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ABSTRACT

Distributional reinforcement learning improves performance by effectively capturing envi-
ronmental stochasticity. However, existing research on its regret analysis has relied heavily
on structural assumptions that are difficult to implement in practice. In particular, there has
been little attention to the infeasibility issue of dealing with the infinite-dimensionality of
a distribution. To overcome this infeasibility, we present a regret analysis of distributional
reinforcement learning with general value function approximation in a finite episodic
Markov decision process scenario through statistical functional dynamic programming.
We first introduce a key notion of Bellman unbiasedness which is essential for exactly
learnable and provably efficient updates. Our theoretical results demonstrate that the only
way to exactly capture statistical information, including nonlinear statistical functionals,
is to represent the infinite-dimensional return distribution with a finite number of mo-
ment functionals. Secondly, we propose a provably efficient algorithm, SF-LSVT, that
achieves a tight regret bound of O(dx H % /K ) where H is the horizon, K is the number
of episodes, and dg is the eluder dimension of a function class.

1 INTRODUCTION

Distributional reinforcement learning (DistRL) (Bellemare et al., 2017; Rowland et al., 2019; Choi et al.,
2019; Kim et al., 2024b; Peng et al., 2024; Wiltzer et al., 2024) is an advanced approach to reinforcement
learning (RL) that focuses on the entire probability distribution of returns rather than solely on the expected
return. By considering the full distribution of returns, distRL provides deeper insight into the uncertainty
of each action, such as the mode or median. This framework enables us to make safer and more effective
decisions that account for various risks (Chow et al., 2015; Son et al., 2021; Greenberg et al., 2022; Kim et al.,
2024a), particularly in complex real-world situations, such as robotic manipulation (Bodnar et al., 2019),
neural response (Muller et al., 2024), stratospheric balloon navigation (Bellemare et al., 2020), algorithm
discovery (Fawzi et al., 2022), and several game benchmarks (Bellemare et al., 2013; Machado et al., 2018).

In practice, a probability distribution contains an infinite amount of information, and we must inevitably
resort to approximations using a finite number of parameters or statistical functionals, such as categorical
(Bellemare et al., 2017) and quantile representations (Dabney et al., 2018b). However, previous works have
often conducted analyses while overlooking the infeasibility of dealing with the infinite-dimensionality of a
distribution. Additionally, not all statistical functionals can be exactly learned through the Bellman operator,
as the meaning of statistical functionals is not typically preserved after updates. For example, the median is
not preserved under Bellman updates, as the median of a mixture of two distributions does not generally
correspond to the mixture of their medians. Hence, a distinct analysis is needed to determine whether there
exists a corresponding Bellman operator for each statistical functional that guarantees exactness.

To address this issue, Rowland et al. (2019) introduced the concept of Bellman closedness — a property
of statistical functionals that can be exactly learned by the presence of a corresponding Bellman operator.
At this point, we take a closer look at the distributional Bellman update. We reconsider what additional
properties of statistical functionals beyond Bellman closedness are necessary for constructing algorithms that
are not only exactly learnable but also provably efficient in terms of regret. Simply, we identify two critical
issues when using statistical functionals in lieu of a distribution, which motivated us to address them:
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Figure 1: Venn-Diagram of Statistical Functional Classes. The diagram illustrates categories of statistical
functional. (Yellow) Within the linear statistical functional class, Rowland et al. (2019) demonstrated that
the solution of Bellman closedness is uniquely represented by moment functionals. (Red) We extend this
concept by introducing Bellman unbiasedness, which not only covers moment functionals but also includes
central moment functionals from the broader class including nonlinear statistical functionals. (A) Maximum
and minimum functionals are Bellman closed, while they are not unbiasedly estimatable. (B) Median and
quantile functionals are neither Bellman closed nor unbiased, highlighting that they are not proper to encode
the distribution in terms of exactness. For detailed proof, see Theorem 4.6, Appendix C.2 and C.3.

* Approximation Error: Representing a mixture distribution with a finite, fixed number of param-
eters inevitably leads to approximation errors. For example, when expressing the mixture of two
distributions, each represented by /N parameters, reducing 2/N parameters back into N results in
inevitable loss of information.

* Unbiased Estimation: Due to the unknown nature of the transition P(-|s, a), the target distribution
is estimated through sampling the next state s’. Consequently, the statistical functionals of the target
distribution (population) should be unbiasedly estimated using the statistical functionals derived
from the sample distributions (subpopulations).

In this paper, we introduce a key concept, Bellman unbiasedness, for precise information learnability of a
distribution with a finite number of samples. As illustrated in Figure 1, we prove that the moment functional
is the only solution within a class that includes nonlinear statistical functionals, satisfying both Bellman
closedness and unbiasedness properties. We further discuss the infeasibility of the previously defined
structural assumption known as Distributional Bellman Completeness (DistBC) (Wang et al., 2023; Chen
et al., 2024). We then investigate the benefits of redesigning this concept using a collection of statistical
functionals. Finally, we propose a provably efficient statistical functional reinforcement learning algorithm
with general value function approximation, called SF-LSVI.

In summary, our main contributions are as follows.

* Introduce a key property of Bellman unbiasedness, which is crucial for developing exactly learnable
and provably efficient algorithm, and prove that the moment functional is the unique structure
within a class that includes nonlinear statistical functionals.

¢ Introduce a new fundamental problem related to the inherent infeasibility of dealing with infinite-
dimensionalilty of a distribution and provide a theoretically analyzsis of how hidden approximation
errors prevent the design of provably efficient algorithms. To address this, we revisit the existing
structural assumption of distributional Bellman Completeness through a statistical functional lens.

* Propose a novel, provably efficient distributional RL algorithm called SF-LSVI, achieving a tight

regret upper bound O(d pH3VEK ). ! Our framework yields a tighter regret bound while relying on
a weaker structural assumption compared to previous results in distributional RL.

'"We ignore poly-log terms in H, S, A, K in the O(-) notation.
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Table 1: Comparison for different methods within the distributional RL framework. H represents a subspace
of the infinite-dimensional space F°°. According to Zanette et al. (2020), the misspecification error ¢, which
occurs when the model fails to represent the target, leads to linear regret. Therefore, we can argue that a term
with © = Q((K) should be included to capture this effect.

Algorithm Regret Eluder dimension d; ~ Bellman Completeness MDP assumption Re[l:ri:si:l]tible LE::;i}ie
(Wm?g‘ffjfg(m) O(poly(dpH)WWE) +© dimp(H, ) distributional BC d:;f;fl“lz:i reward, x x
(CX:SS& L,f(‘fz o OUsHVE)+6° dimp(H, ) distributional BC ﬂlgizi‘l‘fzefofl‘m‘:;‘:y x x

SE-LSVI O(dpHVE) dimp(FN€) statistical functional BC none v v

[Ours]

2 RELATED WORK

Distributional RL. In classical RL, the Bellman equation, which is based on expected returns, has a
closed-form expression. However, it remains unclear whether any statistical functionals of return distribution
always have corresponding closed-form expressions. Rowland et al. (2019) introduced the notion of Bellman
Closedness for collections of statistical functionals that can be updated in a closed form via Bellman update.
It was shown that the only Bellman-closed statistical functionals in the discounted setting are the moments
E 2~y [Z*]. More recently, Marthe et al. (2023) proposed a general framework for distRL where the agent
aims to maximize its own utility functionals instead of the expected return, formalizing this property as
Bellman Optimizability. They further demonstrated that in the undiscounted setting, the only W -continuous
and linear Bellman optimizable statistical functionals are exponential utilities 5 log Ez..,[exp(AZ)].

In practice, C51 (Bellemare et al., 2017) and QR-DQN (Dabney et al., 2018b) are notable distributional RL
algorithms where the convergence guarantees of sampled-based algorithms are proved (Rowland et al., 2018;
2023). Dabney et al. (2018a) expanded the class of policies on arbitrary distortion risk measures by taking
the based distribution non-uniformly and improve the sample efficiency from their implicit representation.
Cho et al. (2023) highlighted limitations of optimistic exploration in distRL and introduced a randomized
exploration method that perturbs the return distribution when the agent selects the next action.

