
A Manipulation Planner implementation details416

Implementation details and parameters for the manipulation planner are given in this section.417

A.1 Rewards418

Figure 5: Visualization of low and high reward states for the three reward types of the manipulation
planner.

Reachability reward clipping The reachability measure m defined in (8) is clipped to a lower419

bound value ml ∈ R+ in our implementation to prevent overly large rewards,420

m = max(m,mmin). (12)

The reward calculation (9) is updated to421

rm(m) = −Qm log

(
m

mmin

)
. (13)

A.2 Node selection and extension horizon422

Pareto distribution The continuous truncated Pareto distribution is defined as423

p(x;nn, β) =
βx−(β+1)

1− n−β
n

, (14)

for any x ∈ [1, nn] and β determines the width of the distribution. The probability for sampling a424

specific node index in = i is425

P (in = i;nn, β) =

∫ i+1

i

p(x;nn, β) dx =
i−β − (i+ 1)−β

1− n−β
n

. (15)

Algorithm 2 Node Extension Parameter Update
1: · · ·
2: in, ne = node selection(β, ne) ▷ Alg. 1, ln. 6
3: better node = false
4: for ie in 1 : ne do ▷ Alg. 1, ln. 7
5: ann+1 = action sampling(pa)
6: snn+1 = extension(snn

,ann+1)
7: if is best node(snn+1) then
8: β = βu

9: ne = 0.95ne + 0.05(ie + 1)
10: better node = true
11: nn = nn + 1
12: in = nn

13: if better node = false then
14: β = max(0.99β, βmin)
15: ne = min(0.95ne + 0.05(ne + 1), ne,u)

16: nn = nn + 1 ▷ Alg. 1, ln. 10
17: · · ·

Varying search parameters Instead of426

using fixed values for the Pareto distribu-427

tion parameter β (greediness of the node428

selection) and the extension horizon (re-429

lated to the task complexity), these val-430

ues can be changed during the search. We431

update these values depending on whether432

the planner progresses in the search or433

not. The greediness of the node selection434

should be reduced when stuck in a local435

minima, and the extension horizon can be436

interpreted as a measure of task complex-437

ity. An intuitive example of the mean-438

ing of the extension horizon is the Rubik’s439

cube, where one must execute a sequence440

of actions to improve the cube’s configu-441

ration. Some states in this sequence are442

worse than the start state but are necessary443

to improve the overall configuration.444
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We bound β ∈ [βl, βu] with lower and upper bound βl, βu ∈ R+, respectively, and we bound445

ne ∈ [1, ne,u] with upper bound ne,u ∈ N+. In the inner-most for-loop of Alg. 1 (ln. 7), we check446

if the search progresses, i.e., if a new node with the overall highest reward is found. In this case, we447

update the parameters so that the node selection is greedier and the extension horizon approaches448

the number of extensions required for search progress. If no new best node is found, we update the449

parameters so that the node selection is less greedy and the extension horizon approaches the upper450

horizon bound. These updates to Alg. 1 are stated in Alg. 2.451

A.3 Actions452

Figure 6: Visualization of the four action types of the manipulation planner.

Varying action step size It can be helpful to have actions with different time step sizes to allow453

both short, precise motions and long, far-reaching motions. We randomly sample the action step454

size as an integer multiple of the base step size ∆ta, i.e.,455

∆ta = k∆ta, with k ∼ U{1, ku}, (16)

where ku ∈ N is the upper bound for the step size scaling. After the planner’s search is finished, we456

split all actions to the base step size to obtain one common action step size for learning.457

Closed-form solution for goal-directed action The closed-form solution for the optimal control458

problem (11) is459

∆a0 = −
(
BTQB +R

)−1 (
BTQ (f∗

0 − sg) +Ra∗
0

)
. (17)

