inci is also G-equivariant. To prove929

injectivity, suppose F (�) = F ( ) for some �, 2 HomG(V,W). Then 8v = (v1, . . . , vn) 2 V930

�(v) = (proj1(�(v)), . . . , projm(�(v)))

=

 
X

i

proj1(�(inci(vi))), . . . ,
X

i

projm(�(inci(vi)))

!

=

 
X

i

proj1( (inci(vi))), . . . ,
X

i

projm( (inci(vi)))

!

=  (v).

For surjectivity, given (�i,j)i,j 2
L

i,j
HomG(Vi,Wj), define � : V ! W by931

�(v1, . . . , vn) =

 
X

i

�i,1(vi), . . . ,
X

i

�i,m(vi)

!
. (10)

� is linear by construction; to show G-equivariance, let g 2 G and (v1, . . . , vn) 2 V932

�(g · (v1, . . . , vn)) = �(g · v1, . . . , g · vn)

=

 
X

i

�i,1(g · vi), . . . ,
X

i

�i,m(g · vi)

!

=

 
X

i

g · �i,1(vi), . . . ,
X

i

g · �i,m(vi)

!

= g · �(v1, . . . , vn),

where we use the G-equivariance of each �i,j . Thus, � 2 HomG(V,W), and by construction933

F (�) = (�i,j)i,j . Therefore, F is a linear bijection.934

Proof of Proposition 3.1. Let I := (U1�V
⇤
1
)�· · ·�(UL�V

⇤
L
) and O := (Ũ1�Ṽ

⇤
1
)�· · ·�(ŨL�Ṽ

⇤
L
)935

be the input and output spaces of an equivariant LoL model. Denote dim(Ui) = ni · r, dim(V⇤
i
) =936
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r · mi, dim(Ũi) = n
0
i
· r, dim(Ṽ⇤

i
) = r · m

0
i
, and G := GL(r)L = GL(r) ⇥ · · · ⇥ GL(r). We937

are interested in characterizing the vector space of G-equivariant linear maps, which we denote by938

HomG(I,O). In the main text we show that the maps F�1, 1,...,�L, L

Linear
, defined by939

F
�1, 1,...,�L, L

Linear
(U1, V1, . . . , UL, VL) = (�1U1, 1V1, . . . ,�LUL, LVL) (11)

are all G-equivariant. In other words, we showed that940

L :=
n
F
�1, 1,...,�L, L

Linear
| �i 2 Rn

0
i⇥ni , i 2 Rm

0
i⇥mi

o
✓ HomG(I,O). (12)

L is a linear subspace of dimension
P

L

i=1
nin

0
i
+
P

L

i=1
mim

0
i
, so in order to prove that L =941

HomG(I,O), it’s enough to show that dim(HomG(I,O)) =
P

L

i=1
nin

0
i
+
P

L

i=1
mim

0
i
. Since I942

and O are direct sums of representations, Lemma A.1 implies that the dimension of HomG(I,O) is943

the sum of the dimensions of the constituents:944

dim(HomG(I,O)) =
LX

i=1

LX

i0=1

✓
dim

⇣
HomG(Ui, Ũi0)

⌘
+ dim

⇣
HomG(Ui, Ṽ

⇤
i0)
⌘
+

dim
⇣
HomG(V

⇤
i
, Ũi0)

⌘
+ dim

⇣
HomG(V

⇤
i
, Ṽ

⇤
i0)
⌘◆

.

(13)

Next, note that Ui, V⇤
i

, Ũi, and Ṽ
⇤
i

all decompose into irreducible representations945

Ui =
niM

j=1

U
j

i
, V

⇤
i
=

miM

j=1

(Vj

i
)⇤, Ũi =

n
0
iM

j=1

Ũ
j

i
, Ṽ

⇤
i
=

m
0
iM

j=1

(Ṽj

i
)⇤, (14)

each of which is isomorphic to the standard representation of the i-th copy of GL(r) on either Rr946

(for U j

i
and Ũ

j

i
) or (Rr)⇤ (for (Vj

i
)⇤ and (Ṽj

i
)⇤). We can think of U j

i
as the space spanned by the j-th947

row in the input Ui matrix and (Vj

i
)⇤ as the space spanned by the j-th column of the input V >

i
matrix.948

This decomposition gives us949

dim
⇣
HomG(Ui, Ũi0)

⌘
=

niX

j=1

n
0
iX

j0=1

dim
⇣
HomG(U

j

i
, Ũ

j
0

i0 )
⌘
,

dim
⇣
HomG(Ui, Ṽ

⇤
i0)
⌘
=

niX

j=1

m
0
iX

j0=1

dim
⇣
HomG(U

j

i
, (Ṽj

0

i0 )
⇤)
⌘
,

dim
⇣
HomG(V

⇤
i
, Ũi0)

⌘
=

miX

j=1

n
0
iX

j0=1

dim
⇣
HomG((V

j

i
)⇤, Ũ j

0

i0 )
⌘
,

dim
⇣
HomG(V

⇤
i
, Ṽ

⇤
i0)
⌘
=

miX

j=1

m
0
iX

j0=1

dim
⇣
HomG((V

j

i
)⇤, (Ṽj

0

i0 )
⇤)
⌘
.

