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A Manipulation Planner implementation details
Implementation details and parameters for the manipulation planner are given in this section.

A.1 Rewards

distance reward proximity reward reachability reward
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Figure 5: Visualization of low and high reward states for the three reward types of the manipulation
planner.

Reachability reward clipping The reachability measure m defined in (8) is clipped to a lower
bound value m; € R in our implementation to prevent overly large rewards,

m = max(m, Mmin)- (12)

The reward calculation (9) is updated to

ran(770) = —Qy log <mm, ) . (13)

A.2 Node selection and extension horizon

Pareto distribution The continuous truncated Pareto distribution is defined as
B €T - (/B + 1)

1—n;ﬁ’

p(x;nn, B) = (14)
for any = € [1,ny,] and § determines the width of the distribution. The probability for sampling a
specific node index i,, = 7 is

PP —(i+1)7FP

—B

15
- 15)

i+1
P(inzz’;nn,m:/ p(; 1, B) dar =

Varying search parameters Instead of
using fixed values for the Pareto distribu-
tion parameter [ (greediness of the node

Algorithm 2 Node Extension Parameter Update
1: .-

selection) and the extension horizon (re- g i)nétzgr:lgggisz}siCtlon(ﬁ’ ne) >Alg.1,In. 6
lated to the task complexity), these val- ) R
ues can be changed during the search. We : ﬂ:;nle J:ln i 'aZi fgnfsampling(pa) v Al Lo
update these values depending on whether  ¢. Sn: 41 = extension(s,,_, @, +1)
the planner progresses in the search or 7. ifis_best_node(s,, 1) then
not. The greediness of the node selection 8: (= [,
should be reduced when stuck in a local ~9: 7 = 0.95n, + 0.05(ic + 1)
minima, and the extension horizon can be 10:  better node = true
11: ny,=n,+1

interpreted as a measure of task complex-
ity. An intuitive example of the mean-
ing of the extension horizon is the Rubik’s
cube, where one must execute a sequence
of actions to improve the cube’s configu-
ration. Some states in this sequence are
worse than the start state but are necessary
to improve the overall configuration.

12: 1, = ny

13: if better_node = false then

14: B =max(0.998, Bmin)

15: ne = min(0.95n¢ + 0.05(ne + 1), neu)

16: ny =n, +1 > Alg. 1, In. 10
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We bound 8 € [B, Bu] with lower and upper bound (), 8, € R, respectively, and we bound
Ne € [1, e,y With upper bound ne ,, € N4. In the inner-most for-loop of Alg. 1 (In. 7), we check
if the search progresses, i.e., if a new node with the overall highest reward is found. In this case, we
update the parameters so that the node selection is greedier and the extension horizon approaches
the number of extensions required for search progress. If no new best node is found, we update the
parameters so that the node selection is less greedy and the extension horizon approaches the upper
horizon bound. These updates to Alg. 1 are stated in Alg. 2.

A.3 Actions

action previous action

ST e
random - fm===1 ! fm==-1 ! ntinuation
ando: robot object i_goal 1.7 9 i " continuatio

A s
. . 4 ’ ! 4 ’ ! . .
L v [ v

Figure 6: Visualization of the four action types of the manipulation planner.

Varying action step size It can be helpful to have actions with different time step sizes to allow
both short, precise motions and long, far-reaching motions. We randomly sample the action step
size as an integer multiple of the base step size At,, i.e.,

At, = kAt,, withk ~U{L, k.}, (16)

where k,, € N is the upper bound for the step size scaling. After the planner’s search is finished, we
split all actions to the base step size to obtain one common action step size for learning.