RL with General Value Function Approximation. Regret bounds have been extensively studied in RL,
across various domains, such as bandit (Lattimore and Szepesvari, 2020; Abbasi-Yadkori et al., 2011; Russo
and Van Roy, 2013), tabular RL (Kakade, 2003; Auer et al., 2008; Osband and Van Roy, 2016; Osband
et al., 2019; Jin et al., 2018), and linear function approximation (Jin et al., 2020; Wang et al., 2019; Zanette
et al., 2020). In recent years, deep RL has shown significant performance using deep neural networks as
function approximators, and there have been attempts to analyze in general function approximation (GVFA)
(Jin et al., 2021; Agarwal et al., 2023). Wang et al. (2020) established a provably efficient RL algorithm
with general value function approximation based on the eluder dimension dg (Russo and Van Roy, 2013)
and achieves a regret upper bound of O(poly(dg H)+v/K). To circumvent the intractability of computing
the upper confidence bound, Ishfaq et al. (2021) injected the stochasticity on the training data and get
the optimistic value function instead, improving computationally efficiency. Beyond risk-neutral setting,
several prior works have shown regret bounds under risk-sensitive objectives (e.g., entropic risk (Fei et al.,
2021; Liang and Luo, 2022), CVaR (Bastani et al., 2022)), which partially align with our approach in
that they are built on a distribution framework. Liang and Luo (2022) achieved a regret upper bound of

O(exp(H)+/|S|?|A|H2K) and a lower bound of Q(exp(H)+/|S||A|HK) in the tabular setting.

DistRL with General Value Function Approximation. Recently, only a few studies have attempted to
bridge the gap between distRL and GVFA. Wang et al. (2023) proposed a distRL algorithm, O-DISCO,
which enjoys small-loss bound by using a log-likelihood objective. Similarly, Chen et al. (2024) provided
a risk-sensitive reinforcement learning framework with static Lipschitz risk measure. While these studies
investigate the benefits of distributional framework, their reliance on the distBC assumption raises several
potential issues, which we discuss in 4.3. In contrast, our approach is grounded in a statistical functional
framework. A detailed comparison with other distRL methods is provided in Table 1.

?In Chen et al. (2024), the regret bound is written as O(dg Loo (p) HVK ), where Lo, (p) represents the Lipschitz
constant of the risk measure p, i.e., |p(Z) — p(Z")| < Loo(p)||Fz — Fz/||co- Since Loo(p) > H in risk-neutral setting,

we translate the regret bound into O(dg H*V'K).
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3 PRELIMINARIES

Episodic MDP. We consider a episodic Markov decision process which is defined asa M = (S, A, H, P, r)
characterized by state space S, action space A, horizon length H, transition kernels P = {Pp, } ,c[#1, and
reward r = {rp, } nc[x) at step h € [H|. The agent interacts with the environment across K episodes. For
eachk € [K] and h € [H], Hf = (s},al,...,s},ak,..., sk, af) represents the history up to step h at
episode k. We assume the reward is bounded by [0, 1] and the agent always transit to terminal state Sepq at
step H + 1 withrg4; = 0.

Policy and Value Functions. A (deterministic) policy  is a collection of H functions {7, : S — .A}hH:1
Given a policy 7, a step h € [H], and a state-action pair (s,a) € S X A, the @) and V -function are defined

as QZ(S,G)(Z S x A — R) = Eﬂ- [Zﬁzhrh,(sh/,ah/) ‘ Sp = S,ap :a:| and V}Z"(S)( S = R) —
B | Y g e (57, ans) | s = S} :

Random Variables and Distributions. For a sample space €2, we extend the definition of the Q-function
into a random variable of the cumlative return Iflnd its distribution,

Zi(5,0)(: S x Ax Q= R) = > mylspan) | sn=s,an = a,an =1 (sp),
h'=h
nh(s,a)(: S x A — Z(R)) = law(Z} (s,a)).
Analogously, we extend the definition of V-fugction by introducing a bar notation.

ZF(s): S x Q= R) = Z T (Sprsan) | sn =8, ap = mh (Spr),
h'=h
T (s)(: S = P(R)) = law(Z] (s))-
Note that Z[7(s) = ZF(s,n(s)) and 7 (s) = nF(s,7(s)). We use 7* to denote an optjmal policy (i.e.,
7Th( |s) = argmax, V" (s ( ) Vh) and the correspondlng optimal functions as V;*(s) = V;™ (s), Q5 (s,a) =
Qr (s,a), nf(s,a) = nf (s,a), and 775 (s) = 7} (s). For notational simplicity, we denote the expectation
over transition, [PthH](s a) = Eyp,(ls,a)Viii1(8"), [PrZ]1](s,a) = Eyop,(s,0)Zf41(5"), and
[Prifpy1](s,a) = Egop, (5,71 (s")- * For brevity, we refer to 77" simply as 7.
In the episodic MDP, the agent aims to learn the optimal policy through a fixed number of interactions
with the environment across a number of episodes. At the beginning of each episode k(€ [K]), the agent
starts at the initial state sf and choose a policy 7. In step h(€ [H]), the agent observes s} (€ S), takes
an action af (€ A) ~ 7F(-|sF), receives a reward 7, (sF, af), and the environment transits to the next

state sﬁ I Ph(-|s’,j, aﬁ). Finally, we measure the suboptimality of an agent by its regret, which is the
accumulated difference between the ground truth optimal and the return received from the interaction. The

regret after K episodes is defined as Reg(K) = Zszl Vi(sh) — Vl’rk (s%).

Distributional Bellman Optimality Equation. The distributional Bellman optimality operator 7}, is
defined as:

(77L772+1)(S (l) - ES/NPh (1s,a),a’ ~7} (- |s’)[(8rh)#7]}t+1(8/, a’)}
where B, : R — R is defined by B, (x) =71+ z, and gxn € Z(R) is the pushforward of the distribution 7

(x
through g (i.e., gzn(A) = n(g~*(A)) for any Borel set A C R). Then, the optimal return distribution 7} sat-
isfies the distributional Bellman optimality equation, 1y (s, a) = (Tanj;1)(s, a) = (Br, ) #[Punj; 1 11(s, a).

Additional Notations. For a given N, we denote an N-dimensional function class FV := F(1) x ... x
FWN) C {f =[fV,. . fWN]Sx A ]RN}. Given a dataset D = {(s;, as, [z§”, . .,zt(N)]) ,@1 C

S x A x RY and a set of state-action pairs Z = {(s;, at)}z‘l C S x A, for a function f : S x A — RY, we
define the norms || ™ ||, || fllco.1, || fllD, || f|| = as described in Appendix A. For a set of (Vector-valued)
functions F¥ C {f : S x A — RN}, the width function of (s,a) is defined as w™ (FN s a) =
max; g rn | f(s,a) — g™ (s, a).

*Note that Eo/op), (-|s,a)The1(s") is a mixture distribution.
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Figure 2: Illustrative representation of sketch-based Bellman updates for a mixture distribution. Instead of
updating the distributions directly, each sample distribution is embedded through a sketch % (e.g., mean g,
quantile g;). The transformation ¢,; is applied to compress the mixture distribution into the same number of
parameters, ensuring that the update remains unbiased and prevents information loss.

4 STATISTICAL FUNCTIONALS IN DISTRIBUTIONAL RL

In this section, we begin by defining two key concepts commonly used in the distRL framework: the statistical
functional and the sketch. We also illustrate Bellman closedness, a crucial property defined by Bellemare
et al. (2023). Next, we introduce a novel concept called Bellman unbiasedness which complements Bellman
closedness and is essential for achieving provable efficiency. As illustrated in Figure 2, quantile functionals
cannot be updated in an unbiased manner (as proven in Theorem 4.3), demonstrating that only certain
sketches can be updated exactly. Building on this, we show that the moment functional is the only sketch
that satisfies both properties, making it unique among the broader class of statistical functionals. Finally,
we address the limitations of the previous structural assumption, distributional Bellman Completeness,
particularly its tendency to result in linear regret. To overcome this, we introduce a relaxed structural
assumption, statistical functional Bellman Completeness.

4.1 BELLMAN CLOSEDNESS

Definition 4.1 (Statistical functionals, Sketch; (Bellemare et al., 2023)). A statistical functional is a
mapping from a probability distribution to a real value, 1) : P (R) — R. A sketch is a vector-valued function,
Y1.x 0 P(R) — RY, specified by an N-tuple where each component is a statistical functional,

1/)1:]\/(') = (wl()v T awN())
We denote the domain of sketch as &, (R) and its image as Iy, , = {Y1.n(7) : ] € Py, (R)}. This

can be further extended to state return distribution functions, ¢y, (7]) = (z/q: N(7(s)):s€S8 ) .

Definition 4.2 (Bellman closedness; (Rowland et al., 2019)). A sketch 1. is Bellman closed if there exists
an operator Ty, I;ELN — I;ELN such that

VN (T) = T tPrn (1) forall ij € P(R)?,
where the sketch is closed under a distributional Bellman operator T : 2 (R)S — 2 (R)S.

