Appendix

A Proof of Equation (4)

Assumption. Throughout the paper, we make the following assumptions:

1. F(w) is an L-smooth function, i.e., F(w;) < F(w2) + (wy — w2)TVF (ws) + £ |lwy — wo||3;
2. F(w) is strongly convex with parameter ¢, i.e., 2¢(F(w) — F*) < [|[VF (w)|%;
3. The stochastic gradient g(w (1)) is an unbiased estimate of the true gradient, i.e.,

E(g(w‘r(m,k))) = E(VF(wr(m,k)));

4. The variance of the stochastic gradient g(wT(m’ k)) in the asynchronous training is bounded as
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Theorem 1. Based on the above Assumption and n < also suppose that for some v < 1,
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E(IVF(w) = VF(wrin)l3) < vENVF(w)3),

thus the expectation of error after k + 1 steps of gradient updates in the asynchronous training is
deduced by
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where v = 1 — v + B2 pq is a lower bound on the conditional probability that the token equals to
the global step, i.e., 7'%7717 k) =k.

Corollary 1. To characterize the strong sparsity in the recommendation models, we suppose that for
some v < 1, ) )
CE(IVE(wi) = VE(wrin,)ll2) < vE([VEF(wp)]f3),
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thus the expectation of error after k + 1 steps of gradient updates in the asynchronous training is
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where p=1—p1y — (1 — p1)¢y + B, ¢ = Lgense(parameter), 14(x) is the indicator function of
whether x belongs to A, py = P(¢ =1).

It is worth noting that we have p > 0 and p > 7' owing to (y < v < 1. Since % > 1,

Pc=1)< 24p0—2¢7 The model GBA achieves a better performance in terms of dense and sparse
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parameters, like the error floor nLo”_ s smaller than =222 mentioned in Theorem 1, and the
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convergence speed is more quickly. Clearly, the value of p; is differ for various distributions and
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accordingly the values of 2;% and 1 — npc are different.

Theorem 2. Based on the above Assumption and n < , the expectation of error after

1
2L(x S5 +1)
k + 1 steps of gradient updates in the synchronous training is deduced by
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To provide the proofs of Theorem 1, Corollary 1, and Theorem 2, we first prove the following lemmas.



Lemma 1. Let g(w,; 1)) denote the i-th gradient of k-th global step, and assume its expectation
E(g(wr(ik))) = E(VF(wr(x))). Then

E(llg(wr(i ) = VF(we)]3)

= E(lg(wr0)13) = EUVF(wr)I13) + E(IVF (wri1) = VE(wp) [3).

proof of Lemma 1.
B(llglwr i) = VEw)]3)
= B(llg(wrii) = VF(wri ) + VF(wriip) = VF(wp) 3)
= B(llg(wrin) F(wm,k))n%) + E(IVF(wri ) = VF (i) [3)
+2B((g(wr(ig) = VE(wr(ip) VF(wri ) = VE(wi)) ).
Since E(g(wr(ix))) = E(VF(wr(ip)),
B((9(wr(i0) = VF(wr (i) VF(wr(ipy) = VF(w) ) ) = 0.
Returning to (2)), we have
B(llglwr (i) = VE(w)]3)
= E(llg(wriipy) = VE(ri)l3) + E(IVF(wei ) = VF(wy)]3)
= B(lg(wri)I3) + BUVF(wri0)I3) = 2B ({9(wri10)s VF (wri ) 3
+ B(IIVF (wrie) = VE(wi)[3)

= E(lg(wr0)13) = EUVF (wr)l13) + E(IVF (i) = VE(wp) [3).
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Lemma 2. Let v, = ﬁ 9(w+(ik)), and suppose the variance of g(w(; i) is bounded as
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Then the sum of g(w,(; 1)) is bounded as follows

i

o? ()
E(lvl) < 375 +ZMQB B(IVF () 3) Z (IVF (wr(i ) 3)

proof of Lemma 2.
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Owing to E(g(w, (k) = E(VF(wr(ix)))
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The second term in (5) could be obtained by
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Here step (a) follows from 2(x,y) < ||z||3 + ||ly||3.

Based on (3)) and (6)), we have
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Lemma 3. Suppose pg is a lower bound on the conditional probability that the token equals to the
global step, i.e., (i, k) = k, thus

B(IVF (wri0)13) = poE([[VF (wg)][3)-
proof of Lemma 3.
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Next, we will provide the proofs of Theorem 1, Corollary 1, and Theorem 2.

proof of Theorem 1. Let w1 = wy — Nk, Uk = Z 9(wy(,k)), we have
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Owing to 2(x,y) = ||z||3 + ||ly|I3 — ||z — yl|3, (8) is shown as follows,
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Here step (a) follows from Lemma 1, step (b) follow from E(||VF(wg) — VF(wy(m)]3) <
YE(||VF(wyg)||3), and step (c) follows from Lemma 2.
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Since n < m, (TO) could be obtained by
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where 7/ = 1 — v + 2. Here step (d) follows from Lemma 3, step (e) follows from F'(w) is strongly
convex with parameter c.