Closed-form solution for goal-directed action The closed-form solution for the optimal control
problem (11) is

Aag = — (BTQB n R)il (BTQ (f5 — 8g) + Rag) . (17)

A.4 Tree extension

Dynamics rollout The actions of the planner are position commands tracked by a low-level PD
controller u; = —K,(q, ; — a;) — Kqq, , with controller gains K, and K4. A low-level control
step size At. < At, smaller than the action step size is used to generate a position reference
At, — tAt tAt

— Al <+ (4, +ai,) Atc'

The reference is a linear interpolation between the last commanded position for the parent node,
q, ;. t a;,, and the last actual position plus the newly computed relative action, q, ; + a;,, which

creates a continuous control input. The same control scheme is used for actions created by the
reinforcement learning policy.

Qref t = (qr,jn + a’jn) (18)

A.5 Parameters

The planner’s parameters that are not task-specific are listed in Table 2.

Parameter Value Parameter Value
goal bias b 0.0  Pareto parameter upper bound [, 1.2
number of goals ng 30  Pareto parameter lower bound f 0.2
number of extensions 7, 30 extension horizon bound 7 y 10
reachability reward bound m; 0.001 base action time step At, 0.4s
action time step scale bound k, 3

Table 2: Planner parameters.
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B Reinforcement learning implementation details

Implementation details and parameters for reinforcement learning are given in this section.

B.1 Pure DDPG

Our reinforcement learning setup largely fol-
lows the algorithm outlined in [50]. The pol-
icy network consists of four hidden layers with
256 neurons each. We use ReLU and tanh out-
put activation functions to ensure the actions lie
within [-1, 1]. The value function network also
uses four hidden layers with 256 nodes each
and ReLU activations but no output activation.
We clip the value function’s objective to the
minimum value possible for the rollout horizon
to avoid the unbounded divergence of value es-
timates. To improve stability during training,
we employ target networks with Polyak aver-
aging updates for both the policy and the value
function. A normalizer estimates the mean and
standard deviation for each input and normal-
izes all input values to zero mean and unit vari-
ance. The exploration noise consists of actions

number of epochs has been reached.

Hyperparameter Value
policy layers 4
value function layers 4
neurons per layer 256
policy learning rate 0.001
value function learning rate 0.001
Polyak averaging factor 7 0.05
random action chance 7 0.3
discount factor ~y 0.98
epochs Nepochs task specific
cycles : neycles 50
rollouts Nrollouts 2
rollout horizon nggeps task specific
training episodes Nepisode 40
training batch size nyatch 256
replay buffer size 10000 N
evaluation runs per epoch 10

Table 3: Training hyperparameters.
chosen uniformly at random with a probability of 7, and additive Gaussian noise for the actions cho-

sen by the policy. A complete list of hyperparameters is given in Table 3 and the whole algorithm is
stated in Alg. 3. We stop the training if the policy achieves a success rate of 1.0 or if the maximum

Algorithm 3 DDPG Algorithm

1: Initialize policy my and value function () with random weights

> policy rollout

> normalizer update

> network training

2: Initialize targets Q" and 7’ with weights ¢’ = ¢, 6/ = 0
3: Initialize replay buffer B
4: for epoch in 1 : nepochs do
5: for cyclein 1 : ncycles do
6 for rollout in 1 : Nyolouts Ao
7 Sample start state sy and goal state s,
8: for tin 1 : ngteps do
9: if rand() < n then
10: Sample uniformly random action a;
11: else
12: Compute action a; = (s, sg) + N;, with exploration noise N;
13: Take action a; and obtain new state sy
14: Store transition (S, @y, Sg i, 7t, S¢+1) in B
15: Update normalizer with new samples
16: for episode in 1 : nepisode dO
17: Sample minibatch of 7patch transitions (s¢, at, Sg.¢,7¢, S¢41) from B
18: Compute value target y; = r; + ny’¢, (Si+1, T (Si+1, Sg,i+1)s Sg,it1)
19: Compute value function gradient g, for lg = 7—— 3>, (y; — Qo(s:, a, Sg,i))?
20: Compute policy gradient g, for I, = nbiwh > Qo(Sismp(84,8g.4), Sg,i)
21: Apply the update to 74 and Qg 4