(15)

Since these are all irreducible representations, Schur’s lemma [24] implies that the dimension of the950

space of G-equivariant maps is either 1 (if the representations are isomorphic) or 0 (if they are not).951

Notice that,952

• U
j

i
and Ũ

j
0

i0 are isomorphic as G-representations if and only if i = i
0 (if i 6= i

0 different953

copies of GL(r) act on U
j

i
and Ũ

j
0

i0 ).954

• (Vj

i
)⇤ and (Ṽj

0

i0 )
⇤ are isomorphic as G-representations if and only if i = i

0 (if i 6= i
0 different955

copies of GL(r) act on (Vj

i
)⇤ and (Ṽj

0

i0 )
⇤).956

• U
j

i
is never isomorphic to (Ṽj

0

i0 )
⇤ and (Vj

i
)⇤ is never isomorphic to Ũ

j
0

i0 .957
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Therefore, together with Equation 13 and Equation 15 we get958

dim (HomG(I,O)) =
LX

i=1

LX

i0=1

(nin
0
i0 · 1i=i0 +mim

0
i0 · 1i=i0)

=
LX

i=1

nin
0
i
+

LX

i=1

mim
0
i

(16)

concluding the proof.959

B Proof of Invariances: Theorem 3.2960

We prove invariance (or lack thereof) of each model one by one. For this section, consider961

arbitrary inputs UV = (U1, V1, . . . , UL, Vl), where Ui 2 Rni⇥r and Vi ⇥ Rmi⇥r. Further,962

choose invertible R = (R1, . . . , RL) 2 GL(r)L. Denote the application of R on UV by963

R ?UV = (U1R1, V1R
�>
1

, . . . , ULRL, VLR
�>
L

) To show that a function f is GL invariant, we will964

show that f(R ?UV) = f(UV). Note that, since O(r) ⇢ GL(r), if we show that a function is965

GL-invariant, then it is also O-invariant.966

MLP([U, V ]). We will show that the simple MLP is neither O-invariant or GL-invariant. It suffices967

to show that it is not O-invariant. As a simple example, let MLP(U, V ) = U1,1 output the top-left968

entry of U . Then let U be a matrix with 1 in the top-left corner and 0 elsewhere. Further, let P be the969

permutation matrix that swaps the first and second entries of its input. Then MLP(UP, V P ) = 0 6=970

MLP(U, V ) = 1. As permutation matrices are orthogonal, P 2 O(r), so the MLP([U, V ]) is indeed971

not O(r) invariant.972

MLP(O-Align([U, V ])). We will show that the O-alignment approach is O-invariant on all but a973

Lebesgue-measure-zero set. For simplicity, let L = 1, U 2 Rn⇥r, and V 2 Rm⇥r. Let U 2 Rn⇥r974

and V 2 Rm⇥r be the template matrices, which we assume are full rank (the full rank matrices975

are a Lebesgue-dense set, so this is an allowed assumption). Recall that we canonicalize U, V as976

⇢(U, V ) = (UQ, V Q), where:977

Q = argmin
Q2O(r)

kUQ�Uk
2

F
+ kV Q�Vk

2

F
. (17)

We call any solution to this problem a canonicalizing matrix for (U, V ). This can be equivalently978

written as979

Q = argmin
Q2O(r)

����


U

V

�
Q�


U
V

�����
2

F

. (18)

Let M = U
>U+ V

>V. Then a global minimum of this problem is Q = AB
>, where A⌃B> is an980

SVD of M . If M has distinct singular values, then A and B are unique up to sign flips, and AB
> is981

in fact unique. Thus, if M has unique singular values, (UQ, V Q) is unique. We assume from here982

that M has distinct singular values, as the set of all M that do form a Lebesgue-dense subset of Rr⇥r983

(and thus this is satisfies for Lebesgue-almost-every U and V ).984

Now, to show O-invariance, let Q̃ 2 O(r). We will show that ⇢(UQ̃, V Q̃) = ⇢(U, V ).985

argmin
Q2O(r)

����


UQ̃

V Q̃

�
Q�


U
V

�����
2

F

= argmin
Q02O(r)

����


U

V

�
Q

0
�


U
V

�����
2

F

(19)

because the orthogonal matrices are closed under multiplication. Thus, if Q is a canonicalizing986

matrix for (U, V ), then Q̃
>
Q is a canonicalizing matrix for (UQ̃, V Q̃). Moreover, we have that987

Q̃
>
U

>U+ Q̃
>
V

>V = Q̃
>
M , so this has the same singular values as M (as orthogonal matrices988

don’t affect singular values); this means that the singular values are distinct, so there is a unique989

canonicalizing matrix for (UQ̃, V Q̃). This means that the canonicalization matrix must be equal to990

Q̃
>
Q, so that991

⇢(UQ̃, V Q̃) = (UQ̃Q̃
>
Q, V Q̃Q̃

>
Q) = (UQ, V Q) = ⇢(U, V ). (20)

As this argument holds for Lebesgue-almost-every U and V , we have shown O-invariance of992

MLP(O-Align([U, V ])).993
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Finally, we have to show that this LoL model is not GL-invariant. To do this, let the MLP approximate994

the Frobenius norm function on its first input, so MLP(U, V ) ⇡ kUk. Consider any U that is nonzero,995

and let a > 2 be a scalar. Then aI 2 GL(r). Also, we have that ⇢(U, V ) = (UQ, V Q) for some996

Q 2 O(r), so this canonicalization does not affect the Frobenius norm of the first entry. Thus, we997

have that998

MLP(⇢(U, V )) ⇡ kUk 6= a kUk ⇡ MLP(⇢(aU, (1/a)V )). (21)
So MLP(O-Align([U, V ])) is not invariant under GL.999

MLP(�(UV
>)). We show this is GL-invariant. The output of this model f on UV can be written as1000

