
Under review as a conference paper at ICLR 2024

Figure 6: Increasing the context length (left) and number of attention heads (right) of DT on both
ATARI and D4RL. ATARI curves average over BREAKOUT, QBERT, SEAQUEST, and PONG. D4RL
curves average over all tasks and data splits. We see that scaling context length and attention heads
benefits performance on ATARI, but not on D4RL, though the observed benefit of increasing the
number of attention heads is not statistically significant.

A ARCHITECTURAL PROPERTIES OF DECISION TRANSFORMERS

Here, we study the impact of architectural properties of DT, namely the context length, # of attention heads, # of
layers, and embedding size. Full experimental results are in Appendix H.

Context length: The use of a context window makes DT dependent on the history of states, actions, and rewards,
unlike CQL and BC. Figure 6 (left) demonstrates the role of context length for DT. Having a context length
larger than 1 (i.e., no history) did not benefit DT on D4RL, while it helped on ATARI, where performance is
maximized at a context length of 64. This finding indicates that some tasks may benefit from a more extensive
knowledge of history than others. The deterioration in performance, as context length increases, is likely due to
DT overfitting to certain trajectories.

Attention Heads: While the importance of the number of Transformer attention heads has been noted in NLP
(Michel et al., 2019), it is an open question how the trends carry over to offline RL. Figure 6 (right) shows the
impact of this hyperparameter on DT. We observed monotonic improvement on ATARI, but no improvement
on D4RL. One of the primary reasons for this discrepancy is that there is more room for an agent to extract
higher rewards on ATARI than D4RL. For instance, DT achieved an expert-normalized score of over 320 on the
BREAKOUT ATARI game, but never gets over 120 in D4RL. This suggests there is more room for scaling the
data/parameters to improve results on ATARI.

Number of layers: This was discussed in Section 4.7, with results in Figure 4.

Embedding size: Increasing the embedding size of DT beyond 256 did not result in any improvement in ATARI;
see Table 20 in Appendix H for results.

B EXTENDED BACKGROUND

In the reinforcement learning (RL) problem, an agent interacts with a Markov decision process (MDP) (Puterman,
1990), defined as a tuple (S,A, T, R,H), where S and A denote the state and action spaces, T (s0, a, s) =
Pr(s0|s, a) is the transition model, R(s, a) 2 R is the reward function, and H is the (finite) horizon. At each
timestep, the agent takes an action a 2 A, the environment state transitions according to T , and the agent
receives a reward according to R. The agent does not know T or R. Its objective is to obtain a policy ⇡ : S ! A
such that acting under the policy maximizes its return, the sum of expected rewards: E[

P
H

t=0 R(st,⇡(st))]. In
offline RL (Levine et al., 2020), agents cannot interact with the MDP but instead learn from a fixed dataset of
transitions D = {(s, a, r, s0)}, generated from an unknown behavior policy.

Q-Learning and CQL. One of the most widely studied learning paradigms is Q-Learning (Sutton and Barto,
2018), which uses temporal difference (TD) updates to estimate the value of taking actions from states via
bootstrapping. Although Q-Learning promises to provide a general-purpose decision-making framework, in the
offline setting algorithms such as Conservative Q-Learning (CQL) (Kumar et al., 2020) and Implicit Q-Learning
(IQL) (Kostrikov et al., 2021) are often unstable and highly sensitive to the choice of hyperparameters (Brand-
fonbrener et al., 2022). In this paper, we will focus on Conservative Q-Learning (CQL). CQL (Kumar et al.,
2020) proposes a modification to the standard Q-learning algorithm to address the overestimation problem by
constraining the Q-values so that they do not exceed a lower bound. This constraint is highly effective in the
offline setting because it mitigates the distributional shift between the behavior policy and the learned policy.

14



Under review as a conference paper at ICLR 2024

More concretely, CQL adds a regularization term to the standard Bellman update:

min
✓

↵

 
Es⇠D

"
log

 
X

a0

exp(Q✓(s, a
0))

!#
�Es,a⇠D [Q✓(s, a)]

!
+ TDError(✓;D), (1)

where ↵ is the weight given to the first term, and the second term is the distributional TDError(✓;D) under the
dataset, from C51 (Bellemare et al., 2017).

Imitation Learning and BC. When the dataset comes from expert demonstrations or is otherwise near-optimal,
researchers often turn to imitation learning algorithms such as Behavior Cloning (BC) or TD3+BC (Fujimoto
and Gu, 2021b) to train a policy. BC is a simple imitation learning algorithm that performs supervised learning
to map states s in the dataset to their associated actions a. Due to the reward-agnostic nature of BC, it typically
requires expert demonstrations to learn an effective policy. The clear downside of BC is that the imitator cannot
be expected to attain higher performance than was attained in the dataset.

Sequence Modeling and DT. Sequence modeling is a recently popularized class of offline RL algorithms that
includes the Decision Transformer (Chen et al., 2021) and the Trajectory Transformer (Janner et al., 2021).
These algorithms train autoregressive sequence models that map the history of the trajectory to the next action. In
the Decision Transformer (DT) model, the learned policy produces action distributions conditioned on trajectory
history and desired returns-to-go R̂t0 =

P
T

t=t0 rt. This leads to the following trajectory representation, used
for both training and inference: ⌧ = (R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT ). Conditioning on returns-to-go
enables DT to learn effective policies from suboptimal data and produce a range of behaviors during inference.

C ADDITIONAL DATASET DETAILS

Humanoid Data In this section, we present the details of the HUMANOID offline Reinforcement Learning
(RL) dataset created for our experiments. We trained a Soft Actor-Critic (SAC) agent (Haarnoja et al., 2018) for
3 million steps and selected the best-performing agent, which achieved a score of 5.5k, to generate the expert
split. To create the medium split, we utilized an agent that performed at one-third of the expert’s performance.
We then generated the medium-expert split by concatenating the medium and expert splits. Our implementation
is based on (Raffin et al., 2021) and employs the default hyperparameters for the SAC agent (behavior policy).
Table 5 displays the performance of all agents across all splits of the HUMANOID task. Furthermore, Table 6
provides statistical information on the HUMANOID dataset.

Task BC DT CQL

Humanoid Medium 13.22 ± 4.25 23.67 ± 2.48 49.51 ± 0.77
Humanoid Medium Expert 13.67 ± 5.21 52.63 ± 1.92 54.1 ± 1.36

Humanoid Expert 24.22 ± 5.37 53.41 ± 1.32 63.69 ± 0.22
Average 17.03 43.23 55.76

Table 5: Performance of agents on a high dimensional state space task. CQL seems better suited to
tasks involving higher state space dimensions.

Task # of trajectories # of samples

Humanoid Medium 4000 1.76M
Humanoid Expert 4000 3.72M

Humanoid Medium Expert 8000 5.48M

Table 6: Dataset statistics for HUMANOID. The number of samples refers to the number of environ-
ment transitions recorded in the dataset.

Robomimic: We visualize the return distribution of ROBOMIMIC tasks, employing a discount factor of 0.99,
as illustrated in Figure 7 and Figure 8. It becomes evident that the discount factor has a significant impact on the
data’s optimality characteristics. PH features shorter trajectories, resulting in a higher proportion of high-return
data.

D ADDITIONAL EVALUATION DETAILS

We specify our sampling procedure used to evaluate the ATARI benchmark, used in Section 4.7 and Section A.
The ATARI offline dataset (Agarwal et al., 2020) contains the interaction of a DQN agent (Mnih et al., 2015) as

15



Under review as a conference paper at ICLR 2024

Figure 7: Return Distribution in Proficient and Multi Human splits of Robomimic Can environment
shown with gamma set to 0.99. Proficient Human trajectories are shorter in length compared to Multi
Human trajectories. Even though PH and MH datasets contain the same number of trajectories, the
PH dataset contains more near-expert data.