22: Update the target networks: ¢’ =7¢ + (1 —7)¢', 0’ =70+ (1 — 7)¢’
23:  Evaluate policy and stop if success rate = 1.0

14
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B.2 Demonstrations in replay buffer

Instead of generating all data with an on-
line policy rollout, it can also be taken
from the planner’s search tree with a bias 5
b, € [0,1]. Accordingly, the rollout loop 3+ ifrand() < b, then
of Alg. 3 (In. 6) is modified to use both 3. “gumpleé goal state s,
the policy and the planner to generate tra- 5.  Find node closest to S

6

7

8

Algorithm 4 Planner Rollout
1: .-
: for rollout in 1 : nyolouts do > Alg. 3,1In. 6

Jectories, as stated in Alg. 4. Find path from root node to closest node

Trajectory lengths from the planner vary gg(l)[;eoglg)ilirtlr;]tfgrtlzri);lanecesSary

and can be shorter or longer than the roll- :
9: else

out horizon ngeps. If the trajectory is too 10:  Sample so and s, > Alg. 3, In. 7

long, the beginning is cut so that only the 1. for#in1: N do > Alg. 3,1n. 8
last ngteps transitions remain, since these 5.

transitions are most likely to contain re-
ward signals. If the trajectory is too short, the planner’s root state is repeated at the beginning
until the trajectory length reaches ngcps. The action commands for the padded start states are the
initial joint states of the robot.

B.3 Pre-training

A policy network 7y, of the same size as

. L . Algorithm 5 Pre-trainin
Ty can be trained with imitation learning g &

from planner’s demonstrations. The pol- 1+ for demo in nqemos do > demo generation
L . o 2:  Sample goal state sg
icy is trained with input (s, sg) and out- 3 Find node closest t
put (a) from the demonstrations. Simi- P nanode BOSest o Sg
R . 3 4:  Find path from root node to closest node
?arly, the value function is trained, with 5. ore all transitions in B if goal reached
input (s, sg, @) and output (v), where the ;. Compute value for all transition
discounted vah'le'v for an input tuple can 7. g, episode in 1 : Nepisode d0 > network training
be calculated trivially from the rewards (1) g. g ample  minibatch  of  npaen  tuples
for all states in a demonstration trajectory. (81, @y, g t,v;) from B
Algorithm 5 states the pre-training proce- ~ 9:  Compute value function gradient g, for lg =
i 1
dure.. Note that the pghcy and the value i S i(vi — Qo(si, a4, 84:))?
function can be pre-trained separately. 10: Compute policy gradient g_ for [, =
1 o . )12
The pre-trained policy and value function Tbatch 2illai —ms(si, 8g,0)ll

are used as described in [25]. In sum- 117 Apply the update to g and Qg

mary, during the policy rollout and net-
work training phase, the better one of the two policies as evaluated by the value function is used.
Note that we use the same value function for pre-training and online training.

C Experiment details

The evaluation systems are described in this section. Afterward, several ablations and comparisons
for the manipulation planner and reinforcement learning are provided.

C.1 Evaluation systems

Table 4 provides the task-specific parameters for the evaluation systems. Note that we only list the
distance reward scaling Q ,, , for the object’s position states since all object velocity states have a
scaling Q4 , o = 0.11 and the robot states reward scaling is zero: Q4 , = 0I. A description of each
system is provided below.

d,r

Box push The box push task is a one-dimensional pushing task where one actuated pusher box
(robot) must push a second unactuated box (object) to a goal position on a line. Due to its simplicity,
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System Tlepochs Nsteps Pa Qd 0,q Qp Qm

Box push 150 75 [1122] diag(1) I 1
Box push 2D 150 100 [6221] diag(1,1) 0.0011 0.001
Planar hand 150 80 [1122] diag(1,1,7/2) 0.011 0.01
Floating hand 150 100 [1111] diag(1,2,7/2) 0.011 0.01
Allegro hand 300 50 [1322] diag(100,100,100,1,1,10) 0.011 0.01
Box grasp 300 50 [0111] diag(1,1,10,0,0,0) 0.011 0.01
Ball turn 300 75 [2133] diag(1,1,1,2,2,0) 011 0.1
Stool lift 300 75 [1111] diag(1,1,1,2,2,0) I 0.1

Table 4: Task parameters.

this task can give valuable insight into the general properties of planning and learning. Moreover,
only pushing but no pulling is possible, which creates an interesting manipulation challenge.