MLP(�1(U1V
>
1
), . . . ,�r(U1V

>
1
), . . . ,�1(ULV

>
L
), . . . ,�r(ULV

>
L
). (22)

Where �j(UiV
>
i
) is the jth singular value of UiV

>
i

. Thus, we can compute that:1001

f(R ?UV) = MLP(�1(U1R1R
�1

1
V

>
1
), . . . ,�r(ULRLR

�1

L
V

>
L
)) (23)

= MLP(�1(U1V
>
1
), . . . ,�r(ULV

>
L
)) (24)

= f(UV). (25)

MLP(UV
>). We show this is GL-invariant. We can simply see that1002

MLP(R ?UV) = MLP(U1R1R
�1

1
V

>
1
, . . . , ULRLR

�1

L
V

>
L
) (26)

= MLP(U1V
>
1
, . . . , ULV

>
L
) (27)

= MLP(UV). (28)

GL-net. We show this is GL-invariant. First, assume that the equivariant linear layers are GL-1003

equivariant, and the equivariant nonlinearities are GL-equivariant. Note that the invariant head of1004

GL-net is a special case of MLP(UV
>), which we have already proven to be invariant. Further, an1005

invariant function composed with an equivariant function is invariant, so we are done.1006

We only need to prove that the nonlinearities are GL-equivariant, because we have already proven1007

that the equivariant linear layers are GL-equivariant in the main text. Let � : R ! R be any real1008

function, and recall that the GL-equivariant nonlinearity takes the following form on U 2 Rn⇥r,1009

V 2 Rm⇥r:1010

�GL(U, V ) = (Ũ , Ṽ ), Ũi = �

⇣X
j
(UV

>)ij
⌘
Ui, Ṽi = �

⇣X
j
(UV

>)ji
⌘
Vi, (29)

where Ũ 2 Rn⇥r, Ṽ 2 Rm⇥r, and for example Ui 2 Rr denotes the ith row of Ui.1011

Lemma B.1. For any real function � : R ! R, the function �GL defined in (29) is GL equivariant.1012

Proof. Let U 2 Rn⇥r
, V 2 Rm⇥r

, and R 2 GL(r) be arbitrary. Denote the output of the nonlinear-1013

ity on the transformed weights as �GL(UR, V R
�>) = (Ũ (R)

, Ṽ
(R)). Then we have that1014

Ũ
(R)

i
= �

⇣X

j

(URR
�1

V
>)ij

⌘
R

>
Ui = R

>

2

4�
⇣X

j

(UV
>)ij

⌘
Ui

3

5 = R
>
Ui (30)

Ṽ
(R)

i
= �

⇣X

j

(URR
�1

V
>)ji

⌘
R

�1
Vi = R

�1

2

4�
⇣X

j

(UV
>)ji

⌘
Vi

3

5 = R
�1

Vi. (31)

In matrix form, this means that Ũ (R)

i
= ŨiR and Ṽ

(R)

i
= ṼiR

�>. In other words,1015

�GL(UR, V R
�1) = R ? �GL(U, V ), (32)

which is the definition of GL-equivariance, so we are done.1016
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C Proof of Expressivity: Theorem 3.31017

In this section we formally restate and prove Theorem 3.3. We start by defining full rank GL-1018

universality for LoL models.1019

Definition C.1 (Full rank GL-universality). Let D = {(U1, V1, . . . , UL, VL) | Ui 2 Rni⇥r
, Vi 21020

Rmi , rank(Ui) = rank(Vi) = r} be the set of LoRA updates of full rank. A LoL architecture is1021

called full rank GL-universal if for every GL-invariant function f : D ! R, every ✏ > 0, and every1022

compact set K ⇢ D, there is a model fLoL of said architecture that approximates f on K up to ✏:1023

sup
X2K

|f
LoL(X)� f(X)| < ✏. (33)

Note that the set D of full-rank LoRA updates is Lebesgue-dense (its compliment has measure 0).1024

Theorem C.2 (Formal restatement of Theorem 3.3). The MLP, MLP(O-Align([U, V ])),1025

MLP(UV
>), and GL-net LoL architectures are all full rank GL universal.1026

The universality of MLP and MLP(O-Align([U, V ])) models follows from the universal approxi-1027

mation theorem for MLPs [32]. To prove Theorem C.2 for MLP(UV
>) and GL-net we use the1028

following result from Dym and Gortler [16].1029

Proposition C.3 (Proposition 1.3 from Dym and Gortler [16]). Let M be a topological space, and G1030

a group which acts on M. Let K ⇢ M be a compact set, and let f inv : M ! RN be a continuous1031

G-invariant map that separates orbits. Then for every continuous invariant function f : M ! R1032

there exists some continuous fgeneral : RN
! R such that f(x) = f

general(f inv(x)), 8x 2 K.1033

In order to use the proposition above for MLP(UV
>) LoL models, we need to show that multiplying1034

out the LoRA updates separates GL orbits.1035

Lemma C.4. The function1036

f
mul(U1, V1, . . . , UL, VL) = (U1V

>
1
, . . . , ULV

>
L
),

separates GL-orbits in D. That is, if (U1, V1, . . . , UL, VL) and (U 0
1
, V

0
1
, . . . , U

0
L
, V

0
L
) are in different1037

G-orbits then f
mul(U1, V1, . . . , UL, VL) 6= f

mul(U 0
1
, V

0
1
, . . . , U

0
L
, V

0
L
).1038

Proof. We prove the contrapositive. Let (U1, V1, . . . , UL, VL) and (U 0
1
, V

0
1
, . . . , U

0
L
, V

0
L
) be LoRA1039

updates such that fmul(U1, V1, . . . , UL, VL) = f
mul(U 0

1
, V

0
1
, . . . , U

0
L
, V

0
L
), i.e. 8i 2 {1, . . . , L}1040

UiV
>
i

= U
0
i
V

0>
i

. (34)

