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Abstract

Low-rank adaptations (LoRAs) have revolutionized the finetuning of large
foundation models, enabling efficient adaptation even with limited computational
resources. The resulting proliferation of LoRAs together with the recent advances
of weight-space learning present exciting opportunities for applying machine
learning techniques that take these low-rank weights themselves as inputs. In this
paper, we investigate the potential of Learning on LoRAs (LoL), a setup where
machine learning models learn and make predictions on datasets of LORA weights.
Motivated by previous weight-space learning works, we first identify the inherent
parameter symmetries of our data — low-rank decompositions of weights — which
differ significantly from the parameter symmetries of standard neural networks.
To efficiently process LoRA weights, we develop several symmetry-aware
invariant or equivariant LoL. models. In diverse experiments, we show that our
LoL architectures can process LoRA weights to predict CLIP scores, finetuning
data attributes, finetuning data membership, and accuracy on downstream tasks.
We also show that LoL. models trained on LoRAs of one pretrained model can
effectively generalize to LoRAs trained on other models from the same model
family. As an example of the utility of LoL, our LoL models can accurately
estimate CLIP scores of diffusion models and ARC-C test accuracy of LLMs over
50,000 times faster than standard evaluation. As part of this work, we finetuned
and will release datasets of more than ten thousand text-to-image diffusion-model
and language-model LoRAs. Our anonymized code can be found here

1 Introduction

Finetuning pretrained models such as large language models [6![79./15] and text-to-image generative
models [31}63] for improved performance on target tasks has become an extremely common and
successful paradigm in deep learning. While full finetuning of all weights effectively boosts model
capabilities, it requires large amounts of memory and computation time. In recent years, Low Rank
Adaptation (LoRA) [35], a finetuning method where a learnable low rank decomposition is added to
each weight matrix (W; — W, + U; ViT), has been used as an alternative to other finetuning methods
thanks to its increased efficiency. LoRA finetuning and its variants have become widespread; there are
now software packages [51}|27], paid services [62], and online communities [7] in which countless
LoRAs are trained and shared.

Given the ubiquity of LoRA weights, one can imagine treating them as a data modality. Recent works
in the emerging field of weight-space learning train neural networks to operate on the weights of
other models. These networks, often termed meta-networks [43], neural functionals [83}/82], or deep
weight-space networks [57], have demonstrated promise on diverse parameter-level tasks, including
generating or editing neural fields [61], predicting pruning masks [83], merging models [58]], learned
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Figure 1: Overview of Learning on LoRAs (LoL). A pretrained model 6}, is finetuned to yield
LoRA weight matrices Uy, V7, ...,Ur, V. These LoORA weights are taken as input to an LoL model
fo, which can make predictions such as the downstream accuracy of the finetuned model.

optimization [56}82}[39} 25|, and predicting performance of neural network checkpoints [761/68].
However, their reliance on processing the entire weight space limits their applicability to smaller
models. Importantly, due to the unique structure of LoRAs, adapting previous weight-space methods
to operate on LoRAs poses significant challenges, mainly due to the different symmetry these data
types adhere to.

Our approach. In this work, we extend weight-space learning to LoRA Weight-Spaces. We introduce
and extensively study Learning on LoRAs (LoL), encompassing theory, architectural design, and
a variety of applications. When developing LoL architectures for processing LoRA weights, we
aim to account for the structure and symmetries of this unique data modality. First, the rank-r
decomposition of an n X m matrix has only (n + m)r parameters compared to nm for the full dense
matrix. This parameter efficiency (linear vs quadratic) is one of the main reasons for the popularity
of LoRAs. Hence, we opt for using the low-rank decomposition representation (U, V') in the place
of the full matrix UV T, so we can more efficiently learn on LoRA weights. As a consequence
of choosing this efficient data representation, taking the geometric deep learning 5] blueprint as
a guiding principle, we take into consideration its unique symmetry structure: for any invertible
matrix R € GL(r), we have that URR™'V'T = UV'T, so the low rank decompositions (U, V)
and (UR,VR™T) are functionally equivalent|'| Because this transformation does not affect the
underlying function represented by the LoRA, almost all relevant LoL problems are invariant to this
action of GL(r). Therefore, an effective LoL model for any such task should be GL(r)-invariant.

To this end, motivated by previous success in invariant and equivariant weight-space learning [57|
39,1431/82138]] and geometric deep learning in general [5}|9}81}|22}|40}|54}142], we propose several
GL(r)-equivariant and invariant neural architectures that can effectively process LoRA weights.
These models are designed using multiple techniques from geometric deep learning (canonicalization,
invariant featurization, and equivariant linear maps) and offer different trade-offs in terms of efficiency,
expressivity, and generalization.

To explore the feasibility of Learning on LoRAs tasks, and to analyze the effectiveness of our
proposed architectures, we conduct experiments across various finetuned models. First, we create
novel datasets for Learning on LoRAs; we train over ten thousand diverse LoRAs, which are finetuned
from text-to-image diffusion generative models and language models. We then train LoL models on
these LoRAs to predict various attributes of finetuned models, including: CLIP scores, finetuning
data attributes, finetuning data membership, and accuracy on downstream tasks. We find that the
GL(r)-invariant LoL. models we propose in this paper can often perform these tasks well, and
considerably better than standard non-invariant models and other naive approaches. We also show
that our LoL. models can generalize to LoRAs that were trained on top of other base models from the
same model family, opening the opportunity to train single LoL models for entire model families.

As an example application, trained LoL models offer a dramatically faster alternative to standard eval-
uation methods for metrics like CLIP score and language model common-sense reasoning accuracy.
In our experiments, an LoLL model can estimate the CLIP score of a diffusion model 53,000 times

'"Throughout the paper, we use R~ ' to denote (R™*) .
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faster than traditional methods, and assess the downstream LLM common-sense reasoning accuracy
730,000 times faster. This speedup stems from the fact that standard model evaluation requires thou-
sands of forward passes through a multi-billion parameter model, while an LoL model accomplishes
the same task with a single forward pass through a much smaller network. This rapid evaluation can
enable faster hyperparameter tuning and real-time performance monitoring during training.

Our contributions. In this paper, we (1) introduce Learning on LoRAs (LoL), extending weight-
space learning to low rank weight spaces; (2) characterize the inherent GL(r) symmetries in LoORAs
that pose unique challenges and develop several GL(r)-invariant and equivariant architectures that
effectively and efficiently process LoRA weights; (3) create and release datasets of over ten thousand
text-to-image and language model LoRAs; (4) demonstrate that our symmetry-aware Lol models
perform well across a range of tasks.

2 Background and Related Work

LoRA background and symmetries Hu et al. [35] introduced the LoRA method, which is a
parameter-efficient method for finetuning (typically large) models [51, 28]. Consider a weight matrix
W € R™ ™ of some pretrained neural network. Directly finetuning W would require training nm
parameters on additional data, which could be quite expensive. LoRA instead trains low-rank matrices
U € R™ " and V € R™*" so that the new finetuned weight matrix is given by W + UV T. This
only requires tuning (n + m)r parameters, which is efficient as the rank r is taken to be significantly
lower than n or m (for instance a rank of 7 = 8 can be sufficient to finetune a 7B-parameter language
model with n = m = 4096 [47]).

As mentioned in the introduction, for any invertible matrix R € GL(r), W + (UR)(VR™")" =
W +UV'T, so the LoRA update given by (UR, VR~ ) is functionally equivalent to the one given by
(U, V). As a special case, when Q € O(r) < GL(r) is orthogonal, (UQ, V Q) is also functionally
equivalent. Many variants of the original LoRA work have been proposed, and they often have
comparable symmetries that can be handled similarly in our framework [51, 28]; we discuss LoRA
variants and their symmetries in Appendix E.

Prior works in the geometric deep learning community [5] have also studied continuous symme-
tries [74, 4, 17, 66, 44, 59, 41] such as rotation and scaling symmetries, especially for applications in
the chemical and physical sciences. However, they study different classes of symmetries, such as
O(n), E(n), and SP(n), none of which contain GL(n). To the best of our knowledge, we are the
first to study GL(n) equivariant and invariant architectures.

Weight-space learning. Several neural network architectures have been developed that take in neural
network weights as input [76, 20, 68, 69, 70, 71, 56, 60, 57, 58, 2, 72]. In many tasks, equivariance
or invariance to parameter transformations that leave the network functionally unchanged has been
found to be useful for empirical performance of weight-space networks [57, 83, 43, 38, 75]. However,
these works are not specialized for LoORA weight spaces, since they consider different symmetry
groups: many such works focus only on discrete permutation symmetries [57, 83, 43, 82], or
scaling symmetries induced by nonlinearities [38, 75]. As covered in the previous section, LoORA
weights have general linear group (invertible matrices) symmetry, which includes as special cases
certain permutations and scaling symmetries between U and V' '. While LoRAs contain inner
permutation symmetries of the form UPT PV T = UV T, we emphasize that they generally do not
have outer permutation symmetries of the more recognizable form P, UV T P,, which would resemble
those of standard weight spaces (e.g. MLPs or CNNs) more. This is an important difference; for
instance, the outer permutation symmetries significantly harm linear merging of models trained from
scratch [21, 1, 45], whereas finetuned models can be merged well with simple methods [78, 36].