Bellman closedness is the property that a sketch are exactly learnable when updates are performed from
the infinite-dimensional distribution space to the finite-dimensional embedding space. While the classical
Bellman equation implies the existence of Bellman operator for expected values, not all statistical functional
have such a corresponding Bellman operator. Precisely, Rowland et al. (2019) showed that the only finite
linear statistical functionals that are Bellman closed are those whose linear span is equal to the set of
exponential-polynomial functionals. *

Theorem 4.3. Quantile functional cannot be Bellman closed under any additional sketch.

While Rowland et al. (2019) focused on "linear" statistical functionals in defining a sketch, leaving open
questions about nonlinear functionals, we extend their work by showing that nonlinear statistical functionals,
such as maximum or minimum, can also be Bellman closed. Additionally, while their work implicitly treated
quantiles as linear functionals, we clarify this by proving the non-existence of a sketch Bellman operator for
quantiles. Further details are provided in Appendix C.1.

“In discounted setting, a unique solution becomes moments. We’ve overwritten it for convinience.
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Figure 3: (Left) Bellman Closedness. (Right) Bellman Unbiasedness. The above path represents an ideal
distributional Bellman update. Due to the infeasibility of dealing with the infinite-dimensionality of a
distribution, the update process should be represented by using a finite-dimensional embedding (sketch) ).
Since the transition kernel P is unknown, the below path describes that the implementation should sample

the next state and update by using 7:(/, with the empirical transition kernel IP. A sketch v is Bellman unbiased
if 7, o 1 can unbiasedly estimate 1) o 7 through some transformation ¢y, i.e., 1(Tn) = Ep[¢y o T1(n)].

4.2 BELLMAN UNBIASEDNESS

While Bellman closedness addresses the infeasibility caused by infinite-dimensionality, another infeasible
element that remains unresolved is the sampling of the next state. In practice, the agent does not have
access to the ground truth transition kernel IP. Instead, it relies on the empirical transition kernel I@’(-|s, a) =
+ Zle 1{s) = - |s,a} which is derived from K sampled next states. This limitation implies that the
operator must be treated as an empirical operator 7y, rather than Ty (i.e., Tpb(7) = ¥((B,)x[P7])).
Therefore, as shown in Figure 3, we naturally introduce a new notion of Bellman unbiasedness to unbiasedly
estimate the expected distribution (B;.) 4 E, < p(.|s,a)[7(s")], Which is a mixture by transitions, using the
sample distribution (B,.)x7(s’).

Definition 4.4 (Bellman unbiasedness). A sketch ¢ (= 11.n) is Bellman unbiased if, for any k samples,
there exists a corresponding vector-valued estimator ¢y, = ¢y (P(x1), -+, P(xk)) - (Ii)k — I;E such that

the sketch of expected distribution (B, ) #E p(.|s,a)[1(8")] can be unbiasedly estimated by ¢, using the k
sampled sketches from the sample distribution (B,)47(s"), i.e

Euf o Bl [m ( ((B(sh) )+ v ((B)win(sh) )] = 6((B) 4B orgs. ()

k sampled sketches from sample di‘vtributionﬁ, P(7(s))

Bellman unbiasedness is another natural definition, similar to Bellman closedness, which takes into account
a finite number of samples for the transition. For example, mean-variance sketch is Bellman unbiased as the
following unbiased estimator ¢, ,2) exists for k sampled sketches {(/1;, G2}

k 1 k 1 k
(n,0%) = ¢(u,o2)((ﬂ176f) s (i, 5%) ) = ( Z“i gz EZ: )

On the other hand, median functional is not Bellman unbiased since there is no unbiased estimator for
median. Then, the following question naturally arises;

“Which sketches are unbiasedly estimatable under the sketch-based Bellman update?”
The following lemma answers this question.
Lemma 4.5. Let Fy; be a CDF of the probability distribution i} € 2(R)S. Then a sketch is Bellman

unbiased if and only if the sketch is homOgeneous over Py (R)S of degree k, i.e., there exists some vector-
valued function h = h(xq,- - : X% — RN such that

/ [ b B ) - dEy o)

Lemma 4.5 states that in statistical functional dynamic programming, an unbiasedly estimatable embedding
of a distribution can only be structured as functions that are homogeneous of finite degree. For example, the
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variance functional is homogeneous of degree 2 (Halmos, 1946). Building on this concept and combining it
with the results on Bellman closedness, we prove that even when including a nonlinear statistical functional,
the only sketch that can be exactly learned and unbiasedly estimated in a finite-dimensional embedding space
is the moment sketch.

Theorem 4.6. The only finite statistical functionals that are both Bellman unbiased and closed are given
by the collections of 11, ...,y N where its linear span {25:0 antn| o € R VN} is equal to the set
of exponential polynomial functionals {n — Ez.,[Z'exp (AZ)]| 1 = 0,1,...,L,\ € R}, where 1) is
the constant functional equal to 1. In discount setting, it is equal to the linear span of the set of moment
functionals {n — Ez.,[Z']| 1 =0,1,..., L} for some L < N.

Compared to Rowland et al. (2019), we extend the scope beyond linear statistical functionals to include
nonlinear statistical functionals, showing the uniqueness of the moment functional. As shown in Figure 1,
our theoretical results show that high-order central moments, such as variance or skewness can be exactly
learned and unbiasedly estimated. We also reveal that other nonlinear statistical functionals, like median or
quantiles, inevitably involve approximation errors due to biased estimations.

Notably, Bellman unbiasedness guarantees a key property related to regret that the sequence of sampled
sketches forms a martingale. This martingale property is important as it allows us to apply concentration
inequalities to bound the probability that the sequence deviates from its expected behavior. Consequently,
this enables the construction of a confidence region, a set that contains the true sketch with high probability.
In Section 4.3, we emphasize that unbiasedly estimatable sketches mitigate model misspecification, which
enable to achieve near-optimal regret in the distRL framework.

4.3 STATISTICAL FUNCTIONAL BELLMAN COMPLETENESS

We consider distRL with general value function approximation. For successful temporal difference learning,
the GVFA framework for classical RL (Wang et al., 2020; Ayoub et al., 2020; Ishfaq et al., 2021) commonly
requires the assumption of Bellman Completeness. This assumption states that, after applying the Bellman
operator, the output lies in the function class F (i.e., if f € F, then 7, f € F for all 7, h).

DistBC inevitably leads to linear regret. In seminal works, Wang et al. (2023) and Chen et al. (2024)
assumed that the function class H C {n : S x A — Z([0, H])} follows the distributional Bellman
Completeness (distBC) assumption (i.e., if n € H, then 7,7n € H for all 7, h € [H]). While this assumption
seems natural, constructing a finite-dimensional subspace H that satisfies distBC is quite challenging. Since
the distributional Bellman operator is a composition of translation and mixing distributions for the next state,
it implies that the function class 7 must be closed under translation and mixture. However, when representing
infinite-dimensional distributions using a finite number of parameters or statistical functionals, it is not
trivial to ensure that a mixture of distributions can also be represented with the same number of parameters
or statistical functionals. For example, while a single Gaussian distribution can be represented using two
parameters (1, 0%), a mixture of K Gaussians generally requires 2K parameters for exact representation.

To address the issue of closedness under mixture, both previous studies assumed a discretized reward MDP
where all outcomes of the return distribution are discretized into a uniform grid of finite points. Unfortunately,
the approximation error introduced by this discretization is not negligible with respect to regret. This is
because the approximation error is, in fact, a form of model misspecification — an error arising when the
model fails to represent the target — which makes it difficult to achieve provable efficiency.

Definition 4.7 (Model Misspecification in distBC). For a given distribution class H, which is a finite-
dimensional subspace of the space of all distribution F°, we define ( as the model misspecification

(= jnf  sup ||fz(s,a) = (Br,)#[Pril(s, a)]|
faeH (s,a)eSxA

forany i : S — (|0, H]) and h € [H].

Note that ¢ is strictly positive unless the function approximator f5 can represent any distribution in the finite-
dimensional subspace H generated by translation and mixture. In the classical linear bandit setting (Zanette
et al., 2020), a lower bound with model misspecification ( is known to yield linear regret (¢ K). Therefore,
redefining Bellman Completeness within the infinite-dimensional distribution space is not appropriate, as it
either imposes overly restrictive constraints on the MDP structure or leads to linear regret.
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To circumvent model misspecification, we revisit the concept of distBC through the statistical functional lens.
We propose a novel framework that matches a finite number of statistical functionals to the target, rather than
attempting to represent the entire distribution. As a natural extension, our approach takes a tuple of function
class FV C {f : S x A — R¥} as input to represent N moments of the distribution. Building on this, we
assume that for any 7} : S — ([0, H]), the sketch of target function lies in the function class F.