Since Ui, Vi, U
0
i
, and V

0
i

are of rank r, their corresponding Gram matrices U
>
i
Ui, V

>
i
Vi,1041

U
0>
i

U
0
i
, V

0>
i

V
0
i

2 Rr⇥r, are also of rank r and are thus invertible. Multiplying both sides of1042

Equation 34 by Vi(V >
i
Vi)�1 from the right, we get1043

Ui(((((((
V

>
i
Vi(V

>
i
Vi)

�1 = U
0
i
V

0>
i

Vi(V
>
i
Vi)

�1

| {z }
Ri

. (35)

Substituting U
0
i
Ri back to Equation 34 we get1044

U
0
i
RiV

>
i

= U
0
i
V

0>
i

.

Multiplying by (U 0>
i

U
0
i
)�1

U
0>
i

from the left gives1045

((((((((
(U 0>

i
U

0
i
)�1

U
0>
i

U
0
i
RiV

>
i

=((((((((
(U 0>

i
U

0
i
)�1

U
0>
i

U
0
i
V

0>
i

.

Therefore, to prove (U1, V1, . . . , UL, VL) and (U 0
1
, V

0
1
, . . . , U

0
L
, V

0
L
) are in the same orbit all we need1046

to do is show that Ri 2 GL(r). To do so it’s enough to show that V 0>
i

Vi is invertible. And indeed,1047
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starting from Equation341048

UiV
>
i

= U
0
i
V

0>
i

(Multiply both sides by (U
>
i Ui)

�1
U

>
i from the left)

(U>
i
Ui)

�1
U

>
i
UiV

>
i

= (U>
i
Ui)

�1
U

>
i
U

0
i
V

0>
i

(Simplify left side: (U>
i Ui)

�1
U

>
i Ui = I)

V
>
i

= (U>
i
Ui)

�1
U

>
i
U

0
i
V

0>
i

(Multiply both sides by Vi from the right)

V
>
i
Vi = (U>

i
Ui)

�1
U

>
i
U

0
i
V

0>
i

Vi

(Multiply both sides by (V
>
i Vi)

�1 from the left)

I = (V >
i
Vi)

�1(U>
i
Ui)

�1
U

>
i
U

0
i
V

0>
i

Vi.

(36)

Therefore, R1, . . . , RL 2 GL(r), Ui = U
0
i
R, and Vi = V

0
i
R

�>
i

, implying that (U1, V1, . . . , UL, VL)1049

and (U 0
1
, V

0
1
, . . . , U

0
L
, V

0
L
) are in the same G-orbit.1050

We are now ready to prove Theorem C.2.1051

Proof of theorem C.2. Let f : D ! R be a continuous GL-invariant function, let K ⇢ D be a1052

compact set and fix ✏ > 0.1053

1. MLP. Since K is compact and f is continuous, universality follows from the universal1054

approximation theorem for MLPs [32].1055

2. MLP(O-Align([U, V ])). Let falign be the O-canonicalization function. falign is continuous1056

so f
align(K) is compact. and let fMLP be an MLP that approximates f up-to ✏ on f

align(K).1057

sup
X2K

|f
MLP(falign(X))� f(X)| = sup

X2K

|f
MLP(falign(X))� f(falign(X))|

= sup
Y 2falign(K)

|f
MLP(Y )� f(Y )| < ✏.

The first equality holds since f is GL-invariant, and in particular O-invariant.1058

3. MLP(UV
>). From Lemma C.4 we know that fmul separates orbits. It’s additionally clear1059

that fmul is continuous and G-invariant. Therefore, using Proposition C.3 there exists a1060

function f
general : RN

! R such that f ⌘ f
general

� f
mul on K. Since fmul is continuous,1061

f
mul(K) is also compact and we can use the universal approximation theorem of MLPs for1062

f
genral on f

mul(K). Therefore, there exists an MLP f
MLP such that1063

sup
X2K

|f
MLP(fmul(X))� f(X)| = sup

X2K

|f
MLP(fmul(X))� f

general(fmul(X))|

= sup
Y 2fmul(K)

|f
MLP(Y )� f

general(Y )| < ✏
(37)

4. GL-net. Since we proved MLP(UV
>) is universal, it’s enough to show that GL-net can1064

implement MLP(UV
>). If we take a GL-net with no equivariant layers (or equivalently a1065

single equivariant layer that implements the identity by setting �i = Ini , i = Imi) and1066

apply the invariant head directly to the input, the resulting model is exactly MLP(UV
>).1067

1068
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D Experimental Details1069

D.1 Diffusion Model LoRA Datasets1070

CelebA-LoRA We train a dataset of 3,900 LoRA finetuned Stable Diffusion 1.4 models [63] using1071

the PEFT library [51]. Each LoRA is rank 4, and is finetuned via DreamBooth personalization [64]1072

on 21 images of a given celebrity in the CelebA dataset [48]. Further, each LoRA is trained with1073

randomly sampled hyperparameters (gradient accumulation steps, train steps, learning rate, prompt)1074

and initialization.1075

Imagenette-LoRA We also use Dreambooth to finetune another 2,046 Stable Diffusion 1.4 models1076

and 2,046 Stable Diffusion 1.5 models with LoRA rank 4 on different subsets of the Imagenette1077

dataset [34] — a subset of ImageNet [12] consisting of images from ten dissimilar classes. Un-1078

like CelebA LoRA, we use the same training hyperparameters for each finetuning run (but vary1079

initialization, random seed, and finetuning dataset). We also finetune 2,046 SD1.4 rank 32 LoRAs.1080