Recently, two works have explored the weight space of LoRA finetuned models for certain tasks.
Salama et al. [65] develop an attack that predicts the size of the dataset used to finetune the model
given its finetuned weights. Inspired by correlations between finetuning dataset size and singular
value magnitudes, they define a very specific type of LoL model that takes the singular values of dense,
multiplied-out LoRA weights o1 (U;V;"), ..., 0,.(U;V;") as input. In contrast, we study more tasks,
consider the problem of general LoL model design, and develop more expressive and efficient LoL
models in our paper. In another context, Dravid et al. [13] study the LoRA weight space of finetuned
personalized text-to-image diffusion models. They do not define LoL models, but instead study
operations such as linear edits in the principal component space of their rank-one LoRA weights.
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3 Learning on LoRAs Architectures

Table 1: Properties of LoL architectures proposed in this paper. Runtimes are for one LoRA layer with
UeR"™  and V € R™*", so the rank r is generally much lower than n and m. Expressivity refers
to a notion of the ability to approximate GL-invariant functions, which is formalized in Definition C.1.

LoL Model GL-Inv. O-Inv. Expressive Preprocess Time Forward Time
Naive architectures
MLP([U, V]) X X O((m+n)r)  O(m+n)r)
Transformer([U, V]) X X O((m+n)r)  O((m+n)r)
MLP(UVT) O(mnr) O(mn)?
Efficient symmetry-aware architectures
MLP(O-Align([U, V1)) X O((m+n)r?)  O((m+n)r)
MLP(a(UVT)) X O((m+n)r?)  O((m+n)r)
GL-net O((m+n)r)  O((m+n)r)

In this section, we develop several neural network architectures for Learning on LoRAs. These
have different trade-offs and properties, which we summarize in Table 1. First, we mathematically
formalize the LoL learning problem. Next, we describe three naive methods that apply standard
architectures to the LoORA weights and discuss their limitations. We then derive three efficient and
symmetry aware architectures. The first two process LoRA weights by canonicalizing the weights or
generating invariant features. Finally, we derive a third invariant approach, GL-net, an architecture
based on a composition of equivariant and invariant modules. In the experimental section, we
demonstrate that symmetry aware architectures significantly outperform the naive baselines.

3.1 Learning Setup

Suppose L matrices in the base model are finetuned via LoRA. The LoRA weights are
(U1,V1),..., (UL, V1), where U; € R™*" and V; € R™*". An LoL model with parameters
6 and output space ) is a function fp : R2:("+m:)" _ ) An LoL model can output a scalar pre-
diction () = R) or latent LoORA weight representations (U1, V1), ..., (UL, V) where U; € R"*"
and V; € Rmix7 (Y = RX:(nitmi)ry,

For (U1, V1,...,UL, VL) € RZ:i(nitmi)r and Ry, ..., Ry € GL(r) we denote the action by

(Ri,...,Rp)* (U, Vi,...,U, V) = (UiRy, ViR ', ..., U, RL, VLR, ). (1)

An LoL model is called GL-invariant if for all Ry, ..., Ry € GL(r)
fo((R1,...,RL) (U, V1,..., UL, V1)) = fo(Ur,V1,..., UL, VL). 2)
This represents invariance to the action of the direct product GL(r) x --- x GL(r) of

GL(r) with itself L-times (GL(r)*). When the output space has decomposition structure, i.e.

fo(U1, Vi, ..., UL, VL) = (U1, VA, ..., U, Vi), we say that the model is GL(r)-equivariant if for
all R,..., Ry € GL(?"),

fe((Rl,...,RL)*(Ul,V1,...,UL,VL)) = (Rl,...,RL)*(01,V1,...,0L,‘7L). (3)

Expressivity is an important property of invariant and equivariant models [81, 53], and LoL models in
particular. Informally, an LoL model is universally expressive if it can fit any continuous GL-invariant
function to arbitrary accuracy on compact domains. We give a formal definition in Definition C.1,
and prove our results in the context of this formal definition.

3.2 Naive Architectures

Simple MLP/transformer on LoRA weights. The simplest LoL model is a standard deep learning
model, such as an MLP, that takes the flattened LoRA weights as input: MLPy(Uy, V1,..., UL, V).
This method is efficient (as it doesn’t need to form the n-by-m dense matrices U; V"), and expressive
(as a result of the universal approximation theorem [10]), but is not invariant to the LoRA param-
eter symmetries, and thus lacks inductive bias. In the experimental section, we also implement a

’In practice, due to memory constraints UV " must be recomputed each batch, so forward time is O(mnr).
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variant that uses a Transformer instead of an MLP. We refer to these methods as MLP([U, V]), and
Transformer([U, V]). Note that we include these models mainly for comparison purposes. Since they
lack the necessary inductive biases to effectively learn from LoRA data, we do not expect them to
perform well in practical applications. This observation is confirmed in the experimental section.

Multiplying-out LoRA weights. Another simple and natural method is to first perform matrix
multiplications to compute the full dense matrices U;V;", and then apply a model to these dense
matrices. In this paper, we flatten and concatenate these dense matrices, and then apply a simple
MLP. This approach is fully GL-invariant, and is universally expressive, but it is significantly more
computationally expensive since the dense matrices are of size nm as opposed to the size (n + m)r
of the low rank decomposition. Furthermore, data pre-processing must be redone for each batch due
to memory constraints, so in practice the forward time is O (mnr). Thus, the computational cost of
this method makes it inapplicable to real-world LoRAs. This method is denoted by MLP(UV ).

3.3 Efficient Symmetry-Aware Architectures

In this subsection we propose three efficient and symmetry-aware architectures. The first two process
the input LoRAs before applying standard architectures. The last architecture, GL-net, is more
sophisticated and is a composition of equivariant and invariant building blocks that we suggest.

3.3.1 Symmetry-Aware Methods Based on Standard Architectures

MLP(O-Align([U, V])): alignment for canonicalization One popular method for designing invari-
ant or equivariant networks is to canonicalize the input by using a symmetry-invariant transformation
to convert it into a canonical form [37, 18, 50]. For example, to canonicalize a dataset of point clouds
with respect to rotations, one might choose one specific point cloud and then rotate all other point
clouds in the dataset to it to maximize their relative similarity. After this alignment, any standard
architecture can process the point clouds in an invariant manner without taking rotation into account.
This kind of rotation alignment, known as O(r) canonicalization, admits a closed from solution and
is significantly simpler than GL(r) canonicalization.

We canonicalize LoRA weights U;, V; into O(r)-invariant representatives U;Q;, V;Q; as follows.
First, we select template weights U;, V; of the same shape as U; and V; (in our experiments we
randomly select U; and V; from our training set of LoRAs). Then we align U;, V; to the templates by
finding the orthogonal matrix @;’s that most closely match them in Frobenius norm:

Qi = argmin |U;Q; — Ui||% + [ViQ: — Vi||% . (4)
Qi€O(r)

This is an instance of the well-known Orthogonal Procrustes problem [67], which has a closed
form solution: @; can be computed from the singular value decomposition of the r-by-r matrix
UiT U, + ViTVi, which can be computed efficiently when the rank r is low. After computing these
@;’s for each pair of LoRA weights, we input the U;Q;, V;@Q; into an MLP to compute predictions.
This architecture, denoted by MLP(O-Align([U, V1)), is fully expressive but is invariant only to the
action of the orthogonal group O(r) < GL(r), and does not capture full general linear symmetries.

Singular values as features Similarly to Salama et al. [65], we also consider an LoL architecture
that feeds the singular values of the multiplied-out LoRA weights, o1 (U;V;"), ..., 0,.(U;V;") into
an MLP to compute predictions (though Salama et al. [65] mostly use nearest neighbor predictors
instead of an MLP). Since Uﬂ/tT is rank 7, there are at most r nonzero singular values. This method
is denoted by MLP(o(UV T)). The singular values, and thus the method, are GL-invariant, but
they are not fully expressive. For instance, negating U; does not affect the singular values, but can
completely change the functionality and destroy the performance of the finetuned model.

3.3.2 GL-net: Constructing GL-invariant Models using Equivariant and invariant Layers

A common and effective method for parameterizing invariant neural networks is processing the input
with equivariant layers and then making the final prediction with invariant modules [9, 52, 53, 5].
In this vein, we develop GL-net, which consists of a series of GL-equivariant linear layers and
nonlinearities followed by a GL-invariant head to predict invariant characteristics of the input, as
seen in Figure 2.
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Equivariant linear laygrs }Ve pargme}erize GL-equivariant linear layers Lyincar that map
(Ul,Vl, ey UL, VL) to (Ul, Vl, ey UL,VL) as
Frinear (U1, Vi,...,UL, VL) = (®.U, 01 V1, ..., @.UL, ¥ VL), (5)

where ¥, € R™ %" and v, € R™:X™Mi are learnable LoL model parameters. That is, a GL-
equivariant linear layer consists of left matrix multiplying each U; by a learnable ®,, and left matrix
multiplying each V; by a learnable ¥;. In practice, we choose the same hidden dimension for
every U; and V; for simplicity, so nj = m} = ... = n}, = m/.. It’s easy to verify that Flipear is
GL-equivariant. For instance, if there is only one layer (L = 1), we have

Flinear(R* (U1, V1)) = (81U, R, ¥, ViR™ ") = (4R, ViR ") = R % FLinear (U1, V1), (6)

where (Ul, 171) = Flinear(U1, V1), and R % ([71, f/l) = (UlR, fflR_T) is the action of R on the
LoRA space. In fact, we show a stronger statement — the linear maps defined by (5) constitute all
possible GL-equivariant linear maps. See Appendix A for the proof.