Figure 8: Reward Distribution in Machine Generated splits of Robomimic Can environment is shown
with gamma set to 0.99. The sparse variant has more high return trajectories.

it is trained progressively in 50 buffers. Each observation in the dataset contains the last 4 frames of the game,
stacked together. Buffers 1 and 50 would contain interactions of the DQN agent when it is naive and expert
respectively. Our results are averaged across four different experiments. Each experiment performed a sampling
of 500k timestep data from the buffers numbered 1) 1-50 2) 40-50 (DQN is competitive), 3) 45-50, and 4) 49-50
(DQN is expert). We study the architectural and scaling properties of DT in this dataset, where we consider four
games: BREAKOUT, QBERT, SEAQUEST, and PONG. We follow the protocol of Lee et al. (2022) and Kumar et al.
(2023) by training on the Atari DQN Replay dataset, which used sticky actions, but then evaluating with sticky
actions disabled.

E DISENTANGLING DT AND BC

In this section, we experimented with an additional baseline, “BC Transformer,” a modified version of DT
that does not perform conditioning on a returns-to-go vector and has a context length of 1. As previously
mentioned, we set the context length to 1 in the case of DT for running experiments on ROBOMIMIC as well.
This section aims to investigate the discrepancy between the performance of DT and BC, specifically, we wanted
to understand how much of the discrepancy can be attributed to RTG conditioning compared to architectural
differences between DT and BC which is typically implemented using a stack of MLPs. By having the BC
Transformer baseline, the only distinguishing component between it and BC is the architecture. We observed that
BC is often a better-performing agent than BC Transformer on PH Table 7, MG Table 8, and MH tasks Table 9.

16



Under review as a conference paper at ICLR 2024

Additionally, it can also be observed that RTG conditioning only plays a critical role when the distribution of
reward shows variation. Unlike expert data such as PH and MH where the RTG vector remained the same, we
see DT outperforming BC Transformer on MG significantly.

Layers BC TRANSFORMER DT BC CQL

Lift-PH 100± 0 100± 0 100± 0 92.7± 5
Can-PH 94.6± 2.4 96± 0 95.3± 0.9 38± 7.5

Square-PH 52± 5.8 53.3± 2.4 78.7± 1.9 5.3± 2.5
Transport-PH 0± 0 1.3± 0 29.3± 0.9 0± 0

Table 7: Results of agents on ROBOMIMIC PH tasks

Layers BC TRANSFORMER DT BC CQL

Lift-MG-sparse 77.9± 7.11 96± 2.1 65.3± 2.5 64± 2.8
Can-MG-sparse 48.66± 1.8 92.8± 4.1 64.7± 3.4 1.3± 0.9
Lift-MG-dense 68± 3.2 93.99± 2.5 60± 2 63.3± 5.2
Can-MG-dense 43.99± 3.2 82.4± 4.2 64± 4.3 0± 0

Table 8: Results of agents on ROBOMIMIC MG tasks

Layers BC TRANSFORMER DT BC CQL

Lift-MH 100± 0 100± 0 100± 0 56.7± 40.3
Can-MH 93.3± 4.1 95.33± 0 86± 4.3 22± 5.7

Square-MH 18.66± 4.1 21.33± 3.7 52.7± 6.6 0.7± 0.9
Transport-MH 0± 0 0± 0 11.3± 2.5 0± 0

Table 9: Results of agents on ROBOMIMIC MH tasks

17



Under review as a conference paper at ICLR 2024

F ADDITIONAL RESULTS ON D4RL AND ROBOMIMIC

This section contains results obtained on individual tasks of D4RL and ROBOMIMIC benchmarks. We use the
averaged-out results obtained on all of the tasks from the respective benchmark for our analysis.

F.1 ESTABLISHING BASELINES

This section presents baseline results for individual tasks in both sparse and dense settings of the D4RL. The
average outcomes are detailed in Table 2 (Section subsection 4.1). Our observations indicate that DT consistently
outperforms CQL and BC in nearly all tasks within the sparse setting of the D4RL benchmark. Although
CQL achieves a marginally higher average return on the Hopper task (3.4% ahead of DT for medium and
medium-replay splits), it also exhibits significantly higher volatility, as evidenced by the standard deviations.
In contrast, DT remains competitive and robust. In the sparse reward setting, CQL surpasses BC by 5.2%. As
highlighted in Section subsection 4.1, CQL is most effective in the dense reward setting of the D4RL benchmark.

Dataset DT CQL BC
Sparse Dense Sparse Dense

Medium
Half Cheetah 42.54 ± 0.12 42.55± 0.02 38.63± 0.81 47.03± 0.075 42.76± 0.17

Hopper 69.75± 2.31 73.03± 0.74 73.89 ± 10.12 70.54± 0.41 64.35± 5.6
Walker 75.42 ± 1.07 75.42± 0.9 19.31± 3.17 83.77± 0.25 54.62± 12.04

Average 62.56 ± 1.16 63.66 ± 0.55 43.94 ± 4.7 67.11 ± 0.24 53.91 ± 5.93

Medium Replay
Half Cheetah 38.76 ± 0.26 37.09± 0.4 35± 2.56 46.12± 0.06 9.81± 9.2

Hopper 82.24± 1.58 89.15± 1.19 83.1 ± 19.21 101.27± 0.46 16.19± 10.8
Walker 71.24 ± 1.93 69.44± 3.14 29.02± 19.63 87.85± 0.83 17.82± 4.96

Average 64.08 ± 1.25 65.22 ± 1.57 49.04 ± 13.79 78.41 ± 0.45 14.6 ± 8.32

Medium Expert
Half Cheetah 90.55 ± 1.53 91.67± 0.21 24.35± 2.38 94.95± 0.25 42.95± 0.14

Hopper 110.29 ± 0.58 110.76± 0.06 42.44± 12.52 109.67± 2.12 62.21± 6.5
Walker 108.63 ± 0.22 108.49± 0.1 21.3± 0.55 111.58± 0.17 38± 9.86

Average 103.15 ± 0.77 103.64 ± 0.12 29.36 ± 5.14 105.39 ± 0.84 47.72 ± 5.5

Total Average 76.6 ± 1 77.51 ± 1.12 40.78 ± 7.88 83.64 ±0.51 38.74 ± 6.58

Table 10: Results on D4RL in both sparse and dense reward settings, averaged over the HALFCHEETAH,
HOPPER, and WALKER tasks. The presented results here are an extension of Table 2.

18



Under review as a conference paper at ICLR 2024

F.2 HOW DOES THE AMOUNT AND QUALITY OF DATA AFFECT EACH AGENT’S PERFORMANCE?

Figure 9 illustrates the performance of agents on individual tasks within the D4RL benchmark as data quality
and quantity are varied. DT improved or plateaued (upon reaching maximum performance) as additional data
was provided. In contrast, CQL exhibits volatility, displaying significant performance declines in HOPPER and
WALKER2D medium-replay tasks. The performance of BC tends to deteriorate when trained on low-return data.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Results demonstrating the behavior of agents as the amount of data and quality is varied on
medium-replay and medium-expert splits of D4RL benchmark in dense reward setting. The results
presented here are an extension of Figure 1.

19



Under review as a conference paper at ICLR 2024

Figure 10 illustrates the performance behavior of agents as the quantity and quality of data are adjusted in a
sparse setting on the D4RL dataset. A more detailed exploration of this behavior across individual tasks is
presented in Figure Figure 11.