Qwen2-ARC-LoRA and Llama3.2-ARC-LoRA We create two datasets totalling 4,000 language1081

model LoRAs by finetuning Qwen2-1.5B [79] and Llama3.2-3B [15] on subsets of the training1082

set of the commonly used ARC dataset [8], which is a dataset for testing question answering and1083

science knowledge. The ARC dataset consists of questions from many data sources. For each LoRA,1084

we randomly sample a subset of 19 data sources, and omit data from the unsampled data sources.1085

Also, each LoRA is randomly initialized and trained with randomly sampled hyperparameters. See1086

Appendix D.2 for more details.1087

D.1.1 CelebA Finetuning1088

Table 6: Hyperparameter distributions for the 3,900 different LoRA diffusion model finetunes we
trained. U(S) denotes the uniform distribution over a set S.

Hyperparameter Distribution

Learning rate U({10�4
, 3 · 10�4

, 10�3
, 3 · 10�3

})
Train Steps U({100, 133, 167, 200})
Batch Size U({1, 2})
Prompt U({“Celebrity", “Person", “thing", “skd"})
Rank 4

We finetune 3,900 models on various celebrities in the CelebA dataset [48] using the DreamBooth1089

personalization method [64]. Each LoRA is personalized to one celebrity by finetuning on 211090

images of that celebrity. Every LoRA is trained starting from a different random initialization, with1091

hyperparameters randomly sampled from reasonable distributions — see Table 6 for the distributions.1092

CLIP score prediction. For CLIP score prediction, we use the following prompts, the first thirty1093

of which are from PartiPrompts Yu et al. [80], and the last three of which are written to include1094

words relevant to prompts the models are finetuned on. We use a fixed random seed of 42 for image1095

generation. For predicting CLIP scores, GL-net takes the mean of each matrix product UiV
>
i

in the1096

invariant head. This is equivalent to using an equivariant hidden dimension of 1.1097

1. ‘a red sphere on top of a yellow box’,1098

2. ‘a chimpanzee sitting on a wooden bench’,1099

3. ‘a clock tower’,1100

4. ‘toy cars’,1101

5. ‘a white rabbit in blue jogging clothes doubled over in pain while a turtle wearing1102

a red tank top dashes confidently through the finish line’,1103

6. ‘a train going to the moon’,1104

7. ‘Four cats surrounding a dog’,1105

8. ‘the Eiffel Tower in a desert’,1106

9. ‘The Millennium Wheel next to the Statue of Liberty. The Sagrada Familia1107

church is also visible.’,1108
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10. ‘A punk rock squirrel in a studded leather jacket shouting into a microphone1109

while standing on a stump and holding a beer on dark stage.’,1110

11. ‘The Statue of Liberty surrounded by helicopters’,1111

12. ‘A television made of water that displays an image of a cityscape at night.’,1112

13. ‘a family on a road trip’,1113

14. ‘the mona lisa wearing a cowboy hat and screaming a punk song into a1114

microphone’,1115

15. ‘a family of four posing at Mount Rushmore’,1116

16. ‘force’,1117

17. ‘an oil surrealist painting of a dreamworld on a seashore where clocks and1118

watches appear to be inexplicably limp and melting in the desolate landscape. a1119

table on the left, with a golden watch swarmed by ants. a strange fleshy creature in1120

the center of the painting’,1121

18. ‘Downtown Austin at sunrise. detailed ink wash.’,1122

19. ‘A helicopter flies over Yosemite.’,1123

20. ‘A giraffe walking through a green grass covered field’,1124

21. ‘a corgi’s head’,1125

22. ‘portrait of a well-dressed raccoon, oil painting in the style of Rembrandt’,1126

23. ‘a volcano’,1127

24. ‘happiness’,1128

25. ‘the words ’KEEP OFF THE GRASS’ on a black sticker’,1129

26. ‘A heart made of wood’,1130

27. ‘a pixel art corgi pizza’,1131

28. ‘two wine bottles’,1132

29. ‘A funny Rube Goldberg machine made out of metal’,1133

30. ‘a horned owl with a graduation cap and diploma’,1134

31. ‘A celebrity in a park’,1135

32. ‘A person on the beach’,1136

33. ‘A thing in a city’1137

Table 7: We report train and test mean squared error (MSE) for predicting normalized CLIP score of
CelebA-LoRA models. We also show test Kendall’s ⌧ and R

2 coefficients. GL-net has significantly
lower test MSE than any other LoL model, whereas a standard MLP does no better than random
guessing. Transformers, MLPs with O-Align, SVD, or Dense featurization all perform similarly.