Proposition 3.1. All linear GL-equivariant layers can be written in the form of (5).

Concurrently with our work, [33] develop linear probing models for learning on model finetunes,
including LoRAs. While equivariant, their probing map is less expressive, and does not include
GL-equivariant nonlinearities.

Extension to convolution LoRAs Low rank convolution decompositions are generally represented
as two consecutive convolutions where C'g projects the input down from m to r channels and C'4
projects the input up to n. For our architecture we flatten all dimensions of the convolutions except
the hidden channel dimension, and then we apply equivariant linear layers.

Equivariant non-linearity Equivariant networks often interleave pointwise non-linearities with
linear equivariant layers. Unfortunately, non-trivial pointwise non-linearities are not equivariant to
our symmetry group. A general recipe for designing equivariant non-linearities is taking fequi(x) =
finv(X) - x, for some scalar invariant function fi,, [74, 77, 3]. In our case, given any non-linearity
o : R — R, we define a GL-equivariant non-linearity by
T T

oaL )i = o > wv )i ) Ui, oa(V)i = o > .wv )it ) Vi )
In other words, we scale the ¢-th row of U; by a quantity that depends on the the i-th row sum of
UV'T, and scale the i-th row of V; by a quantity that depends on the i-th column sum of UV . Since
the representation UV T is GL-invariant, oy, is GL-equivariant (see proof in Appendix B). In our
experiments, we often take o(x) = ReLU(sign(z)), which has the effect of zero-ing out entire rows
of U or V in a GL-equivariant way — this is a natural GL-equivariant generalization of ReLU. In
our experiments we tune the number of equivariant linear layers and frequently find that only one is
required, so we often do not use this equivariant non-linearity; nonetheless, it may be necessary in
other applications, such as GL-equivariant tasks.

Invariant head For invariant classifica-
tion tasks, we use an invariant head
which consists of computing the LoRA
matrix products, concatenating them, and
then applying an MLP. Explicitly, this
is given as finy (U1, V1,...,UL, VL) =
MLP(cat[U1 V", ...,ULV;']), where cat
concatenates the entries of the inputs into a ||
flattened vector. For the matrices in the shape w
of the input, computing U, V;" would be ex- —
pensive in both memory and compute. To -
avoid this, we use our equivariant linear lay-
ers to lower the dimension of Uj;, V; to about
32 x 7, such that U;V,T € R32*32 is efficient
to compute — see Figure 2 for an illustration.

Figure 2: GL-net architecture. Blue boxes are equiv-
ariant representations, red boxes are invariant repre-
sentations. Features are processed through equivari-
ant linear maps, GL equivariant nonlinearities, and a
matrix multiplication head with MLP.

) @
3! ; 3!

3.4 Theoretical Analysis

Here, we restate the properties of our models as described in Section 3 and Table 1. All proofs are
provided in the Appendix.
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Theorem 3.2 (Invariance). MLP(UV'T), MLP(c(UV")), and GL-net are GL-Invariant.
MLP(O-Align([U, V1)) is O-Invariant, not GL-Invariant. MLP([U, V) is not GL or O-Invariant.

Theorem 3.3 (Universality). MLP([U, V]), MLP(O-Align([U, V])), MLP(UV ), and GL-net can
arbitrarily approximate any GL-invariant continuous function on a compact set of full rank matrices.

4 Experimental Results

In this section, we present experimental results evaluating our five LoL models across tasks involving
finetuned diffusion and language models (Subsections 4.2- 4.3). Our experiments demonstrate the
efficacy of LoL models in solving GL-invariant tasks on LoRAs. Additionally, we explore these
models’ ability to generalize to LoRAs trained for other models and for LoRAs with previously
unseen ranks, with detailed findings presented in Subsection F.1.

4.1 Datasets of Trained LoRA Weights

Table 2: Summary of LoRA datasets, base models, number of LoRAs, and LoRA rank.

Dataset Name Base Model(s) Total # Lo0RAs LoRA Rank
CelebA-LoRA Stable Diffusion 1.4 4,900 1,2,4,8,16,32
Imagenette-LoRA Stable Diffusion 1.4, 1.5 6,138 4,32
Qwen2-ARC-LoRA Qwen2-1.5B 2,000 4
Llama3.2-ARC-LoRA Llama3.2-3B 2,000 4

We generate four new datasets of LoRAs for varying tasks and base models. Two of these datasets
correspond to finetunes of diffusion models on image datasets, while the other two are finetunes of a
language model on text. Our datasets have diversity in terms of LoRA rank, training hyperparameters
(three datasets have randomly sampled hyperparameters, whereas one has fixed hyperparameters),
and base model architecture.

4.2 Learning on Diffusion Model LoRAs
4.2.1 CLIP Score Prediction

(a) Best Model (b) Worst Model  (c) Best Model (d) Worst Model  (e) Best Model (f) Worst Model

“toy cars" “a volcano" “two wine bottles"

Figure 3: Images generated by diffusion models in the test set. (a), (c), and (e) are images generated
by the model with the highest CLIP score predicted by GL-net. (b), (d), and (f) are outputs of the
model with the lowest CLIP score predicted by GL-net.

CLIP scores were introduced by [30] as an automated method for measuring text-image-alignment in
diffusion models by evaluating the semantic similarity between their prompts and generated images.
Higher CLIP scores generally correspond to better diffusion models, so CLIP score is a useful metric
for evaluating these models. We calculate the CLIP score of each of our 3,900 rank 4 CelebA-LoRA
diffusion models (with 33 fixed prompts) and train LoL models on the task of determining the CLIP
score of a model given its finetuned weights; see Appendix D.1.1 for more details.

The results are shown in Table 7. All of the invariant LoL. models can effectively predict the CLIP
score of diffusion LoRAs using only their decomposed low-rank matrices. The poor performance
of vanilla MLP demonstrates the importance of GL symmetries, whereas the relatively good perfor-
mance of MLP(UV ") suggests “outer" permutation symmetries are less important for LoL models,
confirming two of our hypotheses from Section 2. GL-net is able to calculate CLIP score signifi-
cantly faster than generating images, which requires 660 score-network forward passes per finetuned
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model. Other baselines, including MLP(c(UV 7)), MLP(O-Align([U, V])), and MLP(UV ) are
less predictive. To demonstrate the utility of this task, we generate images from the two models in
our test set predicted by GL-net to have the highest and lowest CLIP scores, respectively. As shown
in Figure 3, GL-net’s predictions are highly correlated with the actual quality of model output.

4.2.2 Training Data Property Prediction

Table 3: Results for using LoL models to predict CelebA attributes (left) and Imagenette classes
(right) of the finetuning data of diffusion models, given only the LoRA weights. The tasks are to
predict (left) 5 different binary attributes of the CelebA celebrity that each LoRA was finetuned on
and (right) which subset of 10 Imagenette classes appeared in each LoRA’s finetuning dataset.

CelebA Attributes Imagenette Classes

LoL Model Test Loss (J) Test Acc (1) TestLoss () Test Acc (1)

v MLP([U,V]) 554 +£.000 724+£0.0 .709+.004 49.6+1.3
g g Transformer([U, V]) 586 +.014 73.2£09  .695+.001 50.0+1.3
= MLP(UVT) .267+£.007 89.1+£04 .264+.011 88.9+0.6
E ’§ MLP(O-Align([U,V])) .333+£.008 87.24+0.5 .278+.008 87.8+0.3
2% MLP(o(UV)) 5094.013  77.3+£1.3  .638+.013  65.6+0.6
= 5 GL-net 232 +.007 91.3+0.1 244 + .005 90.4 + 0.3

Dataset attribute prediction On our CelebA-LoRA dataset, we train LoL. models to classify at-
tributes of the celebrity that each rank 4 LoRA was finetuned on. Due to the noisy nature of CelebA
labels, we follow Lingenfelter et al. [46] and only train and test on the five CelebA attributes they de-
termine to be least noisy. We also train and test LoL models on our Imagenette-LoRA rank 32 dataset
to predict which subset of Imagenette classes each LoRA was finetuned on. Our results are in Table 3.

4.3 Learning on Language Model LoRAs

Table 4: LoL model performance on language models LoRAs. The left column is prediction of which
data sources the input LoORA was finetuned on, the middle column is prediction of the validation loss
for the finetuning task, and the right column is prediction of the LoRA’s accuracy on the ARC-C [§]
test set. All metrics are reported on the LoL task’s test set (on held-out LoRAs). Higher numbers are
better on all metrics. OOM refers to out of memory on a 2080 Ti GPU with 11 GB memory.