A.4 Tree extension460

Dynamics rollout The actions of the planner are position commands tracked by a low-level PD461

controller ut = −Kp(qr,t − at) − Kdq̇r,t with controller gains Kp and Kd. A low-level control462

step size ∆tc ≤ ∆ta smaller than the action step size is used to generate a position reference463

aref,t =
(
qr,jn + ajn

) ∆ta − t∆tc
∆t

+
(
qr,in + ain

) t∆tc
∆t

. (18)

The reference is a linear interpolation between the last commanded position for the parent node,464

qr,jn + ajn , and the last actual position plus the newly computed relative action, qr,in + ain , which465

creates a continuous control input. The same control scheme is used for actions created by the466

reinforcement learning policy.467

A.5 Parameters468

The planner’s parameters that are not task-specific are listed in Table 2.

Parameter Value Parameter Value

goal bias bg 0.0 Pareto parameter upper bound βu 1.2
number of goals ng 30 Pareto parameter lower bound βl 0.2
number of extensions ne 30 extension horizon bound ne,u 10
reachability reward bound ml 0.001 base action time step ∆ta 0.4s
action time step scale bound ku 3

Table 2: Planner parameters.
469
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B Reinforcement learning implementation details470

Implementation details and parameters for reinforcement learning are given in this section.471

B.1 Pure DDPG472

Hyperparameter Value

policy layers 4
value function layers 4
neurons per layer 256
policy learning rate 0.001
value function learning rate 0.001
Polyak averaging factor τ 0.05
random action chance η 0.3
discount factor γ 0.98
epochs nepochs task specific
cycles : ncycles 50
rollouts nrollouts 2
rollout horizon nsteps task specific
training episodes nepisode 40
training batch size nbatch 256
replay buffer size 10000N
evaluation runs per epoch 10

Table 3: Training hyperparameters.

Our reinforcement learning setup largely fol-473

lows the algorithm outlined in [50]. The pol-474

icy network consists of four hidden layers with475

256 neurons each. We use ReLU and tanh out-476

put activation functions to ensure the actions lie477

within [-1, 1]. The value function network also478

uses four hidden layers with 256 nodes each479

and ReLU activations but no output activation.480

We clip the value function’s objective to the481

minimum value possible for the rollout horizon482

to avoid the unbounded divergence of value es-483

timates. To improve stability during training,484

we employ target networks with Polyak aver-485

aging updates for both the policy and the value486

function. A normalizer estimates the mean and487

standard deviation for each input and normal-488

izes all input values to zero mean and unit vari-489

ance. The exploration noise consists of actions490

chosen uniformly at random with a probability of η, and additive Gaussian noise for the actions cho-491

sen by the policy. A complete list of hyperparameters is given in Table 3 and the whole algorithm is492

stated in Alg. 3. We stop the training if the policy achieves a success rate of 1.0 or if the maximum493

number of epochs has been reached.494

Algorithm 3 DDPG Algorithm
1: Initialize policy πθ and value function Q with random weights
2: Initialize targets Q′ and π′ with weights ϕ′ = ϕ, θ′ = θ
3: Initialize replay buffer B
4: for epoch in 1 : nepochs do
5: for cycle in 1 : ncycles do
6: for rollout in 1 : nrollouts do
7: Sample start state s0 and goal state sg
8: for t in 1 : nsteps do ▷ policy rollout
9: if rand() ≤ η then

10: Sample uniformly random action at

11: else
12: Compute action at = πθ(s, sg) +Nt, with exploration noise Nt

13: Take action at and obtain new state st+1

14: Store transition (st,at, sg,t, rt, st+1) in B

15: Update normalizer with new samples ▷ normalizer update
16: for episode in 1 : nepisode do ▷ network training
17: Sample minibatch of nbatch transitions (st,at, sg,t, rt, st+1) from B
18: Compute value target yi = ri + γQ′

ϕ′(si+1, π
′
θ′(si+1, sg,i+1), sg,i+1)

19: Compute value function gradient gQ for lQ = 1
nbatch

∑
i(yi −Qθ(si,ai, sg,i))