LoL Model Train MSE Test MSE (#) ⌧ (") R
2 (")

N
ai

ve
M

od
el

s MLP([U, V ]) .047± .004 .988± .005 .226± .016 .333± .022
Transformer([U, V ]) .027± .005 .158± .013 .671± .003 .872± .002
MLP(UV

>) .013± .002 .169± .011 .677± .006 .871± .005

Ef
fic

ie
nt

In
va

ri
an

t MLP(O-Align([U, V ])) .001± .001 .175± .006 .654± .004 .856± .004
MLP(�(UV

>)) .071± .003 .148± .005 .667± .008 .863± .006
GL-net .009± .001 .111± .004 .695± .005 .884± .003

CelebA Attribute Prediction. As mentioned in Section 4.2.2, we only predict the five least noisy1138

CelebA attributes, as measured by Lingenfelter et al. [46]. Recall that each LoRA in CelebA-LoRA1139

is trained on 21 images of a given celebrity. The attribute labels can vary across these 21 images, so1140

we say the ground truth attribute label of the LoRA is the majority label across these 21 images.1141

D.1.2 ImageNette Finetuning1142

For Imagenette [34], we finetune 3 ⇥ 2,046 models. In particular, for each nonempty subset of the 101143

Imagenette classes, we finetune 6 models using 1 image from each present class. Two are rank-321144

finetunes on Stable Diffusion V1.4, two are rank-4 finetunes on Stable Diffusion V1.4, and two are1145

rank-4 finetunes of Stable Diffusion V1.5. We use rank 32 in part so that we can test how well LoL1146

models perform on larger ranks than the other experiments.1147
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Table 8: Hyperparameters for the dataset of 2,046 different LoRA diffusion model finetunes we
trained on Imagenette (Imagenette-LoRA).

Hyperparameter Value

Learning rate 3 · 10�4

Train Steps 150
Batch Size 1
Prompt sks_photo

Rank 4, 32

D.2 Language Model LoRA Dataset1148

Here, we describe the details of our Qwen2-ARC-LoRA and Llama3.2-ARC-LoRA datasets of1149

trained language model LoRAs.1150

For training data, we use the ARC training set [8], using both the easy and challenge splits. First, we1151

hold out a fixed validation set sampled from this set to compute the validation loss on. Each training1152

data point originates from one of 20 sources (e.g. some questions come from Ohio Achievement1153

Tests, and some come from the Virginia Standards of Learning). For each LoRA finetuning run,1154

we sample a random subset of these sources to use as training data (except we do not ever omit the1155

Mercury source, which contains many more data points than the other sources). To do this, we sample1156

a random integer in s 2 [1, 19], then choose a random size-s subset of the 19 possibly-filtered sources1157

to drop.1158

Table 9: Hyperparameter distributions for the 2,000 different LoRA language model finetunes we
trained (Qwen2-ARC-LoRA and Llama3.2-ARC-LoRA). U(S) denotes the uniform distribution over
a set S.

Hyperparameter Distribution

Learning rate 10U([�5,�3])

Weight decay 10U([�6,�2])

Epochs U({2, 3, 4})
Batch Size U({32, 64, 128})
LoRA Dropout U([0, .1])
Filtered sources U(sources)

For each LoRA finetuning run, we sample random hyperparameters: learning rate, weight decay,1159

number of epochs, batch size, LoRA dropout, and the data sources to filter. The distributions from1160

which we sample are shown in Table 9, and were chosen to give reasonable but varied performance1161

across different runs. All trained LoRAs were of rank 4, and we only applied LoRA to tune the key1162

and value projection matrices of each language model.1163

D.3 Language Model LoRA Experiments1164

Here, we provide further details on the LLM experiments in Section 4.3. For each dataset and LoL1165

model, we train for one run with each of the learning rates 5 · 10�5
, 10�4

, 5 · 10�4
, 10�3

, 5 · 10�3.1166

Then for the data membership task we choose the learning rate of highest validation accuracy, and for1167

the validation loss and ARC-C regression tasks we choose the learning rate of highest validation R
2.1168

With this optimal learning rate, we conduct 3 training runs, and report the mean and one standard1169

deviation in Section 4.3. For the regression tasks, we train with an MSE loss, and for the data1170

membership task we train with a cross entropy loss. For each dataset, we train on 80% of the data,1171

validate on 10% of the data, and test on 10%. We use the AdamW optimizer [49] with weight decay1172

of 10�2, and evaluate the test performance on the checkpoint with lowest validation loss.1173
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D.4 Dataset size prediction1174

Dataset size prediction. The task of predicting the size of the finetuning dataset given LoRA weights1175

was first studied recently by Salama et al. [65]. The success of this task implies a privacy leak,1176

since model developers may sometimes wish to keep the size of their finetuning dataset private.1177

Moreover, the dataset size is a useful quantity to know for data membership inference attacks and1178

model inversion attacks, so accurately predicting dataset size could improve effectiveness of these1179

attacks too [73, 26].1180

Table 10: Results for finetuning dataset size prediction with LoL models. We use our Imagenette-
LoRA dataset, and predict the number of classes (or equivalently images) that are used to finetune
each model.

LoL Model Train Loss Test Acc

MLP .547± .026 25.9± 0.6

MLP(O-Align([U, V ])) .020± .001 33.7± 1.5

MLP(�(UV
>
)) .153± .013 58.8± 2.7

MLP(UV
>
) .547± .099 39.0± 4.4

GL-net .011± .002 44.3± 3.3

In Table 10, we show results for finetuning-dataset-size prediction using LoL models. The task is1181

to take the LoRA weights of one of the diffusion models from our Imagenette-LoRA dataset, and1182

predict the number of unique images that it was finetuned on. Although it struggles on some other1183

tasks, we see that MLP(�(UV
>)) is able to effectively predict dataset size, in line with observations1184

from Salama et al. [65].1185

Other LoL models struggle to generalize well on this task. Interestingly, GL-net performs approxi-1186

mately as well as expected if using the following strategy: first predict which classes are present in1187

the finetuning set of the LoRA (as in Table 5), and then sum the number of classes present to predict1188

the dataset size. MLP+SVD is clearly using different predictive strategies for this task, as it cannot1189

predict which individual classes are present (Table 5), but it can predict the number of classes present.1190