Assumption 4.8 (Statistical Functional Bellman Completeness). For any distribution ij : S — ([0, H))
and h € [H), there exists [ € FN which satisfies

fa(s,a) = 1[11:N((B7,h)#[]?hﬁ](s,a)) V(s,a) € S x A

5 SF-LSVI: STATISTICAL FUNCTIONAL LEAST SQUARE VALUE ITERATION

In this section, we propose SF-LSV1I for the distRL framework with general value function approximation.
Leveraging the result from Theorem 4.6, we introduce a moment least square regression. This approach
allows us to capture a finite set of moment information from the distribution, which can be unbiasedly
estimated. Unlike previous works (Wang et al., 2023; Chen et al., 2024), which rely on estimating the entire
distribution in infinite-dimensional spaces, our method enables to estimate unbiasedly in finite-dimensional
embedding spaces, effectively avoiding model misspecification.

Algorithm 1 Statistical Functional Least Square Value Iteration (SE-LSVI(J))

Input: failure probability 6 € (0, 1) and the number of episodes K
1: for episode k =1,2,..., K do

Receive initial state s¥

3. Initialize v1.n (75, (1)) < OV

4. forsteph=H,H—1,...,1do

5.

DF {s;,, ap,, V1N <(BTZ/ )#ﬁ’gﬂ(sz,ﬂ)) }(r,h')e[k—l]x[H] // Data collection

f';g ¢ argminge x| fllpp // Distribution Estimation
b () = wD((FM)E, -0

Qlﬁ( ) min{(f} ; )(1)(7 )

7 (-) = arg max,e 4 Qh a) LVECG)

10: i (nf(0) ¢ Qb van (nh() « (min{(FE)™ (), HY)

(7)) < VRO N(; () + i (G b))

122 forh=1,2,...,Hdo

13: Take action af < 75 (s¥)

14: Observe reward 7 (sy, af ) and get next state s _ ;.

+05(0), H}
= QE(,mh () /[ Optimistic planning

ne[2:N]

ne[2:N]

Overview. At the beginning of episode k& € [K], we maintain all previous samples
{(sh/5 a5, 75) Y (rh')el—1) x[#] and initialize a sketch 1. n (7541 (-)) = 0VN.Foreachsteph = H, ... 1,
we compute the normalized sample moments of target distribution {(B,, )70 1 (7 41) e With the
help of binomial theorem,

o E[(ZE (shn) 410" o HT e (fh’i(sf?ﬂ)) (rp)nr
wn((Brl,)#nh(sh’+1)) = n-1 = Hn-1
where Z ,’j and ﬁ,’j denote the random variable and the distribution of returns in the k-th episode, respectively.

Then we iteratively solve the N-moment least square regression
k-1 H

fh 5 argmlnz Z (Z f( (Shrsapr) wn<(6r;,)#ﬁ}€+1(5;'+1)))2

=1~h'=1 n=1

based on the dataset DF which contains the sketch of temporal target ¥;. ((BT}T, )l (5 +1))- Then
we define Q% (-,-) = min{(ﬂfﬁ)(l)(-, -} + b¥(-,-), H} and choose the greedy policy 7 (-) with respect
to QZ. Next, we update all N normalized moments of @)-distribution 1.y (n,@(-, )) and V -distribution

1N (ﬁﬁ()) . We repeat the procedure until all the K episodes are completed.
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6 THEORETICAL ANALYSIS

In this section, we provide the theoretical guarantees for SF-1L.SVI under Assumption 4.8. By applying
proof techniques from Wang et al. (2020) and extending the result through a statistical functional lens, we
generalize the concept of eluder dimension (Russo and Van Roy, 2013) to vector-valued function. This
complexity measure has been widely used in RL literatures (Ayoub et al., 2020; Wang et al., 2020; Jin et al.,
2020) to quantify the complexity of learning with function approximators.

Definition 6.1 (e-dependent, e-independent, Eluder dimension for vector-valued function). Let € > 0 and
Z ={(ss,a;)}1-1 €S x Abe a sequence of state-action pairs.

* A state-action pair (s,a) € S x A is e-dependent on Z with respect to FV if |f — g||z < e for
any vector-valued function f,g € FN, then |fV)(s,a) — gV (s,a)| < e

* An (s, a) is e-independent on Z with respect to FN if (s, a) is not e-dependent on Z.

s The e-eluder dimension dimg(F" ,¢) of a vector-valued function class F is the length of the
longest sequence of elements in S X A such that, for some € > ¢, every element is €' -independent
on its predecessors.

We assume that the function class 7 and state-action space S x A have bounded covering numbers.
Assumption 6.2 (Covering number). For any € > 0, the following holds:

o there exists an e-cover C(FN €) C FN with size |C(FN,¢)| < N(FN,e¢), such that for any
g € FN, there exists g € C(FN, €) with ||g — ¢'[|con < €

o there exists an e-cover C(S x A, €) with size |C(S x A,¢)| < N(S x A, ¢), such that for any

(s,a) € § x A, there exists (s',a’) € C(S x A, ¢) withmaxser |f(s,a) — f(s',a")] <€
The following two lemmas give confidence bounds on the sum of the [, norms of all normalized moments.
Lemma 6.3 (Single Step Optimization Error). Consider a fixed k € [K| and a fixed h € [H|. Let
2k = Ash ah)bren and Dhy = {(shah vuw (87, (i) )}
2([0, H)). Define f,’fﬁ = argmingsern Hf||2D;f . For any 77 and § € (0,1), there is an event £(7,9)

such that conditioned on (i}, ), with probability at least 1 — 6, for any i’ : S — ([0, H]) with
18 (1) = V1.8 (M) |lco,1 < 1/T' ,we have

]faranyﬁ S =
-1

[ Fu ) = o (BP0, < ¢ (N%Hwoga/a) +log N (FY, 1/T>)
for some constant ¢’ > 0.

Due to the definition of Bellman unbiasedness, we note that the moment sketch has a corresponding
vector-valued estimator ¢y, , as the identity function. This leads to a concentration results as the se-
quence of sampled sketches forms a martingale with respect to the filtration [}, induced by the history of

{(sF D) brepmn) Geew E[tr ((Br )i (7)) [F7] = v ((Br) wPuiil (57, a7) ).

Another notable aspect of Lemma 6.3 is the use of normalized moments E[Z"]/H"~! instead of raw

moments E[Z"]. This normalization reduces the size of the confidence region from O(H™) to O(v/N). This
adjustment is similar to scaling the objective functions in multi-objective optimization to treat each objective
equally, which prevents the model from disproportionally favoring objectives with larger scales.

Lemma 6.4 (Confidence Region). Let (FN)f = {f € FN|||f — ﬂfﬁHZZ},: < B(FN,5)}, where

B(FN,6) > ¢ - NH*(log(T/8) + log N (FN,1/T))
for some constant ¢ > 0. Then with probability at least 1 — §/2, for all k, h € [K| x [H], we have

V(B 4 Paiif (1)) € (FY)}:
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Lemma 6.4 guarantees that the sequence of moments from the target distribution
wlzN((BT,L(.7.))#[P;L77’£+1](',')> lies in the confidence region (FN)F with high probability. Sup-

ported by the aforementioned lemma, we can further guarantee that all Q-functions are optimistically
estimated with high probability, leading to the derivation of our final result.

Theorem 6.5. Under Assumption 4.8, with probability at least 1 — 6, SF—-LSVT achieves a regret bound of
Reg(K) < 2Hdimp(FN,1)T) + 4H+\/K Hlog(1/6).

Under weaker structural assumptions, we show that SE-LSVT enjoys a near-optimal regret bound of order
O(dgH 3 VK ), which is V/H better than the state-of-the-art distRL algorithm V-EST-LSR (Chen et al.,
2024). In the linear MDP setting, we have dg = O(d) and thus SF-LSVI achieves a tight regret bound as

O(Vd?H3K), which matches the lower bound Q(vd2H3K) (Zhou et al., 2021). Our analysis highlights
two main technical novelties that significantly reduce the order of regret in distRL framework:

1. We remove the dependency of (FN,5) = O(NH?log N(FN,1/T)) in our final results, com-
pared to previous works where the regret bound took the form Reg(K') = O(dgH+/B(FN,1/6)K)
(Osband et al., 2019; Wang et al., 2020) (See Appendix D.4). This refinement ensures that the regret
bound depends only on the pre-defined function class, rather than the number of extracted moment.

2. As shown in Table 1, we define the eluder dimension dg in a finite-dimensional embedding space
FN while other methods rely on an infinite-dimensional distribution space H C F°.