2

20: Compute policy gradient gπ for lπ = 1
nbatch

∑
i Qθ(si, πϕ(si, sg,i), sg,i)

21: Apply the update to πϕ and Qθ

22: Update the target networks: ϕ′ = τϕ+ (1− τ)ϕ′, θ′ = τθ + (1− τ)θ′

23: Evaluate policy and stop if success rate = 1.0

14



B.2 Demonstrations in replay buffer495

Algorithm 4 Planner Rollout
1: · · ·
2: for rollout in 1 : nrollouts do ▷ Alg. 3, ln. 6
3: if rand() ≤ bp then
4: Sample goal state sg
5: Find node closest to sg
6: Find path from root node to closest node
7: Clip or pad trajectory if necessary
8: Store all transitions in B
9: else

10: Sample s0 and sg ▷ Alg. 3, ln. 7
11: for t in 1 : N do ▷ Alg. 3, ln. 8
12: · · ·

Instead of generating all data with an on-496

line policy rollout, it can also be taken497

from the planner’s search tree with a bias498

bp ∈ [0, 1]. Accordingly, the rollout loop499

of Alg. 3 (ln. 6) is modified to use both500

the policy and the planner to generate tra-501

jectories, as stated in Alg. 4.502

Trajectory lengths from the planner vary503

and can be shorter or longer than the roll-504

out horizon nsteps. If the trajectory is too505

long, the beginning is cut so that only the506

last nsteps transitions remain, since these507

transitions are most likely to contain re-508

ward signals. If the trajectory is too short, the planner’s root state is repeated at the beginning509

until the trajectory length reaches nsteps. The action commands for the padded start states are the510

initial joint states of the robot.511

B.3 Pre-training512

Algorithm 5 Pre-training
1: for demo in ndemos do ▷ demo generation
2: Sample goal state sg
3: Find node closest to sg
4: Find path from root node to closest node
5: Store all transitions in B if goal reached
6: Compute value for all transition
7: for episode in 1 : nepisode do ▷ network training
8: Sample minibatch of nbatch tuples

(st,at, sg,t, vt) from B
9: Compute value function gradient gQ for lQ =

1
nbatch

∑
i(vi −Qθ(si,ai, sg,i))

2

10: Compute policy gradient gπ for lπ =
1

nbatch

∑
i∥ai − πϕ(si, sg,i)∥2

11: Apply the update to πϕ and Qθ

A policy network πθIL of the same size as513

πθ can be trained with imitation learning514

from planner’s demonstrations. The pol-515

icy is trained with input (s, sg) and out-516

put (a) from the demonstrations. Simi-517

larly, the value function is trained, with518

input (s, sg,a) and output (v), where the519

discounted value v for an input tuple can520

be calculated trivially from the rewards (1)521

for all states in a demonstration trajectory.522

Algorithm 5 states the pre-training proce-523

dure. Note that the policy and the value524

function can be pre-trained separately.525

The pre-trained policy and value function526

are used as described in [25]. In sum-527

mary, during the policy rollout and net-528

work training phase, the better one of the two policies as evaluated by the value function is used.529

Note that we use the same value function for pre-training and online training.530

C Experiment details531

The evaluation systems are described in this section. Afterward, several ablations and comparisons532

for the manipulation planner and reinforcement learning are provided.533

C.1 Evaluation systems534

Table 4 provides the task-specific parameters for the evaluation systems. Note that we only list the535

distance reward scaling Qd,o,q for the object’s position states since all object velocity states have a536

scaling Qd,o,q = 0.1I and the robot states reward scaling is zero: Qd,r = 0I . A description of each537

system is provided below.538

Box push The box push task is a one-dimensional pushing task where one actuated pusher box539

(robot) must push a second unactuated box (object) to a goal position on a line. Due to its simplicity,540
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System nepochs nsteps pa Qd,o,q Qp Qm