Therefore,
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proof of Corollary 1. Based on CE(||VF (wi) — VF (W (1)) 13) < vE(|[VE(wy)]|3), the step (b)
of (T0) should be written as follows,
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proof of Theorem 2. Let wy+1 = Wy, — N0k, Vg = 1o 9(wr(i k), we have
=1

<.

L
F(wyi1) < F(wy) + (wep1 — wi) T VE(wy,) + §||wk+1 — w3

L
= F(wy) + (—nvg, VF(wg)) + 5772”%”%

Ns
NN L
= Flue) — 3 (00 00). V) + S o3
5 i=1 (13)
ok 1 L
3 (Flotura)lB + FIVF@OI - Flo(uns) - @A) + Fr ol
$ =1
L
F(wk)—*HVF (wi)]I5 — ZHQ (wri )1l + 2N ZHQ wr(iky) — VF(wi)3 + 37 ?llokll3-
Taking expectation,
n N L
B(F (i) < BEw) ~ TEVE) )~ 50 3 Bllglwr0)2) + on?B(ul3)
S =1
, & (14
+ N Z_lE(Hg(wT(i,k) = VF(wi)[}).
The last term in (T4) could be obtained on the basis of E(g(w,(;x))) = E(VF(wy)),
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Based on (16) and (I7)), we obtain

Ln?c? Ln?*, ©
B(F(wii1)) < B(F(w) = nB(IVFw)|3) + S + == (55 + 1) BUVEwo)])
— Ln@ @ 2 L772U2
= 5w~ (1- 555 - 5) BUVFunI) + 53 "
(a) L’I72O'2

< B(F(w) - JE(IVF@)) + 53

(b) ) L 20.2
< B(F(wy)) — neB(F(wy) - F*) + .

step (b) follows from 2¢(F(w) — F*) < ||[VE(w)]]3.

Here step (a) follows from n < m,

Therefore,
y ) L 20.2
B(F(wis1) = F7) < (1= ) B(F(wy) = F*) + 77—
s (19)
Lno? Lno?
< _ k+1 I A )
< (=) (E(F(wo) F) QCNSBS) 2N, B,
]

B Workflows of GBA

In this section, we abstract the workflows of GBA. Algorithm E] summarizes the workflow on workers
in GBA. We implement pipeline between data downloading and data ingestion to accelerate the
training. After completing the computation of gradients, the worker would directly send the gradient
with the token back to the PS in a non-blocking way. In this way, the fast workers would ingest much
more data than the straggling workers. When a worker recovered from a failure, it would drop the
previous state (e.g., data in the batch buffer and token) and proceed to deal with the new batch. The
disappearance of a specific token would not change the correctness and efficiency of GBA.

Algorithm 1 Workflow on workers

Ensure: Downloading threads: Download data asynchronously to a download buffer;
Pack threads: Prepare the batch of data from the download buffer to a batch buffer;
Computation threads: Execute the forward and backward pass of the model,
Communication threads: Pull and push parameters by GRPC;

1: Downloading threads

2: repeat

3:  Get the addresses of a number of batches (data shard) from PS.
4:  repeat

5: if The download buffer is not full then

6: Download a batch of data.

7: else

8: Sleep 100m:s.

9: end if

10:  until All the data from this shard has been downloaded

11: until No more data shards to get

12:

13: Computation threads

14: repeat

15:  Get a batch from the batch buffer in a blocking way.

16:  Pull the parameters and fetch a token from PS.

17.  Compute the forward and backward pass.

18:  Send the local gradient and the token back to PS in a non-blocking way.
19: until No more data to ingest

Algorithm 2] summarizes the workflow on PSs in GBA. The token generation threads, the pull
responding threads, and the push responding threads work asynchronously to avoid blocking of the



process. Different from the dense parameters, the embedding parameters are processed and updated
by IDs, instead of by the entire embedding parameters. In practice, we optimize the memory usage as
we could execute the weighted sum over some gradients in advance based on the tokens.