7 CONCLUSIONS

To overcome the infeasibility of dealing with the infinite-dimensionality of a distribution, we analyzed
the approximation error (model misspecification) inherent in distribution-based updates. We introduced a
new concept of Bellman unbiasedness, which enables to exactly learn a distribution with a sample efficient
manner. Based on this, we present a provably efficient distRL algorithm, SF-L.SVI, with general value
function approximation. Notably, our algorithm achieves a near-optimal regret bound of O(d eH VK ),
matching the tightest upper bound achieved by non-distributional frameworks (Zhou et al., 2021; He et al.,
2023).

One might wonder whether representing a distribution with a finite number of moments still introduces
approximation errors. Indeed, a reconstructed distribution using only finite information cannot perfectly match
the ground truth within infinite-dimensional distribution space. However, when measuring discrepancies
between two distributions within a finite-dimensional representation space, moment sketches provide a
unique characteristic of being the only representation that introduces no approximation error for these
distributions. Leveraging this property, an interesting future direction would be to reformulate regret in terms
of moment discrepancies rather than expected returns and to demonstrate the sample efficiency of distRL.
It is hope that this work triggers new insights and ideas for future research in establishing the provable
efficiency in practical distRL settings.

10
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APPENDIX
A  NOTATION

Table 2: Table of notation

Notation Description
S state space of size S
A action space of size A
H horizon length of one episode
T number of episodes
rh(s,a) reward of (s, a) at step h
Py (s'|s, a) probability transition of (s, a) to s” at step h
HF history up to step h, episode k
N number of statistical functionals
Q7 (s,a) Q@-function of a given policy 7 at step h
Vi (s) V -function of a given policy  at step h
Z[ (s, a) random variable of cumulative return ZZ:;I, rh(Shryan) |Sn = 8, ap = a,ap = Th(Spr)
Z;{(s) random variable of cumulative return Z,I;I,:h rhe(Shryan) |Sh = S, ap = Th (Shr)
nE(s,a) probability distribution of Z] (s, a)
nr(s) probability distribution of Z7 (s)
[P (4)] expectation over transition [Py, (-)] = Ey wp, (+)
(Br) 4 pushforward of the distribution through B,.(z) :==r + x
F n-th element of NV-dimensional vector f
1 £ loo max norm of f : X — R defined as || f||o0 = maxgex [ ()]
1 f1loo,1 l1-norm of max norm of f : X — R defined as || f||0,1 = 25:1 max,ex | £ ()]
FN a function class of N-dimensional embedding space
zZ a set of state-action pairs Z = {(s¢, az) Lill
D a dataset D = {(s¢, at, [d,(fl)7 e ,df‘”]) 1‘52'1
112 for £ 15 x A — R, define | {3 = TN, T, myez (/) (s10,))?
1713 for £ : 8 x A — R, define || f|| == S0y S50, (£ (51, a0) — di™)?
w™ (FN,s,a)  width function of (s, a) defined as w™ (F, s,a) = max; 4 rn [ £V (s,a) — g™ (s, a)|
f,’fﬁ a solution of moment least squre regression, defined as f,’fﬁ = argmingezn || f ”DE
fa a target sketch of distribution 7, defined as f5 := t1.n ((By) % [Pa])
(FN)E a confidence region at step h, episode k, defined as (FN)k == {f € FN| || f - f,’fﬁHé’k < B(FN,8)}
(1) a statistical functional 2, (R)S — RS
Y18 (7) a N—collection of statistical functional 2, (R)S — RV*S
Ppn (R) a domain of sketch ¢,
Ly n an image of sketch ¢;. v
T distributional Bellman operator, defined as 77 := (B,) [P
Ty sketch Bellman operator w.r.t ¢, defined as Ty (7) = ¢ ((BT) #[P7]
Ty empirical sketch Bellman operator w.r.t b, defined as 7;,3(7}) == ¢ <(BT)# []f”?ﬂ)
N(FN e covering number of 7V w.r.t the e—ball
dimp(FN,€) eluder dimension of 7V w.r.t €
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B TECHNICAL REMARKS

For an optimistic planning in Line 7 of pseudocode 1, we define the bonus function as the width function
bE(s,a) = wF((FN)k, s,a) where (FN)F denotes a confidence region at step h, episode k. When F is a
linear function class, the width function can be evaluated by simply computing the maximal distance of
weight vector. For a general function class F, computing the width function requires to solve a set-constrained
optimization problem, which is known as NP-hard Dann et al. (2018). However, a width function is computed
simply for optimistic exploration, and approximation errors are known to have a small effect on regret
Abbasi-Yadkori et al. (2011).

C RELATED WORK AND DISCUSSION

C.1 TECHNICAL CLARIFICATIONS ON LINEARITY ASSUMPTION IN EXISTING RESULTS

Bellman Closedness and Linearity. Rowland et al. (2019) proved that quantile functional is not Bellman
closed by providing a specific counterexample. However, their discussion based on counterexamples can be
generalized as it assumes that the sketch Bellman operator for the quantile functional needs to be linear.

They consider an discounted MDP with initial state sy with single action a, which transits to one of two
terminal states sy, s with equal probability. Letting no reward at state sg, Unif([0, 1]) at state s, and
Unif([1/K,1+1/K])at state s, the return distribution at state s, is computed as mixture 2Uni£([0,~])+

2unif([y/K, v +v/K]). Then the 5= —quantile at state s is 7. They proposed a counterexample where
each quantile distribution of state s1, ss is represented as % ZkKﬂ d21-1 and % ZkKﬂ d2141 respectively,
- K - K

1 . . 1 K _ 3y :
the 5= —quantile of state s¢ is g, (ﬁ Y ket 57@?1) + 57(2?1) ) = 5. However, this example does not

consider that the mixture of quantiles is not a quantile of the mixture distribution (i.e., tg (A1 + (1 —A)n2) #
AYg(m1) + (1 = A)py(n2)), due to the nonlinearity of the quantile functional. Therefore, this does not present
a valid counterexample to prove that quantile functionals are not Bellman closed.

Bellman Optimizability and Linearity. Marthe et al. (2023) proposed the notion of Bellman optimizable
statistical functional which redefine the Bellman update by planning with respect to statistical functionals
rather than expected returns. They proved that WW; -continuous Bellman Optimizable statistical functionals are
characterized by exponential utilities 1 log Ez, [exp(AZ)]. However, their proof requires some technical
clarification regarding the assumption that such statistical functionals are linear.

To illustrate, they define a statistical functional 1) and consider two probability distributions 77; = %(60 +n)
and 12 = d4() where ¢(h) = f~* (%(f(()) + f(h))) . Using the translation property, they lead ¢ (1) =

Yp(12) 0 2 (f(x) + f(x + ) = f(x + ¢(h)) for all 2 € R. However, this equality ¢ (%(51 + 5z+h)) =

1(f(z) + f(z + h)) holds only if ¢ is linear, which is not necessarily a valid assumption for all statistical
functionals.

C.2 EXISTENCE OF NONLINEAR BELLMAN CLOSED SKETCH.

The previous two examples may not have considered the possibility that the sketch Bellman operator
might not necessarily be linear. However, some statistical functionals are Bellman-closed even if they are
nonlinear, so it is open question whether there is a nonlinear sketch Bellman operator that makes the quantile
functional Bellman-closed. In this section, we present examples of maximum and minimum functionals that
are Bellman-closed, despite being nonlinear.

In a nutshell, consider the maximum of return distribution at state s1, so is v,y + v/ K respectively. Beyond
linearity, the maximum of return distribution at state sy can be computed by taking the maximum of these
values;
max(max(7(s1)), max(7(sz))) = max(y,y +7/K) =7+ /K

which produces the desired result. This implies the existence of a nonlinear sketch that is Bellman closed.
More precisely, by defining max,p(.|s,q) and ming  p(.|s,q) as the maximum and minimum of the sam-
pled sketch ¢ ((B,.) #7(s")) with the distribution P(:|s, a), we can derive the sketch Bellman operator for
maximum and minimum functionals as follows;
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* T (wmaX(ﬁ(S))> = MaXg/P(-|s,a) (wmax((Br)#ﬁ(Sl)))
* T (Vi ((5)) ) = mingr(,0) (Yin((Br) () )

C.3 NON-EXISTENCE OF SKETCH BELLMAN OPERATOR FOR QUANTILE FUNCTIONAL

In this section, we prove that quantile functional cannot be Bellman closed under any additional sketch. First
we introduce the definition of mixture-consistent, which is the property that the sketch of a mixture can be
computed using only the sketch of the distribution of each component.