Box push 2D The two-dimensional box push task is the direct extension of the one-dimensional
box push task. Just as the one-dimensional box push task, it is an illustrative example. The com-
plexity of the task is increased by placing the pusher box between the object box and the goal. This
setup requires the pusher to move around the obstacle before pushing it towards the goal.

Planar hand The planar hand is a simplified representation of in-hand manipulation in a two-
dimensional plane. A hand with two two-link fingers is used to rotate and lift a box. Even with the
restriction to a plane, this task requires dexterous manipulation and gives insight into the planner’s
ability to solve in-hand manipulation tasks.

Floating hand The floating hand has the same kinematic as the planar hand and is also limited to
a two-dimensional plane. However, instead of a fixed wrist, the floating hand can move in the plane.
The task is to reorient a box and move it in space. This task combines dexterous manipulation as
well as picking and placing an object, two commonly required skills.

Allegro hand The Allegro hand is a robotic hand by Wonik Robotics with four fingers, sixteen
actuated finger joints, and 2 actuated wrist joints. The task is to reorient a cube by turning it around
the upright z-axis. In-hand manipulation is a commonly investigated robotic skill due to its high
dimensionality and required dexterity.

Box grasp The box grasp task uses a stationary quadrupedal robot with a mounted arm to grasp
and lift a box with a handle. It is a classic pick-and-place task, where finding a proper grasp is the
main challenge. This task demonstrates our method’s ability to solve pick-and-place scenarios on
real systems.

Ball turn The ball turn task involves a quadrupedal robot on its back that is using its legs to reorient
a ball. This setup resembles in-hand manipulation tasks where multiple multi-joint fingers (legs) are
used to reorient an object. We use this setup to demonstrate our method’s ability to perform in-hand
manipulation on real systems.

Stool lift The stool lift task comprises two stationary quadrupedal robots with mounted arms that
lift a bar stool into an upright configuration. The robots are deliberately prevented from grasping
the stool by fixing their grippers in a closed state. In this manner, whole-body and bimanual manip-
ulation of the stool is required, with contact occurring on multiple parts of the robot arms. We use
this task as an exemplary real-world cleaning scenario, where robots can help put moved or fallen
furniture back into desired configurations. By forcing whole-body contact, we also demonstrate our
method’s ability to perform whole-body manipulation on real systems.
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C.2 Manipulation Planner

We present additional search results for two tasks and several studies on the planner’s components
and parameters.

C.2.1 Additional tasks

Box push and box push 2D results Extending the results presented in Fig. 2, we show the search
progress for the two additional tasks, box push and box push in 2D. The results are in line with the
reported results for the other tasks.

Box push Box push 2D
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&
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)
& 0.5 0.5
=
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0 2000 4000 6000 0 2000 4000 6000

simulation steps

simulation steps

Figure 7: The performance of the Manipulation Planner on two additional tasks. Relative closeness
to the goal for the best node in the tree so far vs. the total number of nodes (simulation steps).

C.2.2 Ablations

Extension horizion The extension horizon specifies how many sequential actions are taken once
a node has been selected to extend the tree. We assume that tasks of different complexity require
different extension horizons. We evaluate different but fixed extension horizons for all tasks to
measure the influence on the planner’s search progress in Fig. 8. We also evaluate the automatically
varying horizon that we use in our implementation as described in Appendix A.2. We measure
the average closeness to the goal over the full search duration, which is larger for quicker search

Box push Box push 2D

2 1.0 B O Or-® P
3 RER
1)
% 0.5 — ' fixed h(?rizon
& = = = variable horizon (ours)
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Figure 8: The performance of the Manipulation Planner for different extension horizons measured
as the average closeness to the goal during the search. Comparison of different fixed horizons (blue)
and variable horizon (black).
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progress and higher final closeness. While a longer extension horizon tends to improve performance
overall, there is no strong correlation. At the same time, the varying horizon performs well in all
cases with reduced variance compared to the fixed horizons.