Box push 150 75 [1 1 2 2] diag(1) I 1
Box push 2D 150 100 [6 2 2 1] diag(1, 1) 0.001I 0.001
Planar hand 150 80 [1 1 2 2] diag(1, 1, π/2) 0.01I 0.01
Floating hand 150 100 [1 1 1 1] diag(1, 2, π/2) 0.01I 0.01
Allegro hand 300 50 [1 3 2 2] diag(100, 100, 100, 1, 1, 10) 0.01I 0.01
Box grasp 300 50 [0 1 1 1] diag(1, 1, 10, 0, 0, 0) 0.01I 0.01
Ball turn 300 75 [2 1 3 3] diag(1, 1, 1, 2, 2, 0) 0.1I 0.1
Stool lift 300 75 [1 1 1 1] diag(1, 1, 1, 2, 2, 0) I 0.1

Table 4: Task parameters.

this task can give valuable insight into the general properties of planning and learning. Moreover,541

only pushing but no pulling is possible, which creates an interesting manipulation challenge.542

Box push 2D The two-dimensional box push task is the direct extension of the one-dimensional543

box push task. Just as the one-dimensional box push task, it is an illustrative example. The com-544

plexity of the task is increased by placing the pusher box between the object box and the goal. This545

setup requires the pusher to move around the obstacle before pushing it towards the goal.546

Planar hand The planar hand is a simplified representation of in-hand manipulation in a two-547

dimensional plane. A hand with two two-link fingers is used to rotate and lift a box. Even with the548

restriction to a plane, this task requires dexterous manipulation and gives insight into the planner’s549

ability to solve in-hand manipulation tasks.550

Floating hand The floating hand has the same kinematic as the planar hand and is also limited to551

a two-dimensional plane. However, instead of a fixed wrist, the floating hand can move in the plane.552

The task is to reorient a box and move it in space. This task combines dexterous manipulation as553

well as picking and placing an object, two commonly required skills.554

Allegro hand The Allegro hand is a robotic hand by Wonik Robotics with four fingers, sixteen555

actuated finger joints, and 2 actuated wrist joints. The task is to reorient a cube by turning it around556

the upright z-axis. In-hand manipulation is a commonly investigated robotic skill due to its high557

dimensionality and required dexterity.558

Box grasp The box grasp task uses a stationary quadrupedal robot with a mounted arm to grasp559

and lift a box with a handle. It is a classic pick-and-place task, where finding a proper grasp is the560

main challenge. This task demonstrates our method’s ability to solve pick-and-place scenarios on561

real systems.562

Ball turn The ball turn task involves a quadrupedal robot on its back that is using its legs to reorient563

a ball. This setup resembles in-hand manipulation tasks where multiple multi-joint fingers (legs) are564

used to reorient an object. We use this setup to demonstrate our method’s ability to perform in-hand565

manipulation on real systems.566

Stool lift The stool lift task comprises two stationary quadrupedal robots with mounted arms that567

lift a bar stool into an upright configuration. The robots are deliberately prevented from grasping568

the stool by fixing their grippers in a closed state. In this manner, whole-body and bimanual manip-569

ulation of the stool is required, with contact occurring on multiple parts of the robot arms. We use570

this task as an exemplary real-world cleaning scenario, where robots can help put moved or fallen571

furniture back into desired configurations. By forcing whole-body contact, we also demonstrate our572

method’s ability to perform whole-body manipulation on real systems.573

16



C.2 Manipulation Planner574

We present additional search results for two tasks and several studies on the planner’s components575

and parameters.576

C.2.1 Additional tasks577

Box push and box push 2D results Extending the results presented in Fig. 2, we show the search578

progress for the two additional tasks, box push and box push in 2D. The results are in line with the579

reported results for the other tasks.
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Figure 7: The performance of the Manipulation Planner on two additional tasks. Relative closeness
to the goal for the best node in the tree so far vs. the total number of nodes (simulation steps).580