Definition C.1 (mixture-consistent). A sketch v is mixture-consistent if for any A € [0, 1] and any distribu-
tions m,m2 € Py (R), there exists a corresponding function hy, such that

O+ (1= Nm2) = (¥0m), (), A)
Next, we will provide some examples of determining whether a sketch is mixture-consistent or not.

Example 1. Every moment or exponential polynomial functional is mixture-consistent.

Proof. Foranyn € [N]and A € C,
Ezxm+0-nn: (2" exp(AZ)] = AEzn, [Z" exp(AZ)] + (1 = N)Ezwy, [Z2" exp(AZ)].

Example 2. Variance functional is not mixture-consistent.

Proof. Let A = % and Z,Y be the random variables where Z ~ %50 + %52 andY ~ %6k + %5“2. Then,
Var(Z) = Var(Y') = 1. While RHS is constant for any &, LHS is not a constant for any &, i.e.,
1.9
Varx 3 (oot4o2) 4 (3ot hors) (X) = 7 (K7 +5).
[ ]

While variance functional is not mixture consistent by itself, it can be mixture consistent with another
statistical functional, the mean.

Example 3. Variance functional is mixture-consistent under mean functional.

Proof. Notice that mean functional is mixture-consistent. We need to show that variance functional is
mixture-consistent under mean functional.

Varz g, +(1- a2 [Z]
=Ezxm+1-3ml2%]) = Ezenm+1-rmZ])?
= AE 2y [2%] + (1 = NE 7, [2%] = (B2, [Z) + (1 = NE 20, [2])°
= A(Varzn, [Z] + (Ezn, [2])%) + (1 = A)(Varze, [Z] + Bz, [2])?)
— (AEzm, [Z] + (1 = MEzn,[2])%.
|

This means that to determine whether it is mixture-consistent or not, we should check it on a per-sketch
basis, rather than on a per-statistical functional basis.
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Example 4. Maximum and minimum functional are both mixture-consistent.

Proof.
max [Z] = max(max[Z], max[Z])
ZrAmA(1=2)n2 Z~m Z~n2
and
min [Z] = min( min [Z], min [Z])
ZrAm+(1=X)n2 Zrmy Z~m2

Since maximum and minimum functionals are mixture consistent, we can construct a nonlinear sketch
bellman operator like the one in section C.2. This is possible because there is a nonlinear function h, that
ensures the sketch is closed under mixture.

Before demonstrating that a quantile sketch cannot be mixture consistent under any additional sketch, we
will first illustrate with the example of a median functional that is not mixture consistent.

Example 5. Median sketch is not mixture-consistent.

Proof. Let A\ = % and Z,Y be the random variables where Z ~ 0.2y + 0.801 and Y ~ 0.65¢ + 0.40, for
some 0 < k < 1. Then 9mea(Z) = 1 and ¥yea(Y) = 0. However,

medXZ% [X] = wmed(o.ﬁléo + 0.20; + 0.4(51) =k

which is dependent in . n

Lemma C.2. Quantile sketch cannot be mixture-consistent, under any additional sketch.

Proof. For a given integer N > 0 and a quantile level a € [0,1], let A = % and a random variable
Y ~ pyodo + PyrOyy + -+ DynOyn (0 < 31 < -+ < yny < 1) where p,, > « so that ¢, (Y) = 0.
Consider another random variable Z ~ p, do + p;, 01 Where p., < « so that ¢, (Z) = 1. Then the

a—quantile of the mixture X = ¥$Z is

n

1 1
g, [X] = yn where n = min {n < N‘ 57;017%, + 3P0 > a} .

Letting p,, = 2a — Y, Py, ,» We can manipulate 1, [X] to be any value of y,,. Hence, ¥ (¢, )[X] is a
function of all possible outcomes of Y.

If there exists a finite number of statistical functionals which make quantile sketch mixture-consistent,
then such sketch would uniquely determine the distribution for any N. This results in a contradiction that
infinite-dimensional distribution space can be represented by a finite number of statistical functional. W

Lemma C.3. If a sketch v is Bellman closed, then it is mixture-consistent.

Proof. Consider an MDP where initial state sy has no reward and transits to two state s;, so with probability
A, 1 — X and reward distribution 71, 7j2. Since 1) is Bellman closed, ¥ (7j(so)) is a function of ¥ (7(s1)) and

b(7(s2)), (ie., (7(s0)) = gy (Y (7(s1)), ¥(7(s2))) for some gy). Since ¥(7(s0)) = Y(Ai(s1) + (1 -

A)71(s2)), it implies that ¢ is mixture-consistent.

Combining the results of Lemma C.2 and Lemma C.3, we prove that a quantile sketch cannot be Bellman
closed, no matter what additional sketches are provided.
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D MAIN PROOF

Theorem (4.3). Quantile functional cannot be Bellman closed under any additional sketch.

Proof. See Lemma C.2 and Lemma C.3. |

Lemma (4.5). Let Iy, be a CDF of the probability distribution 7 € 2 (R)S. Then a sketch is Bellman
unbiased if and only if the sketch is a homogeneous of degree k, i.e., there exists some vector-valued function
h=h(zy, - ,zp) : X* — RN such that

/ /hml, eR)dFy(a1) - - dFy(ap).

Proof. (=) Consider an two-stage MDP with a single action a, and an initial state so which transits to
one of terminal state {si,--- , sk} with transition kernel P(+|sg, a). Assume that the reward r(so) = 0.

Then 7j(so) = 3K w1 P(5k)0y(s,)- Note that s7, - - -, 57, are independent and identically distributed random
variable in distribution P(+|s, a).

Eqmr(isna) [0 (8((Ba(s))s v ((Bwi(sh)) )| = vrew ((Br) 4B oo, [1(5)])
= Egnp(|s0,0) [@p (¢(5r(s;))7 = ( r(s)) ))} ( s/ ~B(-|50, a)[5r(sf)])

= By p(|50,a) [éf’w( (51),-- » 9(sk) )} = (77 50 )

— [ [ hst B () By () = 0(n(s0)).
(<)

¢((Br)#]Es/~P(.|s 2)l7 [7(3/)])

/ / Ty ) A B B o N (@1)s  AF B uE L ()] ()
= /-~-/h(x1 +r, g +T)d<Es’~]P’(-|s,a)Fﬁ(s’)(ml))a aE 7d<Es’~]P’(-\s,a)Fﬁ(s’)(xk))
= Eq/NIP’( |s,a) |: SEl +r, T+ T)dF (q/)(l'l) an(s/)(l'k)]

= Egp(|s,a) [¢((B )#[77(3/)]”

Theorem (4.6). The only finite statistical functionals that are Bellman unbiased and closed are given
by the collections of 11, . ..,YN where its linear span {ZTZLO antn| an € R VN} is equal to the set
of exponential polynomial functionals {n — Ez.,[Z'exp (AZ)]| 1 = 0,1,...,L,\ € R}, where 1) is
the constant functional equal to 1. In discount setting, it is equal to the linear span of the set of moment
functionals {n — Ez.,[Z']|1=0,1,..., L} for some L < N.

Proof. Our proof is mainly based on the proof techniques of Rowland et al. (2019) and we describe in an
extended form. Since their proof also considers the discounted setting, we will define B, (z) = r + vz

for discount factor v € [0, 1). By assumption of Bellman closedness, 1), ((Bm) 27(s )) will be written as
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) for some g. By assumption of Bellman unbiasedness and Lemma 4.5, both ¢1. x5 (77(s"))

g(ra’%d)l: ( ( )
and ¢, (( ) 277(S )) are affine as functions of the distribution 7j(s’),

Y (e (s') + (1= a)iz(s"))

= Ez,nan (s)+(1- a)nz(e'>[h1 N(Zy - Z)

=Bz, i n N (21, Ze)l + (1= Bz, sy [hn(Z1, -+ Zi)]
= arn(m(s) + (1 - a) N (12(5"))

and

Un((Bro) e (s) + (1= a)iia(s))
=Bz, caiy (s)+1-a)ia(s) n (T + 721, 1+ Z)]
=aBz, g [hn(r+721, v +7Z6)] + (1 = )z, gy [n(r + 721, 7 + 7 Z)]

= ot (B (1)) + (1= @) (B ()

Therefore, g(r,~, -) is also affine on the convex codomain of 1. y. Thus, we have

N
7 Nﬁ[¢wn (T + 7217 e, T + ,YZ/C)} = 0,0(7“, r}/) + Z An! (’I", V)Ezlwﬁ[¢wnl (Zlv T aZk)]

n’'=1
for some function ag.x : R x [0, 1] — R. By taking 7j(s’) = d,,, we obtain

N
G (1, yz) = ao(r, ) + Y aw ()b, (2, ).

n/=1

According to Engert (1970), for any translation invariant finite-dimensional space is spanned by a set of
function of the form

{z — zlexp(\jz)|j € [J],0<1 < L}

for some finite subset {Aq,--- , A;} of C. Hence, each function = — ¢y, (x,--- , x) is expressed as linear
combination of exponential polynomial functions. In addition, the linear combination of ¢, should be
closed under composition with for any discount factor y € [0, 1], all A; should be zero. Hence, the linear
combination of ¢, , - -+ , ¢, must be equal to the span of {z — z!| 0 < 1 < L} for some L € N.