Two key observations can be made from these results. 1) In the sparse reward setting, DT becomes a markedly
more sample-efficient choice, with its performance either improving or remaining steady as the quantity of data
increases. In contrast, CQL displays greater variability and fails to exceed BC in scenarios involving expert data
(medium-expert). 2) The sub-optimal data plays a significantly more important role for CQL in sparse settings
as compared to dense settings. Our hypothesis is that the sparsity of feedback makes learning about course
correction more critical than learning from expert demonstrations. Notably, we discovered that the worst 10% of
data features trajectories with substantially higher return coverage, which contributes to greater diversity within
the data. This, in turn, enhances CQL’s ability to learn superior Q-values (course correction) when compared to
the best 10% of data in a medium-expert data setting.

(a) (b)

Figure 10: Normalized D4RL returns obtained by training DT, CQL, and BC on various amounts of
highest-return (“best”) or lowest-return (“worst”) data in sparse reward setting. The left plot (a) is on
medium replay data, while the right plot (b) is on medium expert data; both plots average over the
HALFCHEETAH, HOPPER and WALKER tasks. Notice that the Y-axis limits are set lower on the left
plot. We observed that DT was a substantially more sample-efficient agent than CQL. Sub-optimal
data was noticeably crucial for CQL in sparse reward setting.

20



Under review as a conference paper at ICLR 2024

(a) (b)

(c) (d)

(e) (f)

Figure 11: Results demonstrating the behavior of agents as the amount of data and quality is varied
on medium-replay and medium-expert splits of D4RL benchmark in sparse reward setting.

21



Under review as a conference paper at ICLR 2024

F.3 HOW ARE AGENTS AFFECTED WHEN TRAJECTORY LENGTHS IN THE DATASET INCREASE?

Table 11 showcases the performance of all agents across individual ROBOMIMIC tasks, encompassing both
synthetic and human-generated datasets. DT surpasses both agents in all synthetic tasks within the ROBOMIMIC
benchmark, for both sparse and dense settings. Interestingly, BC demonstrates a strong aptitude for numerous
tasks with human-generated data, particularly excelling on the SQUARE task.

Dataset Type Average Trajectory Length DT CQL BC

Lift MG Dense 150 ± 0 96 ± 1.2 68.4± 6.2 59.2±6.19

Lift MG Sparse 150 ± 0 93.2 ± 3.2 60±13.2 59.2±6.19

Can MG Dense 150 ± 0 83.2 ± 0 2± 1.2 49.6±2.4
Can MG Sparse 150 ± 0 83.2 ± 1.59 0± 0 49.6±2.4

Lift-PH 48 ± 6 100 ± 0 92.7± 5 100±0

Lift-MH-Better 72 ± 24 94.6 ± 1.8 88± 5.9 98.7 ± 1.9
Lift-MH-Okay-Better 83 ± 29 100 ± 0 86± 6.5 99.3 ± 0.9

Lift-MH-Okay 94 ± 30 97.33 ± 0 67.3± 10.5 96 ± 1.6
Lift-MH 104 ± 44 100 ± 0 56.7± 5 100 ± 0

Lift-MH-Worse-Better 109 ± 49 100 ± 0 75.3± 25.6 100 ± 0
Can-PH 116 ± 14 96 ± 0 38.7± 7.5 95.3±0.9

Lift-MH-Worse-Okay 119 ± 44 100 ± 0 64.7± 2.5 98.7 ± 1.9
Can-MH-Better 143 ± 29 52.66± 0 20.7± 7.4 83.3 ± 2.5
Lift-MH-Worse 145 ± 40 94.6± 0 13.3± 9 100 ± 0

Square-PH 151 ± 20 53.3 ± 2.4 5.3 ± 2.5 78.7 ± 1.9
Can-MH-Okay-Better 162 ± 44 75.33± 3.3 30.7± 7.7 90.7 ± 1.9

Can-MH-Okay 181 ± 47 52.66± 0 22± 4.3 72 ± 2.8
Square-MH-Better 185 ± 46 13.3 ± 0 0.7 ± 0.9 58.7 ± 2.5

Can-MH 209 ± 114 95.33 ± 0 22± 7.5 86± 4.3

Can-MH-Worse-Better 224 ± 134 73.99 ± 1.1 20.7± 5.7 76 ± 4.3
Square-MH-Okay-Better 225 ± 76 20.66 ± 0 1.3 ± 0.9 56.7 ± 4.1

Can-MH-Worse-Okay 242 ± 126 54± 1.6 18.8± 2.5 74.7 ± 5.7
Square-MH-Okay 265 ± 78 12.6 ± 0 0 ± 0 27.3 ± 3.4

Square-MH 269 ± 123 21.33 ± 3.7 0.7 ± 0.9 52.7 ± 6.6
Square-MH-Worse-Better 271 ± 140 6 ± 0 1.3 ± 0.9 46.7 ± 5.7

Can-MH-Worse 304 ± 148 51.33± 0 4± 3.3 56.7 ± 2.5
Square-MH-Worse-Okay 311 ± 128 4.6 ± 0 2.7 ± 1.9 28.7 ± 2.5

Square-MH-Worse 357 ± 150 11.3 ± 0 0 ± 0 22 ± 4.3

Table 11: Success rates for different synthetic and human-generated datasets in ROBOMIMIC. Results
presented here are an extension of Table 4 (from subsection 4.3) and have been sorted as per the
trajectory length of the task. DT outperformed both agents on synthetic data as seen by performance
on MG tasks. BC seemed well suited to numerous tasks for which data was human-generated (PH
and MH). Bold numbers represent the best-performing agent on the corresponding task.

22



Under review as a conference paper at ICLR 2024

F.4 HOW ARE AGENTS AFFECTED WHEN SUBOPTIMAL DATA IS ADDED TO THE DATASET?

Figure 12 depicts the behavior of agents when random data is introduced according to “Strategy 1” in the
dense reward data regime of the D4RL benchmark. As previously described, “Strategy 1” involves rolling out a
uniformly random policy from sampled initial states to generate random data. Our observations indicate that
both CQL and DT maintain stable performance, while BC exhibits instabilities, occasionally failing as observed
in the HALF CHEETAH task.

Figure 12: Impact of adding suboptimal data on all agents in dense reward data regime on D4RL
tasks using Strategy 1. The results presented here are an extension to Figure 2 (from subsection 4.4).

23



Under review as a conference paper at ICLR 2024

Figure 13 displays the behavior of agents as random data is incorporated according to Strategy 2 in the dense
reward data regime of the D4RL benchmark. In "Strategy 2," we roll out a pre-trained agent for a certain number
of steps, execute a single uniformly random action, and then repeat the process. While Strategy 1 produces
random transitions primarily clustered around initial states, Strategy 2 generates random transitions across the
entire manifold of states, spanning from initial states to high-reward goal states.

Figure 13: Impact of adding suboptimal data in dense reward data regime on D4RL tasks using
Strategy 2. The results presented here are an extension to Figure 2 (from subsection 4.4). A
noteworthy observation from this experiment is that the performance of CQL improved on HOPPER
medium-expert task with the addition of random data. This suggests that the random data might be
aiding in the learning of more accurate Q-values for various states.

24



Under review as a conference paper at ICLR 2024

Figure 14 illustrates the behavior of agents when random data is introduced according to Strategy 2 in the sparse
reward data regime of the D4RL benchmark. We observed that the performance of CQL drastically declined on
the HOPPER-MEDIUM-REPLAY task, while its performance stayed the same on other tasks.

Figure 14: Impact of adding suboptimal data in sparse reward data regime on D4RL tasks using
Strategy 2. The results presented here are an extension to Figure 2 (from subsection 4.4). The
performance of CQL sharply decreases in the HOPPER medium-replay task. Unlike its performance
in the dense reward data regime, CQL does not exhibit the same level of resilience in the sparse
reward setting and demonstrates considerably higher volatility.