C.2.2 Ablations581

Extension horizion The extension horizon specifies how many sequential actions are taken once582

a node has been selected to extend the tree. We assume that tasks of different complexity require583

different extension horizons. We evaluate different but fixed extension horizons for all tasks to584

measure the influence on the planner’s search progress in Fig. 8. We also evaluate the automatically585

varying horizon that we use in our implementation as described in Appendix A.2. We measure586

the average closeness to the goal over the full search duration, which is larger for quicker search587
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Figure 8: The performance of the Manipulation Planner for different extension horizons measured
as the average closeness to the goal during the search. Comparison of different fixed horizons (blue)
and variable horizon (black).
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progress and higher final closeness. While a longer extension horizon tends to improve performance588

overall, there is no strong correlation. At the same time, the varying horizon performs well in all589

cases with reduced variance compared to the fixed horizons.590

Pareto distribution exponent The Pareto distribution parameter β modifies how greedily nodes591

with high rewards are extended. We evaluate different but fixed Pareto parameters for all tasks to592

investigate how the parameter influences the planner’s search progress in Fig. 9. We also evaluate593

the automatically varying parameter that we use in our implementation as described in Appendix594

A.2. For intuition, a parameter β = 0.05 means that the currently best node will be selected with595

a probability of roughly P = 10% whereas β = 2.0 means a probability of P = 75%. There596

is a consistent trend that the planner’s performance decreases as the node selection becomes more597

greedy (the parameter increases). This effect could be caused by the node selection becoming so598

greedy that the search gets stuck in local minima by repeatedly selecting the same few nodes. Using599

an automatically varying range for the parameter does not lead to an improvement over always600

choosing a low parameter. Apparently, the Pareto distribution with a low β already has a good601

tradeoff between exploitation and exploration.
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Figure 9: The performance of the Manipulation Planner for different Pareto parameters measured as
the average closeness to the goal during the search. Comparison of different fixed parameters (blue)
and variable parameter (black).602

Sub-goal ratio To assess the usefulness of having sub-goals during the planner’s search, as in603

rapidly exploring random trees, we evaluate different ratios of sub-goals to node extensions in Fig.604

10. A goals/extensions ratio of 1/900 means we choose one goal and do 900 extensions for this605

single goal, whereas a ratio of 900/1 means we choose 900 goals and do one extension for each606

of these goals. Note that in this evaluation, we always do a total of 900 extensions. There is607

no consistent trend indicating that more or less sub-goals improve search performance. Multiple608

explanations exist for this results: Our tasks could have very few local minima. However, since the609

Pareto parameter does influence search performance (cf. Fig. 9), there may be many local minima,610

but our node selection strategy is already good enough to avoid these. Yet another possibility is that611

the difference in sub-goals is too small to provide a benefit over searching with just a single goal.612

Action types We investigate the effectiveness of different combinations of action types with just613

random actions as a baseline in Fig. 11. The fact that purely random actions already lead to good614
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Figure 10: The performance of the Manipulation Planner for different ratios of goals/extensions
measured as the average closeness to the goal during the search.

results in many tasks indicates that the other components in the planner, such as the heuristic node615

selection and specific rewards, lead to meaningful search progress. Still, proximity and goal-directed616

actions besides random actions in the search further improve the performance for some tasks.
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Figure 11: The performance of the Manipulation Planner for different combinations of action types
measured as the average closeness to the goal during the search. Comparison of the following
action types (blue): gradient (g), random+gradient (rg), random+proximity+gradient (rpg), ran-
dom+proximity (rp), proximity (p), proximity+gradient (pg), and random (black).617