See Appendix D.4 for more analysis on the learned prediction strategies of the LoL models on this1191

task. Here we describe theoretical and experimental details relating to the implicit strategies that1192

GL-net and MLP(�(UV
>)) may employ in dataset size prediction as in Table 10.1193

Suppose that a model fclass trained to predict Imagenette class presence of LoRAs (as in Table 5)1194

has test accuracy p, while each of the 10 classes is present with probability .5. For LoRA weights1195

x, fclass(x)i = 1 if the model predicts that class i is in the finetuning dataset of x. Define the1196

corresponding dataset-size prediction model fsize(x) =
P

10

i=1
fclass(x)i That is, fsize predicts1197

whether each class is in the dataset, sums up these predictions, and then outputs the sum as the1198

expected dataset size.1199

Assuming fclass is equally likely to provide false-negative or false-positive predictions for each class,1200

each of its 10 outputs has probability 1 � p of being incorrect. Consider an input LoRA x with a1201

dataset size s. Then fsize(x) = ŷ1 + ŷ2 + . . . ŷ10, where ŷi is equal to yi with probability p, and1202

1� yi with probability 1� p. So,1203

fsize(x) = s () |{i | yi = 1 ^ ŷi = 0}| = |{i | yi = 0 ^ ŷi = 1}| (38)
The cardinality of the left set is distributed as binom(s, 1� p), while the cardinality of the right set is1204

distributed as binom(10�s, 1�p). So, P(fsize(x) = s|s) = P(�1 = �2), for �1 ⇠ binom(s, 1�p)1205

and �2 ⇠ binom(10� s, 1� p). Thus,1206

P(x,s)⇠data(fsize(x) = s) =
10X

⌘=0

[P (binom(⌘, 1� p) = binom(10� ⌘, 1� p) | ⌘) · P(⌘)] (39)

Table 5 shows that for GL-net, fclass is correct with probability p = .878. So, we have 1� p = .122.1207

On the otherhand, for rank-32 data membership on Imagenette, GL-net is correct with p = .904.1208

Using a Python script to evaluate (39), we find that the probability that fsize(x) is correct is 39.9% in1209

the rank 4 case, which is near the observed probability of 44.3%. In the rank 32 case, the theoretical1210

accuracy is 46.1%, which almost exactly matches the observed probability of 46.8%.1211

31



We further test our hypothesis empirically by training GL-net on Imagenette-32 class prediction (as1212

in Table ??) and then summing up its class predictions to predict dataset size. On the Imagenette1213

size-prediction test set, GL-net with this sum strategy achieves an accuracy of 43.5 ± 2.1%. This1214

means GL-net is likely learning a function with underlying mechanism similar to fsize, where it1215

predicts the presence of each class and then sums those predictions to output the total dataset size.1216

On the other hand, MLP(�(UV
>)) correctly predicts class presence in Imagenette-4 with probability1217

p = .61. Predicting classes and summing up its individual predictions would give MLP(�(UV
>)) a1218

theoretical accuracy of 20% by equation 39, which is significantly worse than its true performance of1219

58.8%. This suggests that MLP(�(UV
>)) likely uses higher level characteristics than class presence1220

to determine dataset size.1221

D.5 Compute Used1222

We used a total of 144 NVIDIA 3090 (24GB memory) hours to generate diffusion LoRA datasets,1223

and 832 NVIDIA 2080 (11GB memory) hours to generate language LoRA finetunes. Per-dataset1224

compute is listed below. Most other uses of compute, including training and hyperparameter tuning1225

LoL models were negligible and account for < 48 GPU hours.

Dataset Name Training Time GPU Used
CelebA-LoRA ⇠48 hrs NVIDIA 3090
CelebA-LoRA (Compute CLIP scores) ⇠48 hrs NVIDIA 3090
Imagenette-LoRA ⇠72 hrs NVIDIA 3090
Qwen2-ARC-LoRA ⇠384 hrs NVIDIA 2080 Ti
Llama3.2-ARC-LoRA ⇠448 hrs NVIDIA 2080 Ti
Table 11: Type of GPU and number of GPU hours to generate each dataset.

1226

E LoRA Variants and Their Symmetries1227

In this section, we describe various LoRA variants that have been proposed for parameter-efficient1228

finetuning. We also discuss their symmetries, and how one may process these LoRA variants with1229

LoL models.1230

Training Modifications. Several LoRA variants such as PiSSA [55] and LoRA+ [29] have the1231

same type of weight decomposition as the original LoRA, but with different initialization or training1232

algorithms. These variants have the same exact symmetries as standard LoRA, so they can be1233

processed in exactly the same way with our LoL models.1234

DoRA (Weight-Decomposed Low-Rank Adaptation). Liu et al. [47] decompose the parameter1235

updates into magnitude and directional components. For base weights W 2 Rn⇥m, DoRA finetuning1236

learns the standard low rank weights U 2 Rn⇥r and V 2 Rm⇥r along with a magnitude vector1237

m 2 Rm so that the new finetuned weights are given by1238

(W + UV
>)Diag

✓
m

kW + UV >k
c

◆
, (40)

where k·k
c
: Rn⇥m

! Rm is the norm of each column of the input matrix, the division m
kW+UV >kc

1239

is taken elementwise, and Diag takes vectors in Rm to diagonal matrices in Rm⇥m. The vector m1240

represents the norm of each column of the finetuned matrix. DoRA weights (U, V,m) also have1241

the same invertible matrix symmetry as standard LoRA, where (UR, V R
�>

,m) is functionally1242

equivalent to (U, V,m). The m vector cannot in general be changed without affecting the function.1243