25



Under review as a conference paper at ICLR 2024

Figure 15 depicts the behavior of agents when random data is incorporated following Strategy 1 in the sparse
reward data regime (human-generated) of the ROBOMIMIC benchmark. Notably, we observed drastically different
performance trends with CQL. Its performance plummeted by 80% when the proportion of random data reached
51%. In contrast, its performance nearly doubled on the CAN MG task when the proportion of random data was
increased to 30%.

Figure 15: Impact of adding suboptimal data in sparse reward data regime in ROBOMIMIC using
Strategy 1. The results presented here are an extension to Figure 2 (from subsection 4.4). CQL
exhibited markedly different behaviors across these tasks. Its performance declined sharply on the
LIFT PH task. In contrast, its performance significantly improved, nearly doubling, with the addition
of random data on CAN PH task.

Figure 16 illustrates the behavior of agents when random data is introduced according to Strategy 2 in the sparse
reward data regime (human-generated) of the ROBOMIMIC benchmark.

Figure 16: Impact of adding suboptimal data in sparse reward data regime in ROBOMIMIC using
Strategy 2. The results presented here are an extension to Figure 2 (from subsection 4.4). Interestingly,
when following Strategy 2 for random data generation, CQL maintains stable performance in the
LIFT PH task. We observed a similar behavior to that seen with Strategy 1 on the CAN PH task.

26



Under review as a conference paper at ICLR 2024

Figure 17 and Figure 18 presents the behavior of agents as random data is added following Strategy 2 in sparse
and dense reward data regime (synthetic) respectively on the ROBOMIMIC benchmark. In all four scenarios,
DT maintained its peak performance reasonably well, indicating its resilience in very noisy data settings.
Conservative Q-Learning (CQL), however, showed signs of deterioration on both dense and sparse variants
of LIFT tasks. Notably, CQL failed to perform on the CAN task. As mentioned earlier, BC didn’t exhibit
deterioration, possibly because the Mixed-Goal (MG) data already contains a substantial amount of highly
sub-optimal data.

Figure 17: Impact of adding suboptimal data in dense reward data regime in ROBOMIMIC using
Strategy 2. The results presented here are an extension to Figure 2 (from subsection 4.4).

Figure 18: Impact of adding suboptimal data in sparse reward data regime in ROBOMIMIC using
Strategy 2. The results presented here are an extension to Figure 2 (from subsection 4.4.

G ADDITIONAL EXPERIMENTAL DETAILS

We used the original author implementation as a reference for our experiments wherever applicable. In settings
where a new implementation was required, we referenced the implementation which has been known to provide
competitive/state-of-the-art results on D4RL. We provide details on compute and hyperparameters below.

Compute All experiments were run on an A100 GPU. Most experiments with DT typically require 10-15
hours of training. Experiments with CQL and BC require 5-10 hours of training. We used Pytorch 1.12 for our
implementation.

Hyperparameters We mentioned all the hyperparameters used across various algorithms below. Our
implementations are based on original author-provided implementations, without any modifications to the
hyperparameters. To learn more about the selection of hyperparameters, we recommend viewing the associated
papers. Due to the stable training objective of DT and BC, both of these agents do not require substantial
hyperparameter sweep experiments. DT was trained using Adam optimizer (Kingma and Ba, 2014) with a
Multi-Step Learning Rate Scheduler. Each experiment was run five times to account for seed variance.

27



Under review as a conference paper at ICLR 2024

Hyperparameter RETURNS-TO-GO

Robomimic PH 6
Robomimic MH 6
Robomimic MG 120

Table 12: Returns-to-go values used with DT on D4RL and ROBOMIMIC.

Hyperparameter VALUE

Reference implementation https://github.com/kzl/decision-transformer/tree/master/atari (MIT License)
Number of attention heads 8

Number of layers 6
Embedding dimension 128

Context Length (Breakout) 30
Context Length (Qbert) 30

Context Length (Seaquest) 30
Context Length (Pong) 50

Number of buffers 50
Batch size 16

Learning Rate (LR) 6e� 4
Number of Steps 500000

Return-to-go conditioning 90 Breakout (⇡ 1⇥ max in dataset)
2500 Qbert (⇡ 5⇥ max in dataset)
20 Pong (⇡ 1⇥ max in dataset)

1450 Seaquest (⇡ 5⇥ max in dataset)
Nonlinearity ReLU, encoder

GeLU, otherwise
Encoder channels 32, 64, 64

Encoder filter sizes 8⇥ 8, 4⇥ 4, 3⇥ 3
Encoder strides 4, 2, 1

Max epochs 5
Dropout 0.1

Learning rate 6 ⇤ 10�4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1

Learning rate decay Linear warmup and cosine decay (see code for details)
Warmup tokens 512 ⇤ 20

Final tokens 2 ⇤ 500000 ⇤K

Table 13: Hyperparameters used with DT on ATARI.

28

https://github.com/kzl/decision-transformer/tree/master/atari


Under review as a conference paper at ICLR 2024

Hyperparameter VALUE

Reference implementation https://github.com/kzl/decision-transformer/tree/master/gym (MIT License)
Number of layers 3

Number of attention heads 1
Embedding dimension 128
Nonlinearity function ReLU

Batch size 512
Return-to-go conditioning (N/A to BC) 6000 HalfCheetah

3600 Hopper
5000 Walker
50 Reacher

6000 Humanoid
Dropout 0.1

Learning rate 10�4

Grad norm clip 0.25
Weight decay 10�4

Learning rate decay Linear warmup for first 105 training steps
Context Length (N/A to BC) 20

Maximum Episode length 1000
Learning Rate 6e� 4

Number of workers 16
Number of evaluation episodes 100

Number of iterations 10
Steps per iteration 5000

Table 14: Hyperparameters used with DT and BC on D4RL.

Hyperparameter VALUE

Reference implementation https://github.com/tinkoff-ai/CORL/tree/main (Apache 2.0 License)
Batch Size 2048

Steps per Iteration 1250
Number of Iterations 100

Discount 0.99
Alpha multiplier 1

Policy Learning Rate 3e-4
QF Learning Rate 3e-4

Soft target update rate 5e-3
BC steps 100k

Target update period 1
CQL n_actions 10

CQL importance sample True
CQL lagrange False

CQL target action gap -1
CQL temperature 1

CQL min q weight 5

Table 15: Hyperparameters used with CQL on D4RL. We used identical hyperparameters as the
reference implementation.

29

https://github.com/kzl/decision-transformer/tree/master/gym
https://github.com/tinkoff-ai/CORL/tree/main


Under review as a conference paper at ICLR 2024

Hyperparameter VALUE

Reference implementation https://github.com/denisyarats/exorl (MIT License)
BC hidden dim 1024
BC batch size 1024

BC LR 1e-4
CQL LR 1e-4

CQL Critic Target tau 0.01
CQL Critic Lagrange False
CQL target penalty 5

CQL Batch size 1024

Table 16: Hyperparameters used with CQL on EXORL. We used identical hyperparameters as the
reference implementation.

Hyperparameter VALUE

Reference implementation https://github.com/ARISE-Initiative/robomimic (MIT License)
BC LR 1e-4

BC Learning Rate Decay Factor 0.1
BC encoder layer dimensions [300, 400]
BC decoder layer dimensions [300, 400]

CQL discount 0.99
CQL Q-network LR 1e-3

CQL Policy LR 3e-4
CQL Actor MLP dimensions [300-400]
CQL Lagrange threshold ⌧ 5

Table 17: Hyperparameters used with BC and CQL on ROBOMIMIC. We used identical hyperparame-
ters as the reference implementation.