Proximity and reachability reward scaling The effect of different proximity and reachability618

reward scalings is shown in Fig. 12. For most tasks, the search fails once the proximity reward619
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becomes too high, potentially because the necessary distance between the robot and the object for620

reconfiguration is punished too severely. The reachability reward scaling shows a similar although621

weaker trend. Especially for the more complex tasks involving the Allegro hand or robot arms, it622

is difficult to clearly state how to scale the rewards, and a parameter sweep is necessary to find the623

optimal value. It can be assumed that the same effect would occur for dense-reward reinforcement624

learning, highlighting one of the benefits of the planner, as parameter sweeps can be executed much625

faster with the planner than with learning.
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Figure 12: The performance of the Manipulation Planner for different combinations of action types
measured as the average closeness to the goal during the search. Comparison of different proximity
and reachability reward scalings. Purple is bad, yellow is good.626

C.3 Reinforcement learning627

We present additional learning results for two tasks and several comparisons for different learning628

methods and demonstration usage.629

C.3.1 Additional tasks630

Box push and box push 2D results Extending the results presented in Fig. 3, we show the training631

progress for the two additional tasks, box push and box push in 2D. The results are in line with the632

reported results for the other tasks.
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Figure 13: The performance of reinforcement learning for manipulation on two additional tasks.
Comparison of our approach of adding demonstrations to the replay buffer (blue), RL with an addi-
tional imitation policy pre-training (red), and pure RL (black).
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C.3.2 Ablations633

Demonstration ratio Adding demonstrations to the RL replay buffer improves performance com-634

pared to pure online learning, but pure offline learning with the demonstration data does not yield635

good results. Accordingly, there must be a tradeoff between online exploration and offline data. We636

investigate this tradeoff by varying the ratio of demonstrations in the replay buffer in Fig. 14. We637

measure the average reward over the entire training duration, which is larger for quicker learning638

progress and a higher final success rate. It appears that a small amount of demonstrations gives639

enough reward signals to bootstrap RL and enable exploration from a sub-optimal solution. Already640

having a low ratio of roughly 10% yields satisfactory results, and we use 25% as it gives the most641

robust performance for all tasks.
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Figure 14: The performance of reinforcement learning (RL) for manipulation measured as the aver-
age success during training on eight tasks. Comparison of different demonstration to online explo-
ration ratios in the replay buffer. A ratio of 0.0 is pure online RL, 1.0 is pure offline RL.642

Demonstration inclusion comparison Three different methods for adding demonstrations to643

the replay buffer are investigated. (1) Use a fixed ratio of demonstrations to online exploration.644

Success rate

Box push 0.10± 0.13
Box push 2D 0.00
Planar hand 0.00
Floating hand 0.00
Allegro hand 0.00
Box grasp 0.00
Ball turn 0.00
Stool lift 0.00

Table 5: Success rate for directly de-
ploying the pre-trained policy.

(2) Use a variable ratio, where the ratio decreases as the645

learning success rate increases. (3) Add a fixed number of646

demonstrations from the planner’s tree only initially. As647

can be seen in Fig. 15, the specific method of introduc-648

ing demonstrations into the replay buffer does not make a649

large difference. However, just adding demonstrations in650

the beginning is sometimes not enough to bootstrap learn-651

ing successfully.652

Pre-training comparison Directly using the pre-653

trained policy only works for the most simple box push654

task, as shown in Table 5, where we evaluated ten runs655

for each task. Apparently, the data generated by the plan-656
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Figure 15: The performance of reinforcement learning for manipulation with demonstrations on
eight tasks. Comparison of adding a constant ratio of demonstrations to the replay buffer (blue),
adding fewer demonstrations with increasing success rate (dark blue), and adding demonstrations
only at the beginning (purple).

ner is not good enough to directly perform imitation learning with it, and online exploration with657

RL is required to find successful policies.658

Accordingly, we compare three different pre-training settings in Fig. 16. (1) Only pre-training659

a policy πIL and using it alongside the online RL policy. (2) Pre-training a policy and the value660

function. (3) Pre-training the policy and value function as well as adding a fixed ratio of demonstra-661

tions to the replay buffer. While adding a pre-trained policy to RL improves performance over pure662

DDPG, it does not significantly and consistently perform much better. Only once demonstrations663

are added to the replay buffer does the performance with a pre-trained policy improve significantly.664