Thus, an LoL model could take as input m as an invariant feature, for instance by concatenating it to1244

features in an invariant head of GL-net, or concatenating it to the input of an MLP in the other LoL1245

models.1246

KronA (Kronecker Adapter). Edalati et al. [19] use a Kronecker product structure to decompose1247

the learned weight matrix in a parameter-efficient way. For a weight matrix W of shape n⇥m, LoKr1248

learns U 2 Rn
0⇥m

0
, V 2 Rn

00⇥m
00

such that the finetuned weight is given by W + U ⌦ V . Here,1249
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we no longer have a large general linear symmetry group. Instead, there is a scale symmetry, where1250

(U, V ) is equivalent to (sU, 1

s
V ) for a scalar s 2 R \ {0}, since (sU) ⌦ ( 1

s
V ) = U ⌦ V . For LoL1251

tasks, we can use a scale-invariant architecture, as for instance explored by Kalogeropoulos et al.1252

[38]. We can also use GL-net on the flattened vec(U) 2 Rn
0
m

0⇥1 and vec(V ) 2 Rn
00
m

00⇥1, since1253

R \ {0} = GL(1) is the general linear symmetry group in the special case of rank r = 1.1254

F More Experiments1255

F.1 Generalization to Unseen Ranks1256

Rank MLP+SVD MLP+Dense GL-net

1 .714± .03 .424± .02 .418± .01

2 1.01± .06 .357± .02 .335± .01

4 .571± .02 .369± .02 .323± .01

8 .604± .04 .349± .02 .324± .01

16 .700± .07 .343± .02 .317± .01

32 .789± .01 .328± .01 .284± .01

Figure 5: Performance of LoL models across inputs of varying ranks. Each model is only trained
on rank 4 LoRA weights from CelebA-LoRAs. (Left) Test accuracy on CelebA attribute predic-
tion. (Right) Test loss on CelebA attribute prediction. MLP(UV

>) and GL-net generalize well
to ranks that are unseen during training, but do face degradation at rank one. On the other hand,
MLP(�(UV

>)) does not generalize well.

In Section 4, each LoL model was trained on LoRA weights of one fixed rank (r = 4). In practice,1257

model developers can choose different LoRA ranks for finetuning their models, even when they are1258

finetuning the same base model for similar tasks. Thus, we may desire LoL models that are effective1259

for inputs of different ranks. In this section, we explore an even more difficult problem — whether1260

LoL models can generalize to ranks that are unseen during training time.1261

The MLP(UV
>) and GL-net models can directly take as input models of different ranks. We also1262

use MLP(�(UV
>)) on inputs of different ranks, by parameterizing the model for inputs of rank r,1263

then truncating to top r singular values for inputs of rank greater than r, and zero-padding to length r1264

for inputs of rank less than r.1265

In Figure 5, we train LoL models on inputs of rank 4, and then test performance on inputs of ranks1266

between 1 and 32. On the CelebA attribute prediction task, we see that MLP(UV
>) and GL-net1267

mostly generalize very well to different ranks that are unseen during training (though not as well for1268

r = 1), while MLP(�(UV
>)) does not generalize as well.1269

F.2 Runtime and Scaling to Large Models1270

Previous weight-space models generally take in small networks as inputs, e.g. 5,000 parameters [76],1271

80,000 parameters [43], or sometimes up to 4 million parameters [58]. However, many of the most1272

impactful neural networks have orders of magnitude more parameters. Thus, here we consider the1273

runtime and scalability of LoL models as we increase the model size. We will consider all of the1274

language model sizes in the GPT-3 family [6], which range from 125M to 175B parameters. We1275

assume that we finetune rank 4 LoRA weights for one attention parameter matrix for each layer.1276

In Figure 6, we show the time it takes for data preprocessing of 64 input networks, and forward1277

passes for 512 input networks (with batch size up to 64). Even at the largest scales, it only takes at1278

most seconds to preprocess and compute LoL model forward passes for each input LoRA. Every LoL1279

model besides MLP(UV
>) scales well with the model size: forward passes barely take longer at1280

larger model sizes, and data preprocessing is still limited to less than a second per input network.1281
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Figure 6: (Left) data preprocessing time for LoL models across 64 inputs of varying sizes. (Right)
forward pass time for LoL models across 512 inputs of varying sizes. MLP(UV

>) runs out of
memory for largest inputs.

G Limitations1282

One possible limitation of our work is that in general, many thousands of networks need to finetuned1283

in order to create a sufficient amount of data to effectively learn on low rank weight-spaces. However,1284

during one instance of model merging, models might be evaluated thousands of times, so LoL can1285

still be used to speed up evaluation on average.1286

H Impact Statement1287

Our work develops the LoL framework, which could be used for diverse tasks involving processing1288

LoRA weights of finetuned models. This includes tasks that are likely to be societally positive,1289

such as detecting harmful tendencies in finetuned models or speeding up model evaluation to reduce1290

computational costs in certain settings. However, it could also be used for potentially negative tasks,1291

for instance predicting private properties such as the size of a finetuning dataset. Still, our work is1292

largely foundational, and we do not believe that there is overall much potential for negative impacts1293

from our work.1294
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