Algorithm 2 Workflow on PSs

Ensure: Token generation thread: Generate tokens to the token list;
Pull responding threads: Send the parameters and a token to the worker;
Push responding threads: Receive the gradients from a worker and apply them if necessary.
Token generation thread (Only on PS 0, with lock)
if Successfully acquire the lock then

if The number of tokens in the token list is less than the number of workers then

Insert new tokens to the tail of the token list (a Queue)

end if

end if

PRIN AR

Pull responding threads

Receive the request from a worker with the embedding IDs.

Look up the embedding tables based on the IDs for the embedding parameters.

: Fetch a token from the token list and trigger the token generation thread (only on PS 0).
: Send the parameters (and the token) back to the worker.

—_
Rl S A

: Push responding threads

: Receive the gradients from a worker.

: Store the gradients with the token to the gradient buffer.

. if At least IV, gradients are cached in the gradient buffer then
Pop N, gradients from the gradient buffer.

— = = =
0 N O\ W

19:  Update the global step of appearance tagged to each ID.

20:  Decay the gradients of the dense parameters based on the current global step and the attached
token.

21:  Decay the gradients of the embedding parameter based on the tagged global step of each ID

and the attached token to the gradient.

22:  Calculate the weighted sum of the gradients of the dense parameters, divided by V,,.

23:  Calculate the weighted sum of the gradients of the embedding parameters, divided by the
number of workers that encountered the particular ID.

24: end if

C Detailed statistics of Table 6 in the submission

Here we want to clarify the statements about Figure 6 in the submission, and present the detailed
statistics. Table [[T}.3] depict the AUCs after inheriting the checkpoints trained via synchronous
training. Table introduce the AUCs after inheriting the checkpoints trained by the compared
training modes and being switched to synchronous training. We collect the mean AUCs from the first
day, the last day, and all days across the three datasets, as shown in Table[4]and Table[8] We can infer
from the two tables that GBA provides the closest AUC scores as synchronous training. GBA appears
with the lowest immediate AUC drop after switching, i.e., merely 0.1% decrement after switching
from/to synchronous training at the first day. Throughout the three datasets, GBA outperforms the
other baselines by at least 0.2% (Hop-BW in Table[4) when switching from synchronous training
and 0.1% (Hop-BS in Table[8) when switching to synchronous training.

D Proof of sudden drop in performance after switching.

Theorem 3. Based on the above Assumption and L < , also suppose that for

1
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in the asynchronous training, the expectation of loss in the k + 1 step is deduced by
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Table .1: Figure 6(a) - Criteo (from Sync.)

Date | Sync. GBA Hop-BW Hop-BS BSP  Aysnc.

13 107999 0.7964  0.7954 0.7924  0.7930 0.5000
14 | 0.7957 0.7932  0.7959 0.7869  0.7886 0.5000
15 | 0.7967 0.7957  0.7895 0.7891  0.7889 0.5000
16 | 0.7963 0.7956  0.7932 0.5040 0.7891 0.5000
17 ] 0.7962 0.7955  0.7930 0.5040 0.7883 0.5000
18 | 0.7957 0.7950  0.7939 0.5030 0.7862 0.5000
19 | 0.7972 0.7966  0.7968 0.5030 0.7863 0.5000
20 | 0.7974 0.7973  0.7985 0.5030 0.7868 0.5000
21 | 0.7965 0.7959  0.7948 0.5050 0.7863 0.5000
22 1 0.7957 0.7955  0.7939 0.5040  0.7865 0.5000
23 1 0.7987 0.7986  0.7933 0.5060 0.7871 0.5000
Avg. | 0.7969 0.7959  0.7944 0.5819  0.7879 0.5000

Table .2: Figure 6(b) - Alimama (from Sync.)

Date | Sync. GBA  Hop-BW Hop-BS BSP  Aysnc.

6 0.6490 0.6489  0.6472 0.6488  0.6472 0.5000
7 0.6503 0.6502  0.6478 0.6503  0.6500 0.5000
8 0.6523 0.6523  0.6483 0.6523  0.6512 0.5000
Avg. | 0.6505 0.6505  0.6478 0.6505  0.6495 0.5000

Table .3: Figure 6(c) - Private (from Sync.)

Date\ Sync. GBA Hop-BW Hop-BS BSP  Aysnc.