Qwen2-ARC-LoRA Llama3.2-ARC-LoRA

LoL Model Data Memb. (Acc) Val Loss (R?) ARC-C Acc (R?) Data Memb. (Acc) Val Loss (R?)
© 2 MLP([U, V]) .516 £ .006 113 4+ .059 107 £+ .035 522 +.008 .091 +.030
'2":' 2 Transformer([U, V]) .515 £ .000 .856 £ .061 .630 = .045 .536 +.003 .828 +.120

= I\’ILP(UVT) .625 +.008 987 +.003 981 +.002 OOM OOM

ZE MLP(O-Align([U,V])) 550+ 016  821=.078  .965=.004 620£.007 562+ .103
‘S 'E I\'ILP(O'(UVT)) .551 £ .001 1999 + .000 1983 +.002 .560 + .008 1998 + .000
E E GL-net .605 £+ .007 1998 + .000 L9987 +.001 .652 + .006 .995 4+ .000

In this section, we experiment with LoL. models on our Qwen2-ARC-LoRA and Llama3.2-ARC
datasets of finetuned language models. For our first task, we consider a type of data membership
inference task: we aim to predict whether each of the 19 data sources was used to train a given
LoRA (this is a 19-1abel binary classification task). We also consider two performance prediction
tasks: we train LoL models to predict, for each LoRA, the validation loss on the finetuning objective,
and the downstream accuracy on the ARC-C test set [8]. Results are in Table 4. Our invariant LoL.
models are very successful at predicting the finetuning validation loss and ARC-C test accuracy of
LoRA-finetuned language models, with some of them achieving .99 R? on finetuning validation loss
regression and over .98 R? on ARC-C test accuracy regression. This could be useful in evaluations of
finetuned models, as standard evaluations of language models can require a lot of time and resources,
whereas our LoL models can evaluate these models with one quick forward pass. However, data
membership inference is a harder task for the LoL. models, with the best model achieving only 65.2%
test accuracy in predicting which data sources were present in the finetuning dataset. Though our
setup is quite different, these results could be related to work showing that model-based membership
inference attacks are challenging for LLMs [14, 11].
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4.4 OOD Generalization: Different Base Models and LoRA Ranks

In the previous sections, we showed that LoL models succeed at various tasks on Stable Diffusion 1.4,
Qwen?2, and Llama3.2 LoRAs, where each LoL model is specialized to one base model and LoRAs
of a fixed rank r. Now, we discuss several experiments that show promising scalability and broad
applicability of LoL models in several senses: generalizing to different base models, processing larger
models, and processing LoRAs of different ranks.

Generalization to different base models from the same family To test LoL. model generalization
across base models, we train LoL models on Stable Diffusion v1.4 (SD1.4) LoRAs and then test
them on SD1.5, and vise versa. SD versions 1.4 and 1.5 were each created by continued training
of SD1.2 for hundreds of thousands of additional steps (according to the model card). Our results
in Table 5 show that, without any further training, LoL models trained on classifying SD1.4 LoRAs
generalize to SD1.5 LoRAs and vice versa, with GL-net’s performance remaining the highest among
all LoL models across all tasks.

Table 5: Results for OOD finetuning dataset membership prediction. LoL Models are trained on
LoRA finetunes of Stable Diffusion v1.4 or v1.5, and then evaluated on finetunes of both versions.

Trained on SD 1.4 Trained on SD 1.5

LoL Model SD14Acc SD15Acc SD1.4Acc SD1.5Acc

2 MLP([U, V]) 50.4+1.0 50.840.7 50.1+04 504+0.8
8 g Transformer([U, V]) 52.8+1.3 523£09 529+12 528+£15
= MLP(UVT) 80.4+0.7 81.2+0.7 7944+13 79.9+1.3

£ £ MLP(O-Align([U,V])) 749+19 733+1.1 722+21 733+15
Eag MLP(G’(UVT)) 60.9+0.7 61.0+0.6 61.1+0.6 60.84+0.7
= .5 GL-net 878+ 04 876+05 87.5+04 885402

Generalization to a different LoRA rank For another type of out of distribution generalization,
in Appendix F.1 we show that LoL models trained on LoRAs of rank 4 can generalize to LoRAs
of ranks between 1 and 32. MLP(UV ") and GL-net both show little to no performance degradation
when tested on different ranks.

4.5 Training on Larger Models

In AppendiX F.2, we show that all LoL. models— Preprocess + Forward Time For 10 Epochs vs. Model Size

except for MLP(UV T )—can process LoRAs of 5 Model

base models up to GPT-3 scale (175B parame- MLP([U, V1)

ters) within practical runtime and memory lim- MLP(UVT)

its. Figure 4 reports the combined preprocessing ¢ > MLP(O — Align([U, VD)

and forward-pass time over 10 epochs for dif- 34| ~* MLPEWYD)

ferent LoL models and base model sizes. All £3 =Gt

models run on a single NVIDIA 2080 Ti GPU 2

(11GB memory). Notably, MLP(U VT) runs 1

out of memory when the base model exceeds 7B 0

parameters. 125M 350M 760M 1.3B 2.7B 6.7B 13B 175B
GPT-3 Size

5 Conclusion Figure 4: Timing comparison for different LoL

models. Each point in the graph represents the
Tn this work, we introduced the Learning on Lo- total time (in minutes) spent on preprocessing and

. forward passes when training a LoL. model on a
RAs (LoL) framework. We developed different .
LoL architectures, established theoretical foun- Fiatgset of 409.6 LoRAs for 10 epochs. The x-axis
dations, and demonstrated LoL’s practical ap- indicates the size of the base model that the LoRAs

plications. A key finding is that GL-invariance " °'© finetuned from, and the y-axis shows the cor-
plays a crucial role in enabling effective learning responding total runtime.

over low-rank weight spaces. There are many potential applications and future directions for using
LoL models to process finetunes of large models. For instance, future work could explore equivariant
tasks, such as those that involve editing or merging LoRAs.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Sections B and 4, we include theoretical proofs, a description of the methods
and experimental setup, and experimental results to support the claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Appendix G, we detail empirical and theoretical limitations of our work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We give the full set of assumptions and proofs for each result in Appendix B.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give high-level experimental setup information in the main paper (Sec-
tion 4), and more detailed information about experiments in the Appendix D.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We have published our code here, but have not yet published the data we use.
We commit to publishing the data once anonymity constraints are no longer relevant.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe high-level experimental setup in Section 4, and fine-grained
experimental details in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We generally do several runs of experiments, and report error bars that measure
the standard deviation in the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include details on compute in F.2 and D.5.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and complied with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we discuss both potential positive and negative societal impacts in
Appendix H.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not train models or use data that have a high risk of misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit code and data used throughout the paper. For other types of models,
we cite papers in which they were introduced.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released our code, which in turn provides source code for generating
the datasets which we use.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects were used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or human subjects were used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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901 16. Declaration of LLLM usage

902 Question: Does the paper describe the usage of LLMs if it is an important, original, or
903 non-standard component of the core methods in this research? Note that if the LLM is used
904 only for writing, editing, or formatting purposes and does not impact the core methodology,
905 scientific rigorousness, or originality of the research, declaration is not required.

906 Answer: [NA]

907 Justification: We did not use LLMs for non-standard purposes.

908 Guidelines:

909 * The answer NA means that the core method development in this research does not
910 involve LLMs as any important, original, or non-standard components.

911 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
912 for what should or should not be described.
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A GL Equivariant Linear Maps Characterization

Here, we characterize the form of GL-equivariant linear maps, and provide the proof of Propo-
sition 3.1. We use basic representation theory techniques, which are similar to the ones used to
characterize equivariant linear maps in the geometric deep learning literature [52, 23, 57].

A.1 Proof of Proposition 3.1

First, we prove a lemma, that allows us to analyze equivariant linear maps between direct sums of
spaces in terms of a direct sum of equivariant linear maps between the constituent spaces. For a group
G, we denote the vector space of G-equivariant linear maps from V to YW by Home (V, W). This
is closely related to a result from Navon et al. [58] that characterizes the matrices underlying linear
maps between direct sums.