30

https://github.com/denisyarats/exorl
https://github.com/ARISE-Initiative/robomimic


Under review as a conference paper at ICLR 2024

H ABLATION STUDY TO DETERMINE THE IMPORTANCE OF ARCHITECTURAL
COMPONENTS OF DT

In this section, we present the results of our ablation study, which was conducted to assess the significance of
various architectural components of the DT. To isolate the impact of individual hyperparameters, we altered one
at a time while keeping all others constant. Our findings indicate that the ATARI benchmark is better suited for
examining scaling trends compared to the D4RL benchmark. This is likely due to the bounded rewards present
in D4RL tasks, which may limit the ability to identify meaningful trends. We did not observe any significant
patterns in the D4RL context. A key insight from this investigation is that the performance of DT, when averaged
across Atari games, improved as we increased the number of attention heads. However, we did not notice a
similar trend when scaling the number of layers (Figure 4). It is also important to mention that the original DT
study featured two distinct implementations of the architecture. The DT variant used for reporting results on
ATARI benchmark had 8 heads and 6 layers, while the one employed for D4RL featured a single head and 3
layers.

Number of Heads BREAKOUT QBERT SEAQUEST PONG

4 267.5± 97.5 15.4± 11.4 2.5± 0.4 106± 8.1
8 155.01± 49.86 32.05± 14.23 2.08± 0.44 90.2± 11.33
16 220.67± 51.02 23.74± 10.75 1.94± 0.39 54.32± 44
32 246.2± 62.8 34.27± 11.8 1.97± 0.38 72.91± 41.36
64 249.54± 54.13 24.53±11.63 2.11± 0.56 69.76± 34.49

Table 18: Ablation study to determine the importance of the number of heads on the performance of
DT on the ATARI benchmark. The experiment was conducted with fully mixed Data (50 buffers) with
10 evaluation rollouts (number of layers=6).

Number of Layers BREAKOUT QBERT SEAQUEST PONG

6 229.58± 49.86 24± 9.28 2.08± 0.44 90.2± 11.33
8 160.8± 44.1 32.34± 14.07 1.9± 0.36 73.35± 40.4
12 226.25± 79.47 24.74± 12.61 3.75± 0.78 94.23± 22.44
16 218.55± 58.92 32.04± 8.49 2.28± 0.59 55.95± 48.55
24 159.02± 49.35 40.68± 13.99 4.83± 1.3 95.75± 8.36
32 239.31± 71.21 23.22± 8.15 2.29± 0.46 86± 29.72
64 223.71± 59.65 31.63± 12.56 2.44± 0.61 73.6± 39.68

Table 19: Ablation study to determine the importance of the number of layers on the performance of
DT on the ATARI benchmark. The experiment was conducted with fully mixed Data (50 buffers) with
10 evaluation rollouts (number of heads=8).

Embedding dimension BREAKOUT QBERT SEAQUEST PONG

128 229.58± 49.86 24± 9.28 2.08± 0.44 90.2± 11.33
256 289± 76.79 32.34± 14.07 1.91± 0.34 39.25± 48.09
512 216.17± 49.13 25.59± 9.17 - 2.08± 0.59

1024 59.7± 78.78 3.93± 8.44 0.11± 0.06 -

Table 20: Ablation study to determine the importance of embedding dimension on the performance
of DT on the ATARI benchmark. The experiment was conducted with fully mixed Data (50 buffers)
with 10 evaluation rollouts (number of heads=8).

31



Under review as a conference paper at ICLR 2024

Context Length BREAKOUT QBERT SEAQUEST PONG

30 229.58± 49.86 24± 9.28 2.08± 0.44 61.04± 38.47
32 227.51± 68.3 25.27± 8.09 2.16± 0.32 -
36 213.19± 66.82 23.43± 15.31 2.4± 0.49 -
42 219.98± 53.5 25.58± 9.86 1.99± 0.35 -
48 263.29± 49.68 22.91± 15.13 1.96± 0.37 -

Table 21: Ablation study to determine the importance of context length on the performance of DT on
the ATARI benchmark. The experiment was conducted with fully mixed Data (50 buffers) with 10
evaluation rollouts (number of heads=8, num of layers=6).

Heads BREAKOUT QBERT SEAQUEST PONG

4 194.15± 36.66 20.88± 10.05 1.94± 0.37 86.96± 16.67
8 212.58± 38.55 29.24± 10.83 2.08± 0.31 52.95± 42.54
16 236.68± 31.73 29.52± 8.37 1.94± 0.3 85.57± 14.29
32 221.17± 23.81 23.34± 6.34 1.73± 0.24 90.75± 10.99
64 - 35.55± 10.86 2.01± 0.34 63.36± 36.23

Table 22: Ablation study to determine the importance of heads on DT performance on the ATARI
benchmark. The experiment was conducted with fully mixed Data (50 buffers) with 100 evaluation
rollouts (number of layers=6).

Layers BREAKOUT QBERT SEAQUEST PONG

6 212.58± 38.55 29.24± 10.83 2.08± 0.31 70.91± 34.63
8 220.35± 45 32.42± 13.79 2.12± 0.59 70.4± 36.28
12 206.83± 46.2 19.48± 7.46 2.06± 0.4 90.77± 12.91
16 212.67± 36.98 29.04± 10.82 2.22± 0.35 73.84± 37.41
24 173.43± 56.4 21.41± 10.1 2.11± 0.48 87.5± 15.81
32 206.07± 45.69 32.15± 9.07 2.18± 0.44 66.4± 40.82
64 177.64± 102.81 27.74± 5.97 2.04± 0.42 35.98± 43.27

Table 23: Ablation study to determine the importance of layers on the performance of DT on the
ATARI benchmark. The experiment was conducted with fully mixed Data (50 buffers) with 100
evaluation rollouts (number of heads=8).

Heads BREAKOUT QBERT SEAQUEST PONG

1 142.6± 53.85 30.93± 18.4 3.5± 0.81 85.74± 25.64
4 155.01± 43.58 33.26± 11.12 4.37± 1.25 85.04± 16.68
8 188.38± 67.43 33.94± 12.46 3.53± 0.73 65.9± 38.08
16 176.58± 69.9 25.32± 9.71 3.58± 0.96 75.35± 37.8
32 225.85± 68.21 27.9± 6.47 3.21± 0.73 73.7± 37.27
64 246.62± 120.95 37.25± 20.03 3.23± 0.87 72.14± 37.78

Table 24: Ablation study to determine the importance of heads on the performance of DT on the
ATARI benchmark. The experiment was conducted with the last 10 buffers (out of 50) with 100
evaluation rollouts (number of layers=6).

32



Under review as a conference paper at ICLR 2024

Layers BREAKOUT QBERT SEAQUEST PONG

1 151.71± 37.17 21.49± 8.54 3.65± 1.12 79.2± 26.77
4 186.49± 59.76 28.04± 16.35 3.73± 1 73.55± 37.41
6 188.38± 67.43 33.94± 12.46 3.53± 0.73 65.9± 38.08
8 160.8± 44.1 22.52± 14.71 3.31± 1.13 74.11± 37.98

12 225.85± 68.21 27.9± 6.47 3.21± 0.73 73.7± 37.27
16 246.62± 120.95 37.25± 20.03 3.23± 0.87 72.14± 37.78
24 159.02± 49.35 40.68± 13.99 4.83± 1.3 70.4± 35.52

Table 25: Ablation study to determine the importance of layers on the performance of DT on the
ATARI benchmark. The experiment was conducted with the last 10 buffers (out of 50) with 100
evaluation rollouts (number of heads=8).

Heads HALF CHEETAH HOPPER WALKER2D

4 42.74 (0.2) 77.08 (7) 74.64 (1.6)
8 42.62 (0.2) 72.3 (3.1) 74.08 (0.8)
16 42.79 (0.2) 74.07 (3.4) 73.59 (1.3)
32 42.53 (0.2) 72.76 (1.1) 76.17 (1.4)
64 42.51 (0.1) 74.14 (1.7) 74.51 (2.4)

Table 26: Ablation study to determine the importance of heads on the performance of DT the D4RL
medium tasks. The results are averaged across 100 evaluation rollouts (number of layers=6).