15 | 0.7877 0.7880  0.7870 0.7875  0.7880 0.7795
16 | 0.7874 0.7877  0.7860 0.7878  0.7870 0.7785
17 | 07856 0.7860  0.7840 0.7858 0.7850 0.7774
18 | 0.7884 0.7888  0.7850 0.7882  0.7877 0.7873
19 | 0.7894 0.7905  0.7855 0.7890 0.7886 0.7878
20 | 0.7785 0.7788  0.7750 0.7781  0.7774 0.7598
21 | 0.7865 0.7868  0.7823 0.7863  0.7850 0.7769
22 107862 0.7870  0.7825 0.7858 0.7862 0.7754
Avg. | 0.7862 0.7867  0.7834 0.7861  0.7856 0.7778

Table .4: Average AUC decrement on three datasets between GBA and the other baselines (from
Sync.)

| Sync. Hop-BW Hop-BS  BSP Aysnc.

Istday | +0.0011 -0.0012  -0.0015 -0.0017 -0.1513
lastday | -0.0002 -0.0046  -0.0979 -0.0045 -0.1542
Average | +0.0002  -0.0025 -0.0716 -0.0034 -0.1518




Table .5: Figure 6(d) - Criteo (to Sync.)

Date\ Sync. GBA  Hop-BW Hop-BS BSP  Aysnc.

13 |1 0.7999 0.7963  0.7968 0.7937  0.7913 0.7872
14 | 0.7957 0.7947  0.7933 0.7917  0.7907 0.7902
15 | 0.7967 0.7957  0.7952 0.7932  0.7923 0.7922
16 | 0.7963 0.7954  0.7956 0.7937  0.7944 0.7939
17 ] 0.7962 0.7956  0.7946 0.7943  0.7945 0.7935
18 | 0.7957 0.7958  0.7949 0.7931  0.7922 0.7929
19 | 0.7972 0.7966  0.7960 0.7952  0.7944 0.7946
20 | 0.7974 0.7970  0.7970 0.7962  0.7957 0.7957
21 | 0.7965 0.7963  0.7956 0.7950  0.7931 0.7952
22 1 0.7957 0.7955  0.7955 0.7953  0.7940 0.7950
23 1 0.7987 0.7982  0.7978 0.7973  0.7964 0.7972
Avg. | 0.7969 0.7961  0.7957 0.7944  0.7935 0.7934

Table .6: Figure 6(e) - Alimama (to Sync.)

Date | Sync. GBA  Hop-BW Hop-BS BSP  Aysnc.

6 0.6490 0.6492  0.6401 0.6484  0.6452 0.6352
7 0.6503 0.6504  0.6437 0.6499  0.6487 0.6426
8 0.6523 0.6523  0.6471 0.6520 0.6503 0.6456
Avg. | 0.6505 0.6506  0.6436 0.6501 0.6481 0.6411

Table .7: Figure 6(f) - Private (to Sync.)

Date | Sync. GBA  Hop-BW Hop-BS BSP  Aysnc.

15 | 0.7877 0.7878  0.7783 0.7859 0.7732 0.7870
16 | 0.7874 0.7877  0.7844 0.7867  0.7767 0.5000
17 | 0.7856 0.7855  0.7813 0.7853  0.7782 0.5000
18 | 0.7884 0.7883  0.7858 0.7880  0.7805 0.5000
19 |0.7894 0.7896  0.7870 0.7889  0.7848 0.5000
20 | 0.7785 0.7786  0.7761 0.7784  0.7746  0.5000
21 1 0.7865 0.7865  0.7843 0.7864  0.7828 0.5000
22 1 0.7862 0.7863  0.7855 0.7861  0.7838 0.5000
Avg. | 0.7862 0.7863  0.7828 0.7857  0.7793  0.5359

Table .8: Average AUC decrement on three datasets between GBA and the other baselines (to Sync.)

| Sync. Hop-BW Hop-BS  BSP Aysnc.

Istday | +0.0011 -0.0060 -0.0018 -0.0079 -0.0080
last day | +0.0001 -0.0021  -0.0005 -0.0021 -0.0980
Average | +0.0002  -0.0036  -0.0009 -0.0040 -0.0875
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If we switch to the synchronous training in the k + 1 step, the expectation of loss is shown as follows

Ln?c? n Ln?c?
2B 2BN

B(F(w41)) < B(F(wy) = 5(1 =) E(IVF(we|3) +

Ly’  Lnp?> 2 2
+Gp + o~ o BUIVF@wIR) = 7B (IVF (or)1B)

and switching the asynchronous mode to the synchronous mode may drop in performance.

2L

proof of Theorem 3. According to Theorem 1, (20) could be obtained if we apply the asynchronous
training mode. Next, we will prove (Z1)).

1
Let wyq1 = wg — Nk, Uk = 3 Z 9(wr(,x)), we have

L
F(wit1) < F(wy) 4+ (wegr — wi) "V (wy,) + §||wk+1 — w13

L
< F(wg) + (—nug, VF(wy)) + 5772”1%”% (22)
N o L
=F(wr) - > {g(wr(iny), VF(we) + 5772||vk||§~
=1

Since we switch the asynchronous training to the synchronous training, the gradient of each worker
9(Wr(iky), © = 1,2,..., N, in the k step may be different.