Lemma A.1. Let G be a group and let V1, ..., V,, Wi, ..., Wy, be G-representations. If V =
Vid---BV,and W =W, D --- D W, are direct sums of representations then

Homg (V, W) 2 @5 Home (V;, Wj). 8)

4,9

Proof. We construct an explicit isomorphism F' : Homg(V, W) — @, ; Homg(V;, W;). Let
inc; : V; — V denote the inclusion of V; in V, and proj it W — W; denote the projection from W
to Wj. For ¢ € Homg(V, W), define:

F(¢) = (proj; o ¢ oinc;); ; )
Fis clearly linear, being defined by composition of linear maps. Moreover, since ¢, inc;, and proj

are all G-equivariant, their composition ¢; ; = proj, o ¢ o inc; is also G-equivariant. To prove
injectivity, suppose F'(¢) = F'(v) for some ¢, € Homg(V, W). Then Vv = (vy,...,v,) € V

¢(v) = (proji (¢(v)), - - -, proj,, (#(v)))

= (Z proj; (¢(inc; (v;)) Zpro]m (inc; Uz))))
= (Z projl( ¥ (inc;(v;)) ZproJm 1nci(vi))>>

= (v).
For surjectivity, given (¢;;)i,; € @, ; Homg (Vi, W;), define ¢ : V — W by

¢(U17"'7 (Z(bzl Uz qu)zm (% ) . (10)

¢ is linear by construction; to show G-equivariance, let g € G and (vy,...,v,) €V

d(g-(v1y...,0n)) =d(g-v1,...,9 V)

<Z¢z19 Uz Zd)zmg Uz)
(Zg (z)zl 'Uz Zg ¢zm Uz)

:g'¢(vl7"'a n)a
where we use the G-equivariance of each ¢; ;. Thus, ¢ € Homg(V, W), and by construction
F(¢) = (¢4,j)i,j- Therefore, F is a linear bijection. O

Proof of Proposition 3.1. LetT := (Uy®V;)®---BUL®VE)and O == U BV - - UL OV])
be the input and output spaces of an equivariant LoL model. Denote dim(lf;) = n; - r, dim(V}) =
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w7 7 - my, dim(U;) = n} - r, dim(V¥) = r-m)}, and G := GL(r)* = GL(r) x --- x GL(r). We
938 are interested in characterizing the vector space of G-equivariant linear maps, which we denote by
89 Homg(Z, ©). In the main text we show that the maps Fiol- V2 ¥L defined by

Linear
Faa P ¥ (U, Vi, U, Vi) = (81U, 0 VA, @pUL, WL V) (1)
940 are all G-equivariant. In other words, we showed that
L= {FRS P | @, e R, W, € ™ML C Homgl(Z,0). (12)

o . . L L .
o4t L is a linear subspace of dimension ) ;. , n;n, + > ;. m;m}, so in order to prove that £L =

92 Homg(Z, 0), it’s enough to show that dim(Homg(Z, 0)) = 25:1 n;n; + Zle m;m}. Since
943 and O are direct sums of representations, Lemma A.1 implies that the dimension of Homg (Z, O) is
944 the sum of the dimensions of the constituents:

dim(Homg(Z, O)) Z Z (dlm (Homg (uz,u )) + dim (HomG U, f/z*/)) +

i=1i'=1 (13)
dim (Homg(Vq*, 1 )) + dim (Homg (v; ,Vf)))
945 Next, note that Uf;, V7, Z;{l and f/z* all decompose into irreducible representations
U =Pul, vi =P u=Pul. vi =P, (14)
j=1 j=1 j=1 j=1

946 each of which is isomorphic to the standard representation of the i-th copy of GL(r) on either R”
o7 (ford? and U7) or (R™)* (for (V/)* and (V/)*). We can think of 24/ as the space spanned by the j-th

948 row in the input U; matrix and (VZ )* as the space spanned by the j-th column of the input V" matrix.
949 This decomposition gives us

n;

dim (Homg U;, Uy ) Z Z dim (Homg )) )

Jlj’l

Z Z dim (HomG )*)) ,
7j=1 jlfl
dim

dim (Homg U, V3)
15)

) -
dim (Homg(Vi*,Z:{i/)) Homg (( Uj ))

dim (Homg Vi, V) ) Z Z dim (Homg (VI (f)f;)*)) :
j=15'=1
950 Since these are all irreducible representations, Schur’s lemma [24] implies that the dimension of the
951 space of G-equivariant maps is either 1 (if the representations are isomorphic) or 0 (if they are not).
952 Notice that,

953 . Z/lij and Z;lf,/ are isomorphic as G-representations if and only if ¢ = ¢/ (if ¢ # ¢’ different
954 copies of GL(r) act on U and U7, ).

955 « (V/)* and (f/f,/)* are isomorphic as G-representations if and only if ¢ = i’ (if ¢ # ¢’ different
956 copies of GL(r) act on (V/)* and (VJ, )*).

957 * U/ is never isomorphic to (f/f,/)* and (Vf )* is never isomorphic to Z;{ZJ,I
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Therefore, together with Equation 13 and Equation 15 we get

L L
dim (HOIIIG(I, O)) = Z Z (nmgl o P mim;, . 1i:i’)

i=14'=1

L L

/ /

= E nin; + g m;m;
i=1 i=1

concluding the proof. O

(16)

B Proof of Invariances: Theorem 3.2

We prove invariance (or lack thereof) of each model one by one. For this section, consider
arbitrary inputs UV = (U1, V4,...,UL,V)), where U; € R™*" and V; x R™*". Further,
choose invertible R = (Ry,...,R;) € GL(r)E. Denote the application of R on UV by
R+xUV = (U1 Ry, VlRfT7 ...,ULRy, VLRZT) To show that a function f is GL invariant, we will
show that f(R+UV) = f(UV). Note that, since O(r) C GL(r), if we show that a function is
GL-invariant, then it is also O-invariant.

MLP([U, V]). We will show that the simple MLP is neither O-invariant or GL-invariant. It suffices
to show that it is not O-invariant. As a simple example, let MLP(U, V') = Uj ; output the top-left
entry of U. Then let U be a matrix with 1 in the top-left corner and 0 elsewhere. Further, let P be the
permutation matrix that swaps the first and second entries of its input. Then MLP(UP,V P) = 0 #
MLP(U, V) = 1. As permutation matrices are orthogonal, P € O(r), so the MLP([U, V]) is indeed
not O(r) invariant.

MLP(O-Align([U, V])). We will show that the O-alignment approach is O-invariant on all but a
Lebesgue-measure-zero set. For simplicity, let L = 1, U € R"*",and V € R™*". Let U € R"*"
and V € R™*" be the template matrices, which we assume are full rank (the full rank matrices
are a Lebesgue-dense set, so this is an allowed assumption). Recall that we canonicalize U, V' as

p(U, V) =(UQ,VQ), where:

Q = argmin [[UQ — U7 + [VQ — V|7 (17)
QeO(r)
We call any solution to this problem a canonicalizing matrix for (U, V). This can be equivalently

written as )

() = argmin (18)

U U
QeO(r) {V}Q {V] F

Let M = U U + V TV. Then a global minimum of this problem is Q = ABT, where AXBT is an
SVD of M. If M has distinct singular values, then A and B are unique up to sign flips, and ABT is
in fact unique. Thus, if M has unique singular values, (UQ, V@) is unique. We assume from here
that M has distinct singular values, as the set of all M that do form a Lebesgue-dense subset of R"*"
(and thus this is satisfies for Lebesgue-almost-every U and V).

Now, to show O-invariance, let Q € O(r). We will show that p(UQ,V Q) = p(U, V).
arg min

vQl,, Ul _ . . [U] ,_[U}
Qeo(r) [VQ] © {V} e aeom IV Vv

because the orthogonal matrices are closed under multiplication. Thus, if ) is a canonicalizing
matrix for (U, V), then Q' Q is a canonicalizing matrix for (UQ, V Q). Moreover, we have that
Q'UTU+QTVTV = QT M, so this has the same singular values as M (as orthogonal matrices
don’t affect singular values); this means that the singular values are distinct, so there is a unique
canonicalizing matrix for (U Q, VQ) This means that the canonicalization matrix must be equal to
QT Q, so that

2
(19)

F

p(UQ,VQ) =UQQRTQ,VQQR'Q) = (UQ,VQ) = p(U,V). (20)

As this argument holds for Lebesgue-almost-every U and V, we have shown O-invariance of
MLP(O-Align([U, V1])).
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Finally, we have to show that this LoL. model is not GL-invariant. To do this, let the MLP approximate
the Frobenius norm function on its first input, so MLP (U, V') ~ ||U||. Consider any U that is nonzero,
and let @ > 2 be a scalar. Then al € GL(r). Also, we have that p(U, V) = (UQ, V Q) for some
Q@ € O(r), so this canonicalization does not affect the Frobenius norm of the first entry. Thus, we
have that

MLP(p(U,V)) = |U[| # a U] = MLP(p(aU, (1/a)V)). 21

So MLP(O-Align([U, V1)) is not invariant under GL.
MLP(a(UV T)). We show this is GL-invariant. The output of this model f on UV can be written as

MLP (o1 (U1}, ..., o (VL) .. o (ULV) ), .o o (ULV]). (22)
Where o;(U;V;") is the jth singular value of U;V;". Thus, we can compute that:
f(RxUV) =MLP(oy (U RiR{*'V}"), ..., 0. (ULRLR;'V,)) (23)
= MLP (o1 (U1 V}), ..., 0.(ULV;)) (24)
= f(UV). (25)

MLP(UV ). We show this is GL-invariant. We can simply see that

MLP(R UV) = MLP(U, R\ R 'V, ..., U,RLR;'V;") (26)
=MLP(U,V;',..., U V}) (27)
= MLP(UV). (28)

GL-net. We show this is GL-invariant. First, assume that the equivariant linear layers are GL-
equivariant, and the equivariant nonlinearities are GL-equivariant. Note that the invariant head of
GL-net is a special case of MLP(UV ), which we have already proven to be invariant. Further, an
invariant function composed with an equivariant function is invariant, so we are done.