Lemma (6.3). Consider a fixed k € [K| and a fixed h € [H]. Let Z} = {(sh,a},) }refp—1) and
’ijﬁ = {(sh,ah,iplzN(( T ) #n(Sh ))} - forany 7 : § — ([0, H]). Define ﬁfﬁ =
arg min ¢ ”f”Dk . Forany i and 6 € (0,1), there is an event £(1, §) such that conditioned on £(1), 6),
with probability at least 1 — S, forany i : S — ([0, H)) with ||Y1.n(7) — V1.8 (()]|cor < 1/T or
anl [t (') — Yn(D)|loo < 1/T, we have

[ () = v (B a1, < € (N%Hwoga/a)+1ogN<fN,1/T>)

for some constant ¢ > 0.

Proof. Define the sketch of target f; : S x A — RY,

fals) = v (Bog. )4 Pl ))

for all ¢ € [N].
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Forany f € F,

2 2
11 =l

N

=3 Y (k) — v (B 6T)) — (78 F D) — v (B 6T )

n=1 47 qrc 2k
sh,ahEZh a7

N
=3 > (Fshap) — £ (55 ap))?
n=1

s;,a;ezﬁﬁ,
200 (7, a) = 157 (57 00)) (157 (57 aR) = 0 (Brp) 7 (5741)) )

N
> |If = frlZe =4 D 15 = fo oo (H + 1) 2E]
n=1

+i S [0k a0) = 57k ai) (57 5k k) = Ua ((Brp)wii(570)) ) |

n=1 47 g7 c 2k
Shean €2,

X7, (f™))

N
2N =yl =N+ 0 =[5 3 e,

n=1g7 g7 c 2k
sh,ahEZh,ﬁ,

For the first inequality, we change the second term from 7’ to 7; which are the e-covers. Notice that
AC - BC' > —|AC — BC'| > —|(A— B)C| —|(A— B)C'| > —2|A — B|| max(C, C")|.

(F sk ap) = 157 (ko ai) (£57 (57 07) = o ((Big) il (5701 )
— (P (s a5) = 15 (s a0)) (£ (57 ah) = 0 (B )i(5741) ) )

> 2| £ (shaf) — £ (sh,ap)|
xcmax (| 157 sk an) = ((Bop) et (s7i) ) [ | £47 s a7) = o ((Bop)wii(s74)) |
> 2| £ (shaf) — £ (s, al) | (H + 1)

For the second inequality, consider 77’ : S — £2(]0, H]) with ny:l 110 (') — Yn () |loo < 1/T. We have

157 = 5 oo = mavx| D7 H [ ([P](5, @)) = o (B 5,0} ™ /"

n’=1

n
< E max
S/
n’'=1

<1T.

"/’n’ (ﬁ(s/)) - ¢n’ (ﬁl(s/))
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Defining [F} as the filtration induced by the sequence {(s},,a},)}rnem—1xm U

{(sh,a}), (s5,ab),. .., (s}, af)}, notice that
N
E[ > xi(f™)[F7]
n=1

N
= 3200 sk ap) — £ ko @) (4" (57 a7) — B[ ((Brp)ei(s70) ) [F7])

3
I
-

I
™=

20/ (shya7) = 3 (5hs i) (15" (57 0R) = B o oo [ ((Br) (7)) )

3
Il
—

I
NE

2/ (5F,07) = S5 (5T D) (570 0) = o (B ) 4B, g [1(5F0)] )

I
=i
1

N N
G| = | D25 sk a) = 15 sk ai) S (57 07) = o (B wii(s7.0)) )|
n=1

n=1

IN

N
max {20 (sh,a7) = v (Bup)i(sien) )) } D [£ (s 07) = £ (s 07)
1

n€[N]

n=

N
<oH+1)Y ’f(”)(s;, ap) — 1" (s}, a)
n=1

In third equality, we emphasize that only Bellman unbiased sketch can derive the martingale difference
sequence which induce the concentration result. Since every moment functional is commutable with mixing
operation, the transformation ¢y, in Definition 4.4 is identity for all n € [N]. Hence, we choose the sketch
as moment which already knows ¢.;.

By Azuma-Hoeffding inequality,

2

PH Z ZX f(n ’>€]§2€Xp(— € 2)

(rielk=1)x(H] n=1 2(2(H + 1) o myeppoyxiin ( T 1O = £71)

2
SQeXp(—

€

202(H + D)2 S pyegi-tjugan) (N o 1100 = £572) )

2

=20 (= onpur TP fn;;f)

where the second inequality follows from the Cauchy-Schwartz inequality.

We set

(M)

= \/SN(H+ D2I1S = fall%y log 5

With union bound for all f € C(F¥,1/T), with probability at least 1 — 4,

2 XN:X’T’(f(n))‘SC'Né(H+1)IIffnllzﬁ\/log<W>

(7,h)Elk—1]x[H] n=1

for some constant ¢/ > 0.
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Forall f € 7V, thereexists g € C(FN,1/T), such that || f —g||o0,1 < l/Tong=1 £ —g™ || < 1/T
forall n € [N],

> ix;<f<”>>\<| S S <”>)+2H+1|zh|zf

(7,h)Elk—1]x[H] n=1 (t,h)Elk—1]x[H] n=1

N N lT
Sch<H+1>||g—fﬁzMog( /) )+ 2N(H +1)

1 }'N 1/T
Sc’N%(H+1)(|\f—fﬁ||Z§+ \/log / ))+2N(H+1)
]-'N 1T
< INE(H+1)(|f - for |Zk+2\/1og / )>+2N(H+1)
where the third inequality follows from,
N
I =gz <> > 1f"™shan) — " (sTan))
=1 (r,h)€[k—1]x[H]
Nr(L)’
< _
<7 ()
<1.
Recall that ff |, = argminser || f|3. . Wehave |ff 2. —|fyl%: <0, whichimplies,
’ h,n’! ’ h,n’ h,n’

0>\ Ffw e =l
= 117 — 3
N
23 Y [ $han) = £ ke @i (57 aR) = Ya ((Brp) e (574 )]
n=1 (r,h)€[k—1]x[H]

> | Fky — Fr %y — N + D)1y — firllzp +2)y/los(2/) +log N (FY, 1/T) — 6N (H +1).

Recall that if 22 — 2az — b < 0 holds for constant a, b > 0, then 2 < a ++v/a2 + b < ¢ - a for some constant
c > 0.

Hence,

1ty — fllze < /(N3 H\og(1/6) +1og N'(FN,1/T))

for some constant ¢/ > 0. [ |

Lemma (6.4). Let (FN)F = {f € FN||f - fhn|| <B(]:N,5)}, where

BFN6) > ¢ - NHQ(log(T/5) +1og N(FN,1/T))
Sfor some constant ¢ > 0. Then with probability at least 1 — §/2, for all k, h € [K| x [H|, we have

Un ((Bru ) PaTE ) € (FY)E
Proof. Forall (k,h) € [K] x [H],

min{ () + b5, () H})‘feC}‘N 1/T)} { } n=1

i min{ f™(-,") H})‘feC]—'N 1/T)} {o} 2<n<N

22



Under review as a conference paper at ICLR 2025

is a (1/T)-cover of t1.n (nf, (-, -)) where

mln{(fil;rl)(l)(’)+b§+1(a)vH} n=1landh < H
¢1:N(77}I§+1('7 )) = mln{(f}]erl)(n)(v )aH} 2 <n< Nand h < H 5
oV h=H

i.e., there exists 11, (1) € S such that [|[¢)1.x (1) — Y1.8 (1) 1) |loe,1 < 1/T. This implies
8 i= {tra (n(:, arg max i1 (n(,0))) ) | () € S

is a (1/T)-cover of 11.n (77, ) with log(|S[) < log N'(FN,1/T).
For each ¢1.5(77) € S, let £(7,6/2|S|T) be the event defined in Lemma 6.3. By union bound for all
YN (1) € S, wehave Prl(, s €(7,6/2[S|T)] = 1—6/2T.