Pareto distribution exponent The Pareto distribution parameter 5 modifies how greedily nodes
with high rewards are extended. We evaluate different but fixed Pareto parameters for all tasks to
investigate how the parameter influences the planner’s search progress in Fig. 9. We also evaluate
the automatically varying parameter that we use in our implementation as described in Appendix
A.2. For intuition, a parameter 5 = 0.05 means that the currently best node will be selected with
a probability of roughly P = 10% whereas § = 2.0 means a probability of P = 75%. There
is a consistent trend that the planner’s performance decreases as the node selection becomes more
greedy (the parameter increases). This effect could be caused by the node selection becoming so
greedy that the search gets stuck in local minima by repeatedly selecting the same few nodes. Using
an automatically varying range for the parameter does not lead to an improvement over always
choosing a low parameter. Apparently, the Pareto distribution with a low 3 already has a good
tradeoff between exploitation and exploration.

Box push Box push 2D
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pareto parameter Pareto parameter Pareto parameter

Figure 9: The performance of the Manipulation Planner for different Pareto parameters measured as
the average closeness to the goal during the search. Comparison of different fixed parameters (blue)
and variable parameter (black).

Sub-goal ratio To assess the usefulness of having sub-goals during the planner’s search, as in
rapidly exploring random trees, we evaluate different ratios of sub-goals to node extensions in Fig.
10. A goals/extensions ratio of 1/900 means we choose one goal and do 900 extensions for this
single goal, whereas a ratio of 900/1 means we choose 900 goals and do one extension for each
of these goals. Note that in this evaluation, we always do a total of 900 extensions. There is
no consistent trend indicating that more or less sub-goals improve search performance. Multiple
explanations exist for this results: Our tasks could have very few local minima. However, since the
Pareto parameter does influence search performance (cf. Fig. 9), there may be many local minima,
but our node selection strategy is already good enough to avoid these. Yet another possibility is that
the difference in sub-goals is too small to provide a benefit over searching with just a single goal.

Action types We investigate the effectiveness of different combinations of action types with just
random actions as a baseline in Fig. 11. The fact that purely random actions already lead to good
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Figure 10: The performance of the Manipulation Planner for different ratios of goals/extensions
measured as the average closeness to the goal during the search.

results in many tasks indicates that the other components in the planner, such as the heuristic node
selection and specific rewards, lead to meaningful search progress. Still, proximity and goal-directed
actions besides random actions in the search further improve the performance for some tasks.

Box push Box push 2D
rg g
pg pg
o p
Planar hand Floating hand Allegro hand
Box grasp Ball turn Stool lift

OO o

Figure 11: The performance of the Manipulation Planner for different combinations of action types
measured as the average closeness to the goal during the search. Comparison of the following
action types (blue): gradient (g), random+gradient (rg), random+proximity+gradient (rpg), ran-
dom+proximity (rp), proximity (p), proximity+gradient (pg), and random (black).

Proximity and reachability reward scaling The effect of different proximity and reachability
reward scalings is shown in Fig. 12. For most tasks, the search fails once the proximity reward
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becomes too high, potentially because the necessary distance between the robot and the object for
reconfiguration is punished too severely. The reachability reward scaling shows a similar although
weaker trend. Especially for the more complex tasks involving the Allegro hand or robot arms, it
is difficult to clearly state how to scale the rewards, and a parameter sweep is necessary to find the
optimal value. It can be assumed that the same effect would occur for dense-reward reinforcement
learning, highlighting one of the benefits of the planner, as parameter sweeps can be executed much
faster with the planner than with learning.
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Figure 12: The performance of the Manipulation Planner for different combinations of action types
measured as the average closeness to the goal during the search. Comparison of different proximity
and reachability reward scalings. Purple is bad, yellow is good.