We only need to prove that the nonlinearities are GL-equivariant, because we have already proven
that the equivariant linear layers are GL-equivariant in the main text. Let o : R — R be any real
function, and recall that the GL-equivariant nonlinearity takes the following form on U € R™*",
Ve Rm*T:

oaL(UV) = (U, V), U= O(Zj(UVT)ij)Ui7 Vi=o( S 0V @)

J
where U € R7XT, Ve R™>*"_and for example U; € R" denotes the ith row of U;.
Lemma B.1. For any real function o : R — R, the function ogy, defined in (29) is GL equivariant.

Proof. LetU € R"*", V € R™*" and R € GL(r) be arbitrary. Denote the output of the nonlinear-
ity on the transformed weights as o, (UR, VR~ ") = (U, V(). Then we have that

g = U(Z(URR*VT)U)RTUi —RT O’(Z(UVT)i]‘)Ui —R'U; (30)

J J

VI = (SRR ) R W= R |o( S0V )il =R Wi 6D

J J
In matrix form, this means that ﬁi(R) = 0,-R and IN/Z.(R) = ViR’T. In other words,

ocL(UR,VR™) = R« ocL(U, V), (32)

which is the definition of GL-equivariance, so we are done. O
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C Proof of Expressivity: Theorem 3.3

In this section we formally restate and prove Theorem 3.3. We start by defining full rank GL-
universality for LoL models.

Definition C.1 (Full rank GL-universality). Let D = {(U1,V4,..., UL, V) | U; € R™*"V; €
R™i, rank(U;) = rank(V;) = r} be the set of LoRA updates of full rank. A LoL architecture is
called full rank GL-universal if for every GL-invariant function f : D — R, every € > 0, and every
compact set K C D, there is a model f-° of said architecture that approximates f on K up to €:

sup |fLU(X) - f(X)| <e (33)
XeK

Note that the set D of full-rank LoRA updates is Lebesgue-dense (its compliment has measure 0).

Theorem C.2 (Formal restatement of Theorem 3.3). The MLP, MLP(O-Align([U, V1)),
MLP(U VT), and GL-net LoL architectures are all full rank GL universal.

The universality of MLP and MLP(O-Align([U, V1)) models follows from the universal approxi-
mation theorem for MLPs [32]. To prove Theorem C.2 for MLP(UV T) and GL-net we use the
following result from Dym and Gortler [16].

Proposition C.3 (Proposition 1.3 from Dym and Gortler [16]). Let M be a topological space, and G
a group which acts on M. Let K C M be a compact set, and let f'™ : M — R be a continuous
G-invariant map that separates orbits. Then for every continuous invariant function f : M — R
there exists some continuous f&"'a! : RN — R such that f(x) = feereral( finv(g)), Vo € K.

In order to use the proposition above for MLP(UV T) LoL models, we need to show that multiplying
out the LoRA updates separates GL orbits.

Lemma C.4. The function
U, LU V) = (VL UV,
separates GL-orbits in D. That is, if (U1, Vi,..., UL, Vi) and (U7, V{,...,U;,V]) are in different
G-orbits then f™\(Uy, Vi,... UL, Vp) # foNUL VY, ... UL V).
Proof. We prove the contrapositive. Let (U1, V4,...,Ur, V) and (U7, V{,...,U;,V]) be LoORA
updates such that f™(Uy, Vi, ..., UL, Vi) = @40, V/,..., U}, V}),ie Vie {1,...,L}
uiv;t = Ui (34

Since U;, Vi, U/, and V/ are of rank r, their corresponding Gram matrices UiT U;, ViTVi,
U!TU!,V/TV! € R™", are also of rank r and are thus invertible. Multiplying both sides of
Equation 34 by V;(V,TV;)~! from the right, we get

UV Vv T =Ul v TV (VT V) ! (35)
\—,_/
R;

Substituting U/ R; back to Equation 34 we get
URV;" =UV]".
Multiplying by (U!TU!)~1U!" from the left gives
(UUS= o URY, = (U U= o v T

Therefore, to prove (U1, V1, ...,Ur, V) and (U, VY{, ..., UL, V) are in the same orbit all we need
to do is show that R; € GL(r). To do so it’s enough to show that V; T V; is invertible. And indeed,
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starting from Equation34

Ui‘/iT — UZ{‘/;/T
(Multiply both sides by (U;r Ui)flUiT from the left)
(AR VAR VA AR (VAR 0 e AN A A
(Simplify left side: (U; U;) ™ U, U; = I)

VAR CANAR AN IATY (36)
(Multiply both sides by V; from the right)

VIV = (U7 U U U
(Multiply both sides by (ViT Vi)*1 from the left)

I= V"V YU U) U UV TV

Therefore, Ry, ..., R, € GL(r), U; = U/R,and V; = V/R; ", implying that (U3, V4, ..., UL, Vi)
and (U7, V{,...,U;,V}]) are in the same G-orbit. O

We are now ready to prove Theorem C.2.

Proof of theorem C.2. Let f : D — R be a continuous GL-invariant function, let X C D be a
compact set and fix € > 0.

1. MLP. Since K is compact and f is continuous, universality follows from the universal

approximation theorem for MLPs [32].

. MLP(O-Align([U, V])). Let f2!ie" be the O-canonicalization function. f21 is continuous

so falien( K) is compact. and let fM™F be an MLP that approximates f up-to € on f2ie?(K),

sup | MU (X)) — f(X)] = sup [FMEP(fEN(X) - f(F1EN(X)
XeK XeK
= swp M) - f(Y)l<e
Yefalign(K)

The first equality holds since f is GL-invariant, and in particular O-invariant.

. MLP(UV'T). From Lemma C.4 we know that f™"! separates orbits. It’s additionally clear

that ™! is continuous and G-invariant. Therefore, using Proposition C.3 there exists a
function feereral . RN 5 R such that f = feeneral o fmul on K. Since f™"! is continuous,
f™u(K) is also compact and we can use the universal approximation theorem of MLPs for
feenral on fmul(K7) Therefore, there exists an MLP fMEP such that

sup | (X)) = f(X)] = sup [FMEP(F(X) — prenerl(Fm(X)|
XeK XeK

= sup  |MIP(Y) - prrenl(y)| < e
Yefmul(K)

(37

. GL-net. Since we proved MLP(UV ") is universal, it’s enough to show that GL-net can

implement MLP(UV ). If we take a GL-net with no equivariant layers (or equivalently a
single equivariant layer that implements the identity by setting ®; = I,,,, ¥; = I,,,,) and
apply the invariant head directly to the input, the resulting model is exactly MLP(UV ).

O
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D Experimental Details

D.1 Diffusion Model LoRA Datasets

CelebA-LoRA We train a dataset of 3,900 LoRA finetuned Stable Diffusion 1.4 models [63] using
the PEFT library [51]. Each LoRA is rank 4, and is finetuned via DreamBooth personalization [64]
on 21 images of a given celebrity in the CelebA dataset [48]. Further, each LoRA is trained with
randomly sampled hyperparameters (gradient accumulation steps, train steps, learning rate, prompt)
and initialization.

Imagenette-LoRA We also use Dreambooth to finetune another 2,046 Stable Diffusion 1.4 models
and 2,046 Stable Diffusion 1.5 models with LoRA rank 4 on different subsets of the Imagenette
dataset [34] — a subset of ImageNet [12] consisting of images from ten dissimilar classes. Un-
like CelebA LoRA, we use the same training hyperparameters for each finetuning run (but vary
initialization, random seed, and finetuning dataset). We also finetune 2,046 SD1.4 rank 32 LoRAs.

Qwen2-ARC-LoRA and Llama3.2-ARC-LoRA We create two datasets totalling 4,000 language
model LoRAs by finetuning Qwen2-1.5B [79] and Llama3.2-3B [15] on subsets of the training
set of the commonly used ARC dataset [8], which is a dataset for testing question answering and
science knowledge. The ARC dataset consists of questions from many data sources. For each LoRA,
we randomly sample a subset of 19 data sources, and omit data from the unsampled data sources.
Also, each LoRA is randomly initialized and trained with randomly sampled hyperparameters. See
Appendix D.2 for more details.

D.1.1 CelebA Finetuning

Table 6: Hyperparameter distributions for the 3,900 different LoRA diffusion model finetunes we
trained. U(S) denotes the uniform distribution over a set S.

Hyperparameter Distribution
Learning rate U({107%,3-1074,1073,3-1073})

Train Steps U({100, 133,167,200})

Batch Size U({1,2})

Prompt U ({“Celebrity", “Person", “thing", “skd"})
Rank 4

We finetune 3,900 models on various celebrities in the CelebA dataset [48] using the DreamBooth
personalization method [64]. Each LoRA is personalized to one celebrity by finetuning on 21
images of that celebrity. Every LoRA is trained starting from a different random initialization, with
hyperparameters randomly sampled from reasonable distributions — see Table 6 for the distributions.

CLIP score prediction. For CLIP score prediction, we use the following prompts, the first thirty
of which are from PartiPrompts Yu et al. [80], and the last three of which are written to include
words relevant to prompts the models are finetuned on. We use a fixed random seed of 42 for image
generation. For predicting CLIP scores, GL-net takes the mean of each matrix product U;V;" in the
invariant head. This is equivalent to using an equivariant hidden dimension of 1.