Heads HALF CHEETAH HOPPER WALKER2D

4 37.87 (0.3) 89.06 (0.4) 67.93 (2.7)
8 38.07 (0.3) 91.32 (3.6) 72.7 (2.7)
16 38.46 (0.4) 88.88 (1.3) 72.16 (1)
32 37.88 (0.3) 88.15 (2.9) 72.65 (2.8)
64 38.17 (0.5) 90.29 (3.5) 71.99 (5)

Table 27: Ablation study to determine the importance of heads on the performance of DT on the D4RL
medium-replay tasks. The results are averaged across 100 evaluation rollouts (number of layers=6).

Heads HALF CHEETAH HOPPER WALKER2D

4 91.52 (0.7) 110.58 (0.1) 108.57 (0.3)
8 90.55 (0.9) 110.18 (0.4) 108.69 (0.3)

16 90.61 (0.7) 110.79 (0.3) 108.28 (0)
32 92.06 (0.2) 110.84 (0.3) 108.16 (0)
64 91.35 (0.3) 110.87 (0.4) 108.45 (0.1)

Table 28: Ablation study to determine the importance of heads on the performance of DT on the D4RL
medium-expert tasks. The results are averaged across 100 evaluation rollouts (number of layers=6).

Layers HALF CHEETAH HOPPER WALKER2D

4 42.51 (0) 72.05 (1.8) 74.68 (0.6)
6 42.62 (0.2) 73.37 (4.4) 74.08 (0.8)
8 42.48 (0) 73.25 (5.2) 75.04 (1.9)

12 42.55 (0.2) 70.37 (2.6) 74.49 (0.89)
16 42.45 (0) 63.3 (1.7) 74.53 (1.9)
24 42.4 (0.1) 69.07 (4.35) 75.64 (1.4)

Table 29: Ablation study to determine the importance of layers on the performance of DT on the
D4RL medium tasks. The results are averaged across 100 evaluation rollouts (number of heads=8).

33



Under review as a conference paper at ICLR 2024

Layers HALF CHEETAH HOPPER WALKER2D

4 38.8 (0.7) 92.09 (3) 69.33 (4.2)
6 38.07 (0.3) 91.32 (3.6) 72.2 (2.7)
8 37.14 (1.3) 90.71 (0.64) 70.14 (2.37)

12 37.29 (1) 89.11 (2.1) 69.36 (2.3)
16 37.15 (0.4) 88.6 (3.3) 71.4 (1.8)
24 37.46 (0.7) 83.17 (4.6) 73.66 (2.4)
32 38.39 (0.9) 87.94 (1.6) 69.43 (0.9)
64 38.09 (0.7) 81.95 (0.46) 68.01 (2.28)

Table 30: Ablation study to determine the importance of layers on the performance of DT on the
D4RL medium-replay tasks. The results are averaged across 100 evaluation rollouts (number of
heads=8).

Layers HALF CHEETAH HOPPER WALKER2D

4 92.21 (0.2) 110.26 (0.6) 108.33 (0.6)
8 90.55 (0.9) 110.18 (0.4) 108.37 (0)

16 90.52 (0.8) 110.49 (0.2) 108.79 (0.1)
32 90.06 (0.6) 110.8 (0.2) 108.61 (0.4)
64 90.59 (0.6) 110.46 (0.4) 108.82 (0)

Table 31: Ablation study to determine the importance of layers on the performance of DT on the
D4RL medium-expert tasks. The results are averaged across 100 evaluation rollouts (number of
heads=8).

Context Length HALF CHEETAH HOPPER WALKER2D

10 42.68 (0) 67.6 (3.3) 75.4 (1.31)
20 42.71 (0.1) 71 (5.4) 75.25 (0.9)
30 42.72 (0.1) 81.55 (10.2) 75.8 (0.2)
40 42.67 (0.2) 73.88 (0.9) 74.73 (1.8)
50 42.66 (0) 83.14 (5.3) 72.52 (0.7)
60 42.49 (0) 85.54 (6.9) 74.18 (0.3)
70 42.54 (0.1) 83.75 (0.03) 74.04 (2.7)

Table 32: Ablation study to determine the importance of context length on the performance of DT on
the D4RL medium tasks. The results are averaged across 100 evaluation rollouts (number of layers=6,
number of heads=8).

Context Length HALF CHEETAH HOPPER WALKER2D

10 36.98 (0.2) 80.07 (1.1) 69.73 (2.2)
20 37.7 (0.1) 84.28 (2.6) 67.62 (2.6)
30 35.71 (0.1) 91.37 (3.9) 68.71 (1.4)
40 35.34 (0.6) 87.08 (1.5) 69.33 (2.4)
50 35.36 (0.5) 87.99 (2.3) 64.61 (5.2)
60 37.19 (0.5) 86.82 (3.5) 64.55 (1.2)
70 36.62 (1.4) 90.27 (0.8) 63.48 (2.5)

Table 33: Ablation study to determine the importance of context length on the performance of DT on
the D4RL medium-replay tasks. The results are averaged across 100 evaluation rollouts (number of
layers=6, number of heads=8).

34



Under review as a conference paper at ICLR 2024

Context Length HALF CHEETAH HOPPER WALKER2D

10 87.61 (2.64) 109.99 (0.48) 108.97 (0.92)
20 86.21 (3.75) 109.54 (0.72) 107.97 (0.82)
30 88.24 (2.17) 110.16 (0.48) 108.24 (0.26)
40 87.38 (1.15) 110.71 (0.4) 108.6 (0.04)
50 88.22 (0.96) 110.74 (0.41) 107.89 (0.56)

Table 34: Ablation study to determine the importance of context length on the performance of DT on
the D4RL medium-expert tasks. The results are averaged across 100 evaluation rollouts (number of
layers=6, number of heads=8).

Context Length HALF CHEETAH HOPPER WALKER2D

32 86.27 (0.3) 108.92 (0.5) 108.18 (0.3)
64 86.62 (2) 110.12 (0.7) 107.85 (0.5)

128 89.15 (1.2) 109.47 (0.3) 108.53 (0)
256 90.98 (0.9) 109.47 (1.1) 107.73 (0)
512 91.3 (0.3) 109.61 (0.7) 107.72 (0)
1024 91.38 (0.4) 109.04 (0.8) 108.42 (0.2)

Table 35: Ablation study to determine the importance of context length on the performance of DT on
the D4RL medium-replay tasks. The results are averaged across 100 evaluation rollouts (number of
layers=6, number of heads=8).

35



Under review as a conference paper at ICLR 2024

I DT ON EXORL

We additionally conduct smaller-scale experiments in EXORL, which allows us to study the performance of DT
on reward-free play data. Typical offline RL datasets are collected from a behavior policy that aims to optimize
some (unknown) reward. Contrary to this practice, the EXORL benchmark (Yarats et al., 2022) was obtained
from reward-free exploration. After the acquisition of an (s, a, s0) dataset, a reward function is chosen and used
to include rewards in the data. This same reward function is used during evaluation. We consider the WALKER
WALK, WALKER RUN, and WALKER STAND environments (APT). All scores are averaged over 10 evaluation
episodes.

In the following section, we present the results obtained using DT on three distinct environments from the EXORL
framework. Returns-to-go in the tables presented below represent returns-to-value provided to DT at the
time of inference. Upon comparing the metrics in the EXORL study, we noticed that DT’s performance falls
short compared to CQL, which may be attributed to the data being collected in a reward-free setting. Although
investigating the behavior of these agents in reward-free settings presents an avenue for future research, we
propose the following hypothesis. Typically, the exploration of new states in a reward-free environment is
conducted through heuristics such as curiosity (ICM) (Pathak et al., 2017) or entropy maximization (APT) (Liu
and Abbeel, 2021). The reward functions defined by these heuristics differ from those used for relabeling data
when training offline RL agents. Consequently, bootstrapping-based methods might be better equipped to learn a
mapping between the reward function determined by the heuristic and the one employed for data relabeling.