C.3 Reinforcement learning

We present additional learning results for two tasks and several comparisons for different learning
methods and demonstration usage.

C.3.1 Additional tasks

Box push and box push 2D results Extending the results presented in Fig. 3, we show the training
progress for the two additional tasks, box push and box push in 2D. The results are in line with the
reported results for the other tasks.

Box push Box push 2d

1.0 1.0
2
=} — pure RL
% 0.5 0.5 === RL with pre-training
g = RL with demos (ours)

0.0 | 0.0 |

0 1x10° 0 1% 10°
simulation steps simulation steps

Figure 13: The performance of reinforcement learning for manipulation on two additional tasks.
Comparison of our approach of adding demonstrations to the replay buffer (blue), RL with an addi-
tional imitation policy pre-training (red), and pure RL (black).
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C.3.2 Ablations

Demonstration ratio Adding demonstrations to the RL replay buffer improves performance com-
pared to pure online learning, but pure offline learning with the demonstration data does not yield
good results. Accordingly, there must be a tradeoff between online exploration and offline data. We
investigate this tradeoff by varying the ratio of demonstrations in the replay buffer in Fig. 14. We
measure the average reward over the entire training duration, which is larger for quicker learning
progress and a higher final success rate. It appears that a small amount of demonstrations gives
enough reward signals to bootstrap RL and enable exploration from a sub-optimal solution. Already
having a low ratio of roughly 10% yields satisfactory results, and we use 25% as it gives the most
robust performance for all tasks.
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Figure 14: The performance of reinforcement learning (RL) for manipulation measured as the aver-
age success during training on eight tasks. Comparison of different demonstration to online explo-
ration ratios in the replay buffer. A ratio of 0.0 is pure online RL, 1.0 is pure offline RL.

Demonstration inclusion comparison Three different methods for adding demonstrations to
the replay buffer are investigated. (1) Use a fixed ratio of demonstrations to online exploration.
(2) Use a variable ratio, where the ratio decreases as the
learning success rate increases. (3) Add a fixed number of

Success rate

demonstrations from the planner’s tree only initially. As Box push 0.10£0.13
can be seen in Fig. 15, the specific method of introduc- Box push 2D 0.00
ing demonstrations into the replay buffer does not make a Plangr hand 0.00
large difference. However, just adding demonstrations in Floating hand 0.00
the beginning is sometimes not enough to bootstrap learn- Allegro hand 0.00
ing successfully. Box grasp 0.00
Ball turn 0.00
Stool lift 0.00

Pre-training comparison Directly using the pre-
trained policy only works for the most simple box push Table 5: Success rate for directly de-
task, as shown in Table 5, where we evaluated ten runs ploying the pre-trained policy.

for each task. Apparently, the data generated by the plan-
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Figure 15: The performance of reinforcement learning for manipulation with demonstrations on
eight tasks. Comparison of adding a constant ratio of demonstrations to the replay buffer (blue),
adding fewer demonstrations with increasing success rate (dark blue), and adding demonstrations
only at the beginning (purple).

ner is not good enough to directly perform imitation learning with it, and online exploration with
RL is required to find successful policies.

Accordingly, we compare three different pre-training settings in Fig. 16. (1) Only pre-training
a policy mq1, and using it alongside the online RL policy. (2) Pre-training a policy and the value
function. (3) Pre-training the policy and value function as well as adding a fixed ratio of demonstra-
tions to the replay buffer. While adding a pre-trained policy to RL improves performance over pure
DDPQG, it does not significantly and consistently perform much better. Only once demonstrations
are added to the replay buffer does the performance with a pre-trained policy improve significantly.
Since the performance of adding demonstrations alongside pre-training is not better than just adding
demonstrations, we attribute this improvement to using demonstrations and not to the pre-trained
policy.