1. ‘ared sphere on top of a yellow box’,

2. ‘a chimpanzee sitting on a wooden bench’,

3. ‘a clock tower’,

4. ‘toy cars’,

5. ‘a white rabbit in blue jogging clothes doubled over in pain while a turtle wearing
ared tank top dashes confidently through the finish line’,

6. ‘a train going to the moon’,

7. ‘Four cats surrounding a dog’,

8. ‘the Eiffel Tower in a desert’,

9. ‘The Millennium Wheel next to the Statue of Liberty. The Sagrada Familia
church is also visible.’,
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10. ‘A punk rock squirrel in a studded leather jacket shouting into a microphone
while standing on a stump and holding a beer on dark stage.’,

11. “The Statue of Liberty surrounded by helicopters’,

12. “A television made of water that displays an image of a cityscape at night.’,
13. ‘a family on a road trip’,

14. ‘the mona lisa wearing a cowboy hat and screaming a punk song into a
microphone’,

15. ‘a family of four posing at Mount Rushmore’,

16. ‘force’,

17. ‘an oil surrealist painting of a dreamworld on a seashore where clocks and
watches appear to be inexplicably limp and melting in the desolate landscape. a
table on the left, with a golden watch swarmed by ants. a strange fleshy creature in
the center of the painting’,

18. ‘Downtown Austin at sunrise. detailed ink wash.’,

19. ‘A helicopter flies over Yosemite.’,

20. ‘A giraffe walking through a green grass covered field’,

21. ‘acorgi’s head’,

22. ‘portrait of a well-dressed raccoon, oil painting in the style of Rembrandt’,
23. ‘a volcano’,

24. ‘happiness’,

25. ‘the words ’KEEP OFF THE GRASS’ on a black sticker’,

26. ‘A heart made of wood’,

27. ‘a pixel art corgi pizza’,

28. ‘two wine bottles’,

29. ‘A funny Rube Goldberg machine made out of metal’,

30. ‘a horned owl with a graduation cap and diploma’,

31. ‘A celebrity in a park’,

32. ‘A person on the beach’,

33. ‘A thing in a city’

Table 7: We report train and test mean squared error (MSE) for predicting normalized CLIP score of
CelebA-LoRA models. We also show test Kendall’s 7 and R? coefficients. GL-net has significantly
lower test MSE than any other LoLL model, whereas a standard MLP does no better than random
guessing. Transformers, MLPs with O-Align, SVD, or Dense featurization all perform similarly.

LoL Model Train MSE  Test MSE (]) () RZ ()
o2 MLP([U,V]) .047+.004 988 £.005 .226+£.016 .333 +.022
§§ Transformer([U, V]) .027£.005 .1584+.013  .671+£.003 .872 4 .002

MLP(UVT) .013+£.002 .169£.011  .677+£.006 .8714.005
£z MLP(O-Align([U,V])) .001£.001 .175£.006 .654+.004 .856%.004
&5 MLP(a(UVT)) 071 £.003 .148£.005  .667 £.008  .863 £ .006
=2 GL-net .009£.001 .1114+.004 .695+.005 .884+.003

CelebA Attribute Prediction. As mentioned in Section 4.2.2, we only predict the five least noisy
CelebA attributes, as measured by Lingenfelter et al. [46]. Recall that each LoRA in CelebA-LoRA
is trained on 21 images of a given celebrity. The attribute labels can vary across these 21 images, so
we say the ground truth attribute label of the LoRA is the majority label across these 21 images.

D.1.2 ImageNette Finetuning

For Imagenette [34], we finetune 3 x 2,046 models. In particular, for each nonempty subset of the 10
Imagenette classes, we finetune 6 models using 1 image from each present class. Two are rank-32
finetunes on Stable Diffusion V1.4, two are rank-4 finetunes on Stable Diffusion V1.4, and two are
rank-4 finetunes of Stable Diffusion V1.5. We use rank 32 in part so that we can test how well LoL
models perform on larger ranks than the other experiments.
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Table 8: Hyperparameters for the dataset of 2,046 different LoRA diffusion model finetunes we
trained on Imagenette (Imagenette-LoRA).

Hyperparameter  Value

Learning rate 3-1074
Train Steps 150

Batch Size 1

Prompt sks_photo
Rank 4,32

D.2 Language Model LoRA Dataset

Here, we describe the details of our Qwen2-ARC-LoRA and Llama3.2-ARC-LoRA datasets of
trained language model LoRAs.

For training data, we use the ARC training set [8], using both the easy and challenge splits. First, we
hold out a fixed validation set sampled from this set to compute the validation loss on. Each training
data point originates from one of 20 sources (e.g. some questions come from Ohio Achievement
Tests, and some come from the Virginia Standards of Learning). For each LoRA finetuning run,
we sample a random subset of these sources to use as training data (except we do not ever omit the
Mercury source, which contains many more data points than the other sources). To do this, we sample
arandom integer in s € [1, 19], then choose a random size-s subset of the 19 possibly-filtered sources
to drop.

Table 9: Hyperparameter distributions for the 2,000 different LoRA language model finetunes we
trained (Qwen2-ARC-LoRA and Llama3.2-ARC-LoRA). U(S) denotes the uniform distribution over
aset.S.

Hyperparameter  Distribution

Learning rate 10V ([=5.=3)
Weight decay 10V([=6:-2)
Epochs U({2,3,4})
Batch Size {32,64,128})

U(
LoRA Dropout  U(][0,.1])
Filtered sources U (sources)

For each LoRA finetuning run, we sample random hyperparameters: learning rate, weight decay,
number of epochs, batch size, LoRA dropout, and the data sources to filter. The distributions from
which we sample are shown in Table 9, and were chosen to give reasonable but varied performance
across different runs. All trained LoRAs were of rank 4, and we only applied LoRA to tune the key
and value projection matrices of each language model.

D.3 Language Model LoRA Experiments

Here, we provide further details on the LLM experiments in Section 4.3. For each dataset and LoL
model, we train for one run with each of the learning rates 5 - 107°,1074,5-1074,1073,5 - 1073,
Then for the data membership task we choose the learning rate of highest validation accuracy, and for
the validation loss and ARC-C regression tasks we choose the learning rate of highest validation R2.
With this optimal learning rate, we conduct 3 training runs, and report the mean and one standard
deviation in Section 4.3. For the regression tasks, we train with an MSE loss, and for the data
membership task we train with a cross entropy loss. For each dataset, we train on 80% of the data,
validate on 10% of the data, and test on 10%. We use the AdamW optimizer [49] with weight decay
of 1072, and evaluate the test performance on the checkpoint with lowest validation loss.

30



1174

1175
1176
1177
1178
1179
1180

1181
1182
1183
1184
1185

1186
1187
1188
1189
1190
1191
1192
1193

1194
1195
1196
1197
1198
1199

1200
1201
1202
1203

1204
1205
1206

1207
1208

1209
1210
1211

D.4 Dataset size prediction

Dataset size prediction. The task of predicting the size of the finetuning dataset given LoRA weights
was first studied recently by Salama et al. [65]. The success of this task implies a privacy leak,
since model developers may sometimes wish to keep the size of their finetuning dataset private.
Moreover, the dataset size is a useful quantity to know for data membership inference attacks and
model inversion attacks, so accurately predicting dataset size could improve effectiveness of these
attacks too [73, 26].

Table 10: Results for finetuning dataset size prediction with LoL. models. We use our Imagenette-
LoRA dataset, and predict the number of classes (or equivalently images) that are used to finetune
each model.

LoL Model Train Loss Test Acc

MLP 547 +£.026 25.9+0.6
MLP(O-Align([U,V])) .020£.001 33.7+1.5
MLP(a(UVT)) 153 +.013 588 +2.7
MLP(UVT) 547 +.099  39.0+44
GL-net .011 £.002 44.3+3.3

In Table 10, we show results for finetuning-dataset-size prediction using LoL models. The task is
to take the LoRA weights of one of the diffusion models from our Imagenette-LoRA dataset, and
predict the number of unique images that it was finetuned on. Although it struggles on some other
tasks, we see that MLP(o(UV 7)) is able to effectively predict dataset size, in line with observations
from Salama et al. [65].

Other LoL models struggle to generalize well on this task. Interestingly, GL-net performs approxi-
mately as well as expected if using the following strategy: first predict which classes are present in
the finetuning set of the LoRA (as in Table 5), and then sum the number of classes present to predict
the dataset size. MLP+SVD is clearly using different predictive strategies for this task, as it cannot
predict which individual classes are present (Table 5), but it can predict the number of classes present.
See Appendix D.4 for more analysis on the learned prediction strategies of the LoL models on this
task. Here we describe theoretical and experimental details relating to the implicit strategies that
GL-net and MLP(a(UV 7)) may employ in dataset size prediction as in Table 10.

Suppose that a model f.),ss trained to predict Imagenette class presence of LoRAs (as in Table 5)
has test accuracy p, while each of the 10 classes is present with probability .5. For LoRA weights
Z, felass(x); = 1 if the model predicts that class ¢ is in the finetuning dataset of x. Define the
corresponding dataset-size prediction model fgi,o(x) = Z;il felass(z); That is, fsie predicts
whether each class is in the dataset, sums up these predictions, and then outputs the sum as the
expected dataset size.