Let ¢1.n(7) € S such that |[11. x5 (77) — 1/11:N(77;]§+1)||oo,1 < 1/T. Conditioned on ﬂsN(ﬁ)es E(n,8/2|S|T)
and by Lemma 6.3, we have

[0t = i (B a0 [, < ¢ (NER08(T/8) + 10N (Y, 1/79))

for some constant ¢’ > 0.

By union bound for all (k,h) € [K] x [H], we have wlzN((B,ﬂh(w.))#u@hﬁz“](-, -)) € (FM)* with
probability 1 — /2. |

Lemma D.1. Ler Q% (s, a) = min{H, fF(s,a) + bk (s, a)} for some bonus function bl (s, a) for all (s, a) €
S x A Ifbf(s,a) > wM (FN)E, s,a), then with probability at least 1 — §/2,

Qh(s,a) < Q)(s,a) and Vi (s) < Vi (s)
forall (k,h) € [K] x [H], forall (s,a) € S x A.

Proof. We use induction on i from h = H to 1 to prove the statement. Let £ be the event that for
(k,h) € [K] % [H], ¥1.x ((Brh(".))#[Phﬁ’gH](-, .)) € (FN)k. By Lemma 6.4, Pr|€] > 1 — 6/2. In the
rest of the proof, we condition on £.
When h = H + 1, the desired inequality holds as Q7,1 (s,a) = Vj;, 1 (s) = Q%1 (s,a) = VE 1 (s) = 0.
Now, assume that Q5 (s,a) < QF (s, a) and V;7,,(s) < ViF,,(s) for some h € [H]. Then, for all
(s,a) € S x A,
Qh(s,a) = min{H,ru(s, a) + [PaV1](s, a)}

< min{H,r,(s,a) + [PrV;F1](s,a)}

< min{H, ff(s,a) + w(FF, s, a)

= min{H, Q}(s,a) — b} (s,a) + w (FF,s,a)}

< Qi(s,a)

Lemma D.2 (Regret decomposition). With probability at least 1 — § /4, we have

K H
Reg(K) < (20} (sh, ak) + &5),
k=1h=1

where & = [P (V}F, | — Vh’fl)] (sf,ap)—(ViF L (shyy) — Vh’fl (sf11)) is a martingale difference sequence
with respect to the filtration ]Ffl induced by the history HZ
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Proof. We condition on the above event £ in the rest of the proof. For all (k, h) € [K] x [H], we have

72629 = e (B Batlinl )

h

< B(FN,9).

Recall that (FN)} = {f € FN | |If — fE,I%. < B(FN,6)} is the confidence region. Since
’ h

¢11N((Brh(.,))#mm,’g e -)) € (FN)E, then by the definition of width function w( (FF, s, a), for
(k,h) € [K] x [H], we have

01 (Bru o) # Pt )(s.0)) = (7 ) (5. a)|
ru(s,0) + Vil (s, ) = (F ) (s, ).

=1
K

= ZQ?(SUM) Q7r (Sl’al)
k=

K
:ZQIf(SIfaalf) (r1(sy, af) + PV (sh, af)) + (ra (st af) + [P1V3](sY, al))

K
< > wO(FNE, st ab) 1ok st ab) + [ (1 = V) (s, ab)
k=

K
< ST wO((FNE, s5, ab) 40k (sh, ab) + (VE(s5) — Vi (s5)) + &b

K H

<D0 D @D (FNE, sk, ap) bk (sh, af) +€F)
k=1h=1
K H

<D (@Mh(shap) + )

=
I
—
>
Il
—

It remains to bound Y1 S0 bk (sk k), for which we will exploit fact that F has bounded eluder
dimension.

Lemma D.3. [fbf(s,a) > wM ((FN)E, s,a) forall (s,a) € S x Aand k € [K| where
(FNh = A € FNIIf = TR allZe < BFN.8)},
then

N
ZZl{bk shoal) > el < (M 1) dimp (FN ¢)
k=1h=1 ¢
for some constant ¢ > 0.
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Proof. We first want to show that for any sequence {(s1,a1),...,(Sk,as)} € S X A, there exists j €
[k] such that (s;,a;) is e-dependent on at least L = [(k — 1)/dimg(F™,€)] disjoint subsequences in
{(s1,a1),...,(sj—1,a;—1)} with respect to V. We demonstrate this by using the following procedure.
Start with L disjoint subsequences of {(s1,a1),...,(sj-1,a;-1)}, B1, Ba, ..., B, which are initially empty.
For each j, if (s;, a;) is e-dependent on every B, ..., B, we achieve our goal so we stop the process. Else,
we choose 7 € [L] such that (s;, a;) is e-independent on B; and update B; < B; U {(s;,a;)}, j < j + 1.
Since every element of 3; is e-independent on its predecessors, |B;| cannot get bigger than dimg (F%, €) at
any point in this process. Therefore, the process stops at most step j = Ldimg(FV,¢) + 1 < k.

Now we want to show that if for some j € [] such that b% (s;, a;) > €, then (s;, a;) is e-dependent on at most
4B(FN,8)/€? disjoint subsequences in {(s1,a1), ..., (sj—1,a;—1)} with respect to FN. If b (s;,a;) > €
and (s;,a;) is e-dependent on a subsequence of {(s},a}),...,(s;,a;)} C {(s1,a1),...,(sk,ax)}, it
implies that there exists f,g € F¥ with || f — f,’jﬁHQZﬁ < B(FN,68) and ||g — f,’jﬁHQZf < B(FN,6) such
that f(1) (s}, a}) — g™ (s}, a}) > e. By triangle inequality, || f — 9”22;3 < 4B(FN ). On the other hand, if

(sj,a;) is e-dependent on L disjoint subsequences in {(s1,a1),. .., (s, ax)}, then
ABFN0) 2 1f = glZe= IFY = g W5 = Le®
resulting in L < 43(FY, §)/€2. Therefore, we have (k/dimg(FY,€)) — 1 < 48(FN,§)/e® which results

m
K< <4ﬁ(§5) + 1) dimg (FV, €)
[

Lemma D.4 (Refined version of Lemma 10 in Wang et al. (2020)). Ifbf (s, a) > wV ((FN)k s, a) for all
(s,a) € S x Aand k € [K], then

K H
DO bi(skaf) < Hdimg(FN,1/T).
k=1h=1

Proof. We first sort the sequence {b(s¥,af)} ne(xix(m) in a decreasing order and denote it by
{e1,...,er}(e1 > ea > -+ > er). By Lemma D.3, for any constant M > 0 and ¢; > 1/VMT,
we have

4B(FN,6)

AB(FN,5)
ts ( Me?

0 +1)dimE(]:N,\/Met) < (

+ 1)dimE(]-'N, 1/T)
which implies

t ~1/2 [43(FN 5)
e = (dimE(fN,l/T) N ) M

for t > dimg(F™N,1/T). Since we have ¢; < H,

T T T
Y=Y elfe < 1/VMT}+) el{e; > 1/VMT,t < dimp(FN,1/T)}
t=1 t=1 t=1

T
+ Y ed{e; > 1/VMT,t > dimg(FN,1/T)}

t=1
1 . t ~1/2 [4B(FN 3)
< —— + Hdimg(FN,1/T) + Z — 1 2P %)
M dim (FN 1T)<t<T dimg(FN,1/T) ) M
1 N T 2 16(FN . 3)
< - P 07
< o Hdims (F ’1/T)+2(dimE(]-"N,1/T) 1) dimp(FN,1/7) -
1
= —— + Hdimg(FN,1/T) + /16 - dimg(FN,1/T) - T - B(FN,8) /M.
g+ HAmE(FY1/T) 4\ 16 dimp(FN,1/7) T 6(FY, )/
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Taking M — oo,

K H
DO bi(skaf) < Hdimg(FN,1/T).
k=1h=1
]

Theorem (6.5). Under Assumption 4.8, with probability at least 1 — 6, SF—-LSVT achieves a regret bound of

Reg(K) < 2Hdimg(FN,1/T) + 4H+/K Hlog(2/5).

Proof. Recallthat &f = [Py (Vi —Vimi)I(sk, af) = (ViE (sh )= VL1 (sF.1)) is a martingale difference
sequence where E[¢F|FF] = 0 and |¢F| < 2H. By Azuma-Hoeffding’s inequality, with probability at least
1-4/2,

K H
> ) & <4H\/KHlog(2/9).
k=1h=1

Conditioning on the above event and Lemma D.4, we have

K H K H
Reg(K) <2) > bilsh.ap)+ Y > &

k=1 h=1 k=1h=1

< 2Hdimg(FN,1/T) + 4H+/K Hlog(2/)
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