Since the performance of adding demonstrations alongside pre-training is not better than just adding665

demonstrations, we attribute this improvement to using demonstrations and not to the pre-trained666

policy.667

HER comparison For reference, we provide a comparison to hindsight experience replay (HER)668

in RL, since this method can improve learning performance in sparse-reward settings. The results669

are shown in Fig. 17. While using HER improves the learning performance for some tasks compared670

to pure DDPG, it does not lead to any improvement for others, and almost always performs worse671

than adding demonstrations to the replay buffer.672

C.4 Hardware evaluation673

Setup We use the quadrupedal Spot robot by Boston Dynamics with an arm arm mounted for674

certain tasks. Control and communication with the robot are achieved via the bosdyn software675

development kit. Accurate state estimation is achieved using the OptiTrack motion capture system676

and placing markers on the objects. Communication between the Optitrack System and the robots677

was handled via ROS2, while gRPC was used to command policy actions with the Spot robots.678
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Figure 16: The performance of reinforcement learning for manipulation with pre-training on eight
tasks. Comparison of pre-training just the policy (light red), pre-training the policy and value func-
tion (red), and pre-training the policy and value function as well as adding demonstrations (dark
red).
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Figure 17: The performance of reinforcement learning for manipulation with hindsight experience
replay on eight tasks. Comparison of our approach of adding demonstrations to the replay buffer
(blue), RL with 50% HER relabeling (light green), RL with 80% HER relabeling (dark green), and
pure RL (black).
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Box grasp The box grasp task evaluates if the robot is able to grasp and lift the box. A trial is680

considered successful if the box is lifted off the ground. We evaluate 27 different starting locations681

by building a grid of start positions and orientations for the box:682

x ∈ {−0.1, 0.0, 0.1} × y ∈ {−0.25, 0.00, 0.25} × θz ∈ {−45◦, 0◦, 45◦}. (19)

Fig. 18 shows the task progression for the box-grasp task. The challenge in this task is to learn that683

in order to lift the box, the handle must be grasped. Our trained policy is able to consistently grasp684

the handle and performs well.685

Figure 18: Left: the successful and failed initial configuration for the box-grasp tasks. Right:
deployment of the trained policy for one Spot grasping and lifting the box.

Ball turn The ball-turn task is used as an in-hand-manipulation-equivalent example. A trial is686

considered successful if the box is rotated such that the angle deviation from the upright z-axis is687

below 40◦. We evaluate 20 different starting locations by testing a progression of start rotations688

around the y-axis for the ball with increments of 15◦:689

θz ∈ {±180◦,±165◦, · · · ,±60◦,±45◦}. (20)

Fig. 19 shows the task progression for the ball-turn task. The robot can successfully perform some690

of the desired orientations. We attribute failures to the sim2real gap, with a rigid ball in simulation691

training and a soft yoga ball in the real-system setting.692

Figure 19: Left: the successful and failed initial orientations for the ball-turn tasks. Right: deploy-
ment of the trained policy for one Spot turning the ball to the upright position.

Stool lift The stool-lift task requires whole-body manipulation and is a bimanual task representa-693

tive of a real-world cleaning task. A trial is considered successful if the robots maneuver the stool in694

the upright position. We evaluate 25 different starting locations by building a grid of start positions695

for the stool:696

x ∈ {−0.2,−0.1, 0.0, 0.1, 0.2} × y ∈ {−0.2,−0.1, 0.0, 0.1, 0.2}. (21)

Fig. 4 shows the task progression for the stool-lift task. Despite the challenging whole-body and697

bimanual setup, the robots frequently manage to lift the stool in the upright configuration. Failures698

can be attributed to a lack of measuring the robots’ body positions. When contact forces occur, the699

robots’ bodies are displaced (which we do not measure), leading to position offsets for the robot700

arms. In such cases, the policy has false state measurements and produces unsuccessful actions.701
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