HER comparison For reference, we provide a comparison to hindsight experience replay (HER)
in RL, since this method can improve learning performance in sparse-reward settings. The results
are shown in Fig. 17. While using HER improves the learning performance for some tasks compared
to pure DDPG, it does not lead to any improvement for others, and almost always performs worse
than adding demonstrations to the replay buffer.

C.4 Hardware evaluation

Setup We use the quadrupedal Spot robot by Boston Dynamics with an arm arm mounted for
certain tasks. Control and communication with the robot are achieved via the bosdyn software
development kit. Accurate state estimation is achieved using the OptiTrack motion capture system
and placing markers on the objects. Communication between the Optitrack System and the robots
was handled via ROS2, while gRPC was used to command policy actions with the Spot robots.
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Figure 16: The performance of reinforcement learning for manipulation with pre-training on eight
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Figure 17: The performance of reinforcement learning for manipulation with hindsight experience
replay on eight tasks. Comparison of our approach of adding demonstrations to the replay buffer
(blue), RL with 50% HER relabeling (light green), RL with 80% HER relabeling (dark green), and
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Box grasp The box grasp task evaluates if the robot is able to grasp and lift the box. A trial is
considered successful if the box is lifted off the ground. We evaluate 27 different starting locations
by building a grid of start positions and orientations for the box:

z € {=0.1,0.0,0.1} x y € {—0.25,0.00,0.25} x 0, € {—45°,0°,45°}. (19)

Fig. 18 shows the task progression for the box-grasp task. The challenge in this task is to learn that
in order to lift the box, the handle must be grasped. Our trained policy is able to consistently grasp
the handle and performs well.

initial box configuration
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Figure 18: Left: the successful and failed initial configuration for the box-grasp tasks. Right:
deployment of the trained policy for one Spot grasping and lifting the box.

Ball turn The ball-turn task is used as an in-hand-manipulation-equivalent example. A trial is
considered successful if the box is rotated such that the angle deviation from the upright z-axis is
below 40°. We evaluate 20 different starting locations by testing a progression of start rotations
around the y-axis for the ball with increments of 15°:

6. € {+180°, +£165°,--- ,+60°, +45°}. (20)

Fig. 19 shows the task progression for the ball-turn task. The robot can successfully perform some
of the desired orientations. We attribute failures to the sim2real gap, with a rigid ball in simulation
training and a soft yoga ball in the real-system setting.

initial ball angle

t = 25.0s
L

\

[’] (in degrees)

Figure 19: Left: the successful and failed initial orientations for the ball-turn tasks. Right: deploy-
ment of the trained policy for one Spot turning the ball to the upright position.

Stool lift The stool-lift task requires whole-body manipulation and is a bimanual task representa-
tive of a real-world cleaning task. A trial is considered successful if the robots maneuver the stool in
the upright position. We evaluate 25 different starting locations by building a grid of start positions
for the stool:

z € {-0.2,-0.1,0.0,0.1,0.2} x y € {—0.2,—0.1,0.0,0.1,0.2}. 1)

Fig. 4 shows the task progression for the stool-lift task. Despite the challenging whole-body and
bimanual setup, the robots frequently manage to lift the stool in the upright configuration. Failures
can be attributed to a lack of measuring the robots’ body positions. When contact forces occur, the
robots’ bodies are displaced (which we do not measure), leading to position offsets for the robot
arms. In such cases, the policy has false state measurements and produces unsuccessful actions.

24



	Manipulation Planner implementation details
	Rewards
	Node selection and extension horizon
	Actions
	Tree extension
	Parameters

	Reinforcement learning implementation details
	Pure DDPG
	Demonstrations in replay buffer
	Pre-training

	Experiment details
	Evaluation systems
	Manipulation Planner
	Additional tasks
	Ablations

	Reinforcement learning
	Additional tasks
	Ablations

	Hardware evaluation