Assuming f.1.s5 is equally likely to provide false-negative or false-positive predictions for each class,
each of its 10 outputs has probability 1 — p of being incorrect. Consider an input LoRA x with a
dataset size s. Then fg,e(x) = 91 + 92 + - . . §10, Where §; is equal to y; with probability p, and
1 — y; with probability 1 — p. So,
fsize(@) =5 = Hilyi=1A0 =0} =[{i|yi =0A7 =1} (38)
The cardinality of the left set is distributed as binom(s, 1 — p), while the cardinality of the right set is
distributed as binom(10 — s, 1 — p). So, P(fsize(z) = s|s) = P(B1 = B2), for /1 ~ binom(s, 1 —p)
and 2 ~ binom(10 — s,1 — p). Thus,
10

Py, s)~data(fsize(T) = 8) = Z[IP’ (binom(n, 1 — p) = binom(10 — n,1 —p) | n) - P(n)] (39)
n=0

Table 5 shows that for GL-net, f.ass 1S correct with probability p = .878. So, we have 1 — p = .122.
On the otherhand, for rank-32 data membership on Imagenette, GL-net is correct with p = .904.

Using a Python script to evaluate (39), we find that the probability that f;,e () is correct is 39.9% in
the rank 4 case, which is near the observed probability of 44.3%. In the rank 32 case, the theoretical
accuracy is 46.1%, which almost exactly matches the observed probability of 46.8%.
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We further test our hypothesis empirically by training GL-net on Imagenette-32 class prediction (as
in Table ??) and then summing up its class predictions to predict dataset size. On the Imagenette
size-prediction test set, GL-net with this sum strategy achieves an accuracy of 43.5 & 2.1%. This
means GL-net is likely learning a function with underlying mechanism similar to fsi,., where it
predicts the presence of each class and then sums those predictions to output the total dataset size.

On the other hand, MLP(c(UV 1)) correctly predicts class presence in Imagenette-4 with probability
p = .61. Predicting classes and summing up its individual predictions would give MLP(a(UV 7)) a
theoretical accuracy of 20% by equation 39, which is significantly worse than its true performance of
58.8%. This suggests that MLP(o(UV 7)) likely uses higher level characteristics than class presence
to determine dataset size.

D.5 Compute Used

We used a total of 144 NVIDIA 3090 (24GB memory) hours to generate diffusion LoRA datasets,
and 832 NVIDIA 2080 (11GB memory) hours to generate language LoRA finetunes. Per-dataset
compute is listed below. Most other uses of compute, including training and hyperparameter tuning
LoL models were negligible and account for < 48 GPU hours.

Dataset Name Training Time GPU Used
CelebA-LoRA ~48 hrs NVIDIA 3090
CelebA-LoRA (Compute CLIP scores) ~48 hrs NVIDIA 3090
Imagenette-LoRA ~72 hrs NVIDIA 3090
Qwen2-ARC-LoRA ~384 hrs NVIDIA 2080 Ti
Llama3.2-ARC-LoRA ~448 hrs NVIDIA 2080 Ti

Table 11: Type of GPU and number of GPU hours to generate each dataset.

E LoRA Variants and Their Symmetries

In this section, we describe various LoRA variants that have been proposed for parameter-efficient
finetuning. We also discuss their symmetries, and how one may process these LoRA variants with
LoL models.

Training Modifications. Several LoRA variants such as PiSSA [55] and LoRA+ [29] have the
same type of weight decomposition as the original LoRA, but with different initialization or training
algorithms. These variants have the same exact symmetries as standard LoRA, so they can be
processed in exactly the same way with our LoL models.

DoRA (Weight-Decomposed Low-Rank Adaptation). Liu et al. [47] decompose the parameter
updates into magnitude and directional components. For base weights W € R™*™ DoRA finetuning
learns the standard low rank weights U € R"*" and V' € R™*" along with a magnitude vector
m € R so that the new finetuned weights are given by

W+ UV )Diag [ ——2> 40
W )lag<||W+UVT||C)’ (40

where |-/ : R"*™ — R™ is the norm of each column of the input matrix, the division W
is taken elementwise, and Diag takes vectors in R™ to diagonal matrices in R™*™ . The vector m
represents the norm of each column of the finetuned matrix. DoRA weights (U, V, m) also have
the same invertible matrix symmetry as standard LoRA, where (UR, VR~ T, m) is functionally
equivalent to (U, V, m). The m vector cannot in general be changed without affecting the function.
Thus, an LoL. model could take as input m as an invariant feature, for instance by concatenating it to
features in an invariant head of GL-net, or concatenating it to the input of an MLP in the other LoL
models.

KronA (Kronecker Adapter). Edalati et al. [19] use a Kronecker product structure to decompose
the learned weight matrix in a parameter-efficient way. For a weight matrix W of shape n x m, LoKr

learns U € R *™" |V € R""*™" guch that the finetuned weight is given by W + U @ V. Here,
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we no longer have a large general linear symmetry group. Instead, there is a scale symmetry, where
(U, V) is equivalent to (sU, 1 V') for a scalar s € R\ {0}, since (sU) ® (V) = U ® V. For LoL
tasks, we can use a scale-invariant architecture, as for instance explored by Kalogeropoulos et al.

[38]. We can also use GL-net on the flattened vec(U) € R™™ %1 and vec(V) € R ™" %1 since
R\ {0} = GL(1) is the general linear symmetry group in the special case of rank r = 1.

F More Experiments
F.1 Generalization to Unseen Ranks

Test Accuracy Across Ranks

901
857 ﬁ’M
B Rank MLP+SVD  MLP+Dense GL-net
® i
=% GL:Net | 714403 424402 418+ .01
275 —®— MLP* Dense 2 1.01+£.06 .357+£.02 .335+.01
% MLP +SVD 4 5T1+.02  369+.02 .323+.01
= 70 8 .604+.04 .349+.02 324+ .01
16 .700+.07  .343+.02 .317+.01
65 32 .789+.01  .328+.01 284+ .01
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Figure 5: Performance of LoL. models across inputs of varying ranks. Each model is only trained
on rank 4 LoRA weights from CelebA-LoRAs. (Left) Test accuracy on CelebA attribute predic-
tion. (Right) Test loss on CelebA attribute prediction. MLP(UV ") and GL-net generalize well
to ranks that are unseen during training, but do face degradation at rank one. On the other hand,
MLP(o(UV 1)) does not generalize well.

In Section each LoL model was trained on LoRA weights of one fixed rank (r = 4). In practice,
model developers can choose different LoRA ranks for finetuning their models, even when they are
finetuning the same base model for similar tasks. Thus, we may desire LoL models that are effective
for inputs of different ranks. In this section, we explore an even more difficult problem — whether
LoL models can generalize to ranks that are unseen during training time.

The MLP(UV ") and GL-net models can directly take as input models of different ranks. We also
use MLP(a(UV ")) on inputs of different ranks, by parameterizing the model for inputs of rank r,
then truncating to top r singular values for inputs of rank greater than r, and zero-padding to length r
for inputs of rank less than r.

In Figure we train LoL models on inputs of rank 4, and then test performance on inputs of ranks
between I and 32. On the CelebA attribute prediction task, we see that MLP(UV ") and GL-net
mostly generalize very well to different ranks that are unseen during training (though not as well for
r = 1), while MLP(a(UV ")) does not generalize as well.

F.2 Runtime and Scaling to Large Models

Previous weight-space models generally take in small networks as inputs, e.g. 5,000 parameters [76],
80,000 parameters [43], or sometimes up to 4 million parameters [58]. However, many of the most
impactful neural networks have orders of magnitude more parameters. Thus, here we consider the
runtime and scalability of LoL models as we increase the model size. We will consider all of the
language model sizes in the GPT-3 family |6]], which range from 125M to 175B parameters. We
assume that we finetune rank 4 LoRA weights for one attention parameter matrix for each layer.

In Figure @ we show the time it takes for data preprocessing of 64 input networks, and forward
passes for 512 input networks (with batch size up to 64). Even at the largest scales, it only takes at
most seconds to preprocess and compute LoL model forward passes for each input LoRA. Every LoL.
model besides MLP(UV ) scales well with the model size: forward passes barely take longer at
larger model sizes, and data preprocessing is still limited to less than a second per input network.
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Figure 6: (Left) data preprocessing time for LoL. models across 64 inputs of varying sizes. (Right)
forward pass time for LoL models across 512 inputs of varying sizes. MLP(UV ") runs out of
memory for largest inputs.

G Limitations

One possible limitation of our work is that in general, many thousands of networks need to finetuned
in order to create a sufficient amount of data to effectively learn on low rank weight-spaces. However,
during one instance of model merging, models might be evaluated thousands of times, so LoL can
still be used to speed up evaluation on average.

H Impact Statement

Our work develops the LoL framework, which could be used for diverse tasks involving processing
LoRA weights of finetuned models. This includes tasks that are likely to be societally positive,
such as detecting harmful tendencies in finetuned models or speeding up model evaluation to reduce
computational costs in certain settings. However, it could also be used for potentially negative tasks,
for instance predicting private properties such as the size of a finetuning dataset. Still, our work is
largely foundational, and we do not believe that there is overall much potential for negative impacts
from our work.
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