LR Returns-to-Go

200 300 400 500 600 700 800

6e-4 123.28 (1.9) 120.18 (9.3) 126.46 (2.1) 131.82 (7.4) 128.47 (4.1) 130.95 (9.1) 125.61 (7.4)
1e-3 119.25 (1.2) 121.59 (5.1) 128.85 (5) 132.35 (6.5) 136.59 (10.7) 124.58 (7.7) 121.68 (5.8)
3e-3 123.68 (5.3) 123.43 (5.3) 128.23 (0.9) 122.54 (8.9) 127.24 (2.2) 116.33 (1.9) 122.34 (6.3)
5e-3 110.35 (7.3) 120.65 (8.1) 123.82 (11.4) 117.38 (6.7) 120.45 (2.8) 112.27 (11.5) 104.63 (8.1)
7e-3 120.6 (7.8) 125.98 (2.8) 117.76 (11) 123.76 (14.9) 121.7 (6.4) 110.95 (6.7) 120.18 (6.9)
9e-3 125.04 (2.5) 114.34 (5.62) 116.57 (5.8) 115.17 (1.6) 123.71 (15.8) 124.65 (6.8) 123.9 (5.2)
1-e2 126.93 (8.2) 125.18 (3.9) 130 (4.2) 118.92 (10.8) 107.87 (10.4) 126.28 (8.7) 119.57 (13)

Table 36: Performance of DT on WALKER WALK from EXORL as returns-to-go value is varied.
The experiment was run with the following parameters: batch size=7200, warmup steps=10, 200k
timestep data, 150 gradient updates, and context length: 20.

LR Returns-to-Go

200 300 400 500 600 700 800

6e-4 133.68 (10.9) 139.51 (5.1) 137.5 (12.3) 131.2 (3.8) 130.14 (6.5) 129.8 (1.4) 129.79 (3.9)
1e-3 131.62 (8.8) 126.34 (5.6) 125.71 (4.4) 129.58 (9.2) 132.2 (11.4) 127.94 (8.4) 126.6 (9.5)
3e-3 126.71 (3.3) 129.85 (1.6) 119.36 (3.7) 125.56 (1.6) 128 (12.4) 125.86 (4.4) 118.13 (5)
5e-3 123.05 (4) 119.7 (6.5) 124.79 (7.4) 124.48 (8.3) 123.24 (12.3) 122.25 (8.1) 129.83 (4.2)
7e-3 108.4 (2.5) 116.85 (6.9) 120.8 (10.5) 112.59 (9.1) 116.12 (3.2) 113.55 (3.5) 117.96 (1.8)
9e-3 107.79 (7.4) 98.57 (18) 110.52 (31.5) 102.2 (9.6) 101.21 (20.4) 102.91 (20.1) 90.19 (21.9)
1-e2 112.69 (10.5) 100.42 (13.7) 114 (24.3) 118.13 (3.6) 105.55 (9.9) 108.74 (14.9) 126.21 (16.2)

Table 37: Performance of DT on WALKER WALK from EXORL. The experiment was run with the
following parameters: batch size=7200, warmup steps=30, 200k timestep data, 150 gradient updates,
and context length: 20.

36



Under review as a conference paper at ICLR 2024

LR Warmup Returns-to-Go

200 300 400 500 600 700 800

6e-4 30 133.68 (10.9) 139.51 (5.1) 137.5 (12.3) 131.2 (3.8) 130.14 (6.5) 129.8 (1.4) 129.79 (3.9)
4e-4 30 136.16 (4.7) 131.23 (6.5) 131.67 (5.2) 121.06 (6.2) 121.95 (3.5) 129.54 (0.1) 137.26 (0.9)
1e-4 30 117.7 (4.3) 124.08 (9.7) 114.02 (1.9) 118.9 (3.8) 119.09 (0.7) 123.83 (9.7) 120.86 (7.0)
6e-4 50 130.14 (11.2) 129.53 (8.2) 136.92 (7.4) 123.96 (0.4) 132.93 (1) 123.17 (5.5) 136.91 (9.6)
6e-4 80 125.44 (1) 131.98 (2.3) 129.48 (7.8) 123.6 (6.8) 127.62 (2.9) 127.64 (6.7) 123.53 (3.1)
6e-4 100 124.18 (4.5) 128.26 (2) 122.23 (6.8) 127.9 (0.8) 125.78 (3.7) 131.39 (5.9) 131.83 (5.1)

Table 38: Performance of DT on WALKER WALK from EXORL. The experiment was run with the
following parameters: batch size=7200, 200k timestep data, 150 gradient updates, and a context
length of 20.

LR Warmup Returns-to-Go

200 300 400 500 600 700 800

6e-4 50 123.53 (13) 127.81 (5.3) 121.44 (6.7) 112.79 (5.6) 123.33 (2.7) 120.44 (1.9) 124.58 (7)
6e-4 100 117.02 (4.3) 137.5 (6.5) 126.24 (8.1) 124.64 (6.8) 125.43 (9.9) 115.1 (2.0) 125.67 (7.8)
7e-4 100 120.91 (9.1) 128.69 (3.4) 121.03 (4.4) 112.11 (6) 120.67 (4.5) 127.57 (3.8) 120.05 (5.9)
1e-3 30 123.64 (1.3) 118.84 (11.7) 129.66 (7.5) 126.77 (5.5) 122.59 (7.6) 127.9 (5.6) 127.19 (12.3)

Table 39: Performance of DT on WALKER WALK from EXORL. The experiment was run with the
following parameters: batch size=7200, 200k timestep data, 300 gradient updates, and a context
length of 20.

LR Warmup Returns-to-Go

200 300 400 500 600 700 800

6e-4 50 57.56 (0.8) 57.49 (1.4) 56.25 (1.3) 56.38 (1.1) 57.4 (1) 57.87 (1.6) 56.23 (2)
6e-4 100 56.99 (0.6) 58.64 (0.9) 57.88 (1.3) 57.15 (1.3) 60.11 (2.6) 57.25 (2.1) 57.7 (0.8)
8e-4 40 59.34 (1.8) 57.98 (2.4) 57.82 (1.4) 56.9 (2.2) 56.48 (2.4) 60.36 (2.3) 58.5 (2.1)
6e-4 200 56.47 (2.5) 59.69 (2.8) 56.6 (0.7) 59.36 (1.0) 57.33 (2.0) 59.18 (0.1) 58.36 (0.1)
7e-4 100 60.3 (0.1) 57.12 (0.7) 57.03 (2.0) 56.32 (0.7) 59.55 (1.2) 58.2 (1.3) 58.6 (2.2)
1e-3 30 62.48 (3.3) 59.23 (1.8) 56.62 (1.1) 58.69 (1.7) 58.94 (2.6) 56.25 (1.5) 57.55 (1.7)

Table 40: Performance of DT on WALKER RUN from EXORL. The experiment was run with the
following parameters: batch size=7200, 200k timestep data, 300 gradient updates, context length: 20.

LR Warmup Returns-to-Go

200 300 400 500 600 700 800

6e-4 100 263.71 (6.8) 292.08 (6.3) 278.26 (14.7) 271.19 (3.8) 283.36 (11.1) 284.05 (15.2) 279.87 (8.8)
8e-4 40 270.83 (1.7) 271.04 (14.6) 275.7 (5.5) 273.92 (13.9) 269.5 (0.7) 290.78 (14.7) 286.77 (6.8)
6e-4 200 266.37 (14.8) 271.16 (7.2) 278.27 (8.2) 291.59 (9.4) 287.37 (4.4) 274.2 (6.9) 272.6 (5.7)

Table 41: Performance of DT on WALKER STAND from EXORL. The experiment was run with the
following parameters: batch size=7200, 200k timestep data, 300 gradient updates, context length: 20.

37



Under review as a conference paper at ICLR 2024

LR Returns-to-Go

200 300 400 500 600 700 800

1e-4 128.52 (3) 125.83 (3.2) 116.24 (2.5) 130.23 (12.7) 137.82 (3.7) 126.32 (3.4) 125 (5.5)
6e-4 114.56 (11.9) 107.41 (5.5) 127.49 (10.4) 115.08 (8.4) 99.1 (4.0) 117.1 (7.3) 97.73 (1.3)
9e-4 106.24 (7.5) 102.84 (16.0) 102.74 (14.7) 95.55 (5.5) 110.13 (10.4) 105.28 (13.3) 100.03 (7.0)
1e-3 92.71 (3.1) 104.86 (15.3) 99.35 (1.5) 96.8 (8.0) 86.95 (10.0) 98.01 (14.7) 92.7 (1.6)
4e-3 45.65 42.86 39.6 41.93 39.71 39.88 43.05
8e-3 56.3 39.3 44.63 48.93 39.35 44.12 52.88

Table 42: Performance of DT on WALKER WALK from EXORL. The experiment was run with the
following parameters: batch size=7200, warmup steps=100, 200k timestep data, 900 gradient updates.

LR Returns-to-Go

200 300 400 500 600 700 800

1e-4 113.53 (2.5) 123.63 (2.7) 115.69 (2.0) 116.66 (1.7) 114.54 (1.1) 115.48 (2.1) 122.86 (6.4)
6e-4 103.02 (5.5) 102.17 (1.3) 94.05 (0.6) 98.45 (0.0) 95.22 (1.5) 101.86 (8.9) 114.71 (3.8)
9e-4 92.71 (8.7) 92.18 (0.8) 102.49 (5.0) 88.61 (11.8) 92.95 (3.2) 94.97 (2.2) 97.31 (3.6)
1e-3 84.65 93 97.18 93.57 95.27 92.04 88.7
4e-3 57.96 (1.0) 66.73 (2.9) 61.93 (14.4) 46.71 (3.4) 58.77 (9.0) 51.75 (0.2) 47.44 (5.1)
8e-3 39.59 (2.4) 38.9 (4.6) 44.71 (12.2) 41.27 (2.9) 40.34 (5.8) 48.63 (4.7) 45.2 (7.2)

Table 43: Performance of DT on WALKER WALK from EXORL. The experiment was run with the
following parameters: batch size=7200, 200k timestep data, warmup steps=100, 900 gradient updates,
context length=10.

LR Returns-to-Go

200 300 400 500 600 700 800

1e-4 113.53 (2.5) 123.63 (2.7) 115.69 (2.0) 116.66 (1.7) 114.54 (1.1) 115.48 (2.1) 122.86 (6.4)
6e-4 103.02 (5.5) 102.17 (1.3) 94.05 (0.6) 98.45 (0.0) 95.22 (1.5) 101.86 (8.9) 114.71 (3.8)
9e-4 92.71 (8.7) 92.18 (0.8) 102.49 (5.0) 88.61 (11.8) 92.95 (3.2) 94.97 (2.2) 97.31 (3.6)
1e-3 84.65 93 97.18 93.57 95.27 92.04 88.7
4e-3 57.96 (1.0) 66.73 (2.9) 61.93 (14.4) 46.71 (3.4) 58.77 (9.0) 51.75 (0.2) 47.44 (5.1)
8e-3 39.59 (2.4) 38.9 (4.6) 44.71 (12.2) 41.27 (2.9) 40.34 (5.8) 48.63 (4.7) 45.2 (7.2)

Table 44: Performance of DT on WALKER WALK from EXORL. The experiment was run with the
following parameters: batch size=7200, 200k timestep data, warmup steps=100, 900 gradient updates,
context length=10.

LR Returns-to-Go

200 300 400 500 600 700 800

1e-4 116.61 (7.8) 111.97 (6.3) 114.26 (4.4) 116.88 (4.9) 123.97 (3.4) 111.21 (3.7) 108.62 (2.5)
6e-4 112.06 (6.3) 113.17 (2.5) 104.78 (3.3) 112.57 (6.7) 107.5 (3.4) 112.69 (4.6) 106.85 (2.8)
9e-4 108.42 (5.7) 102.44 (2.3) 99.46 (8.1) 105.42 (1.7) 106.62 (9.3) 99.2 (6.2) 102.55 (8.4)
1e-3 103.74 (6.5) 106.42 (1.8) 98.7 (6.2) 103.34 (4.2) 116.92 (3.4) 107.22 (7.0) 105.08 (11.6)
4e-3 87.2 (6.4) 83.95 (4.2) 89.53 (8.1) 77.35 (12.4) 90.34 (2.6) 89.65 (8) 93.22 (7.8)
8e-3 57.73 (10.6) 59.11 (9.3) 56.23 (4.2) 58.82 (12.9) 52.2 (3.6) 62.79 (2.4) 54.29 (9.0)

Table 45: Performance of DT on WALKER WALK (Proto) from EXORL. The experiment was run
with the following parameters: batch size=7200, 200k timestep data, 900 gradient updates, context
length=10.

38



Under review as a conference paper at ICLR 2024

LR Returns-to-Go

200 300 400 500 600 700 800

1e-4 116.61 (7.8) 111.97 (6.3) 114.26 (4.4) 116.88 (4.9) 123.97 (3.4 ) 111.21 (3.7) 108.62 (2.5)
6e-4 112.06 (6.36) 113.17 (2.5) 104.78 (3.3) 112.57 (6.7) 107.5 (3.4) 112.69 (4.6) 106.85 (2.8)
9e-4 108.42 (5.7) 102.44 (2.3) 99.46 (8.1) 105.42 (1.7) 106.62 (9.3) 99.2 (6.2) 102.55 (8.4)
1e-3 103.74 (6.5) 106.42 (1.8) 98.7 (6.2) 103.34 (4.2) 116.92 (3.4) 107.22 (7.0) 105.08 (11.6)
4e-3 87.2 (6.4) 83.95 (4.2) 89.53 (8.1) 77.35 (12.4) 90.34 (2.6) 89.65 (8.0) 93.22 (7.8)
8e-3 57.73 (10.6) 59.11 (9.3) 56.23 (4.2) 58.82 (12.9) 52.2 (3.6) 62.79 (2.4) 54.29 (9.0)

Table 46: Performance of DT on WALKER WALK (Proto) from EXORL. The experiment was run
with the following parameters: batch size=7200, 200k timestep data, 900 gradient updates, context
length=10.

39


	Introduction
	Related Work
	Preliminaries
	Background
	Experimental Setup

	Experiments
	Establishing Baseline Results
	How does the amount and quality of data affect each agent's performance?
	How are agents affected when trajectory lengths in the dataset increase?
	How are agents affected when random data is added to the dataset?
	How are agents affected by the complexity of the task?
	How do agents behave in stochastic environments ?
	Scaling Properties of Decision Transformers on Atari

	Limitations and Future Work
	Architectural Properties of Decision Transformers
	Extended Background
	Additional Dataset Details
	Additional Evaluation Details
	Disentangling DT and BC
	Additional Results on d4rl and robomimic
	Establishing baselines
	How does the amount and quality of data affect each agent's performance?
	How are agents affected when trajectory lengths in the dataset increase?
	How are agents affected when suboptimal data is added to the dataset?

	Additional Experimental Details
	Ablation study to determine the importance of architectural components of DT
	DT on exoRL