Owing to 2(x,y) = ||z|%3 + ||ly||3 — ||z — yl|3, the expectation of [22)) is shown as follows,

(23)
N
L
+2’}V§_j (lgCwriin) = VE@I) + 50 E(lvel3):

Since there applied a gradient in the % step of the asynchronous training, we may assume g(w,(1,x)) =
g(wy). Hence,

sac 3 B(llgtwriix) — VF(we)3)

N
i=1

N
= o (Bllgtw-.) = VE@)IB) + 3 Ellg(wri) = VE@wI3)
=2 (24)
= o (Bllgwol3) - E(IVE(wy)]3)
N
+ 5 2 (Bllgwr0)13) = BANVE (wr500)l13) + EAIVF(wri00) = VF(wi) [3))
j=2
Besides,
Ui al n n N
oV g E(llg(wra)I3) = 537 Elgwn)[3) + 55 Z:j E(llg(w-(j.1)3). 25)
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Based on (24) and (23)), we have

B(F(ui 1)) < B(F(wi)) ~ VE(IVE (i) ~ S BIVF ) [3) + 5n* Bl )
N N
B %ZJ (IVE (Il ;}VE_ZE IV F(wr(0) = VE () [3)

S B(F(w) ~ PRV uilB) ~ 5% B(IVF ) B) + 5 B(u )

n a m (26)
o S B(IVF (wrgs0)13) + SLE(IVF (wel3)
j=2
L
= BE(F(wy)) = 51 = NE(IVF(wi]3) = 5 E(IVF(we) [3) + 5n*B(|lve3)
N
2 2 E(IVE(wr)13)-
j=2

Here, step (a) follows from E(||VF(wk) VF(we )3 ) < yE(|VF(wg)||3)-
1
E(lox13) (||—Zg wrim)I3) = WE(nZg(wT@,k))H%)
i=1
1 2
B(] ng(i,k)) — VE(wr(ip) + VE(wri0)l3)
1 N
(\Zg wriiy) = VE(wri)3) + 5B (I Y0 VEwein)I)
=1 =1

éE(Ilg(wk) VF (wy)| )+ i_v: (ngf(]k VF(wT(ak))H) 27)

ls \

E(IVF@w)l3) + }ij (||VF<wT<j,k)>H§)
j=2
< 2+ 2B(IVFw ) + 122( BV F(w,)1))

+ (VP 3) + XN: E(|VF(wr(0)3)

Based on (27), we obtain
Ln%c?  Ln*c?

2B + 2BN

(
(M2 B2 Y p(1v PG 08)

2
U
9BN? TN 2N>E(||VF(wr<j,k>)H§)-

B(F(ws1)) < B(F(wy) = 2(1 =) E(IVF (wi|3) +

_l’_
M=
Pl
g
o)
£
|
|

In @8).

5 (L08 I ) (9 F(wr)13)
j=2

T 2N Z (@ +Ln— 1) (HVF(’LUT(J‘,M)“%) = 7%E(HVF(MT(’“))”§)'

(29)
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Therefore,

Ln%02 Ln?c2
E(F(wit1)) < E(F(wy)) — 2(1 — ) E(|VF(wy][3) + 22— 4 £
Lp*©  Lnp* g 2 n 2
+ (G5 + 5 — 55 ) E(IVF@) = 7= E(IVF(w,)13)

Owing to 1 > ﬁ%ﬂ)’ we have LTQ" + Ln > + and

Ln*0 Ly g N 1 Ln® 1 )
o T aN = (% - = 31
5B T 2N)E(”VF(w’“)”2) 25 L N)E(HVF(wk)Hz)ZO- 31)

Since —%E(nvzf(wﬂk))ng) > —gE(HVF(wT(k))Hg), we have

Lp’a® 1 >
Ln?c?  Ln?c?

2B + 2BN

E(F(wy)) = (1= ) E(|VF(we)[3) +

(32)

< B(F(wy)) = 3(1= 1) E(|VF(well}) +

Ly’ | Lp* 1 2\ _ >
+ (5 + 5 = SOB(IVF@) ) - B (IVF(wre)13)-
Therefore, switching the asynchronous mode to the synchronous mode in the k£ + 1 step may drop in
performance.

Theorem 4. Based on the above Assumption and n < , in the synchronous training, the

1
2L(2+1)
expectation of loss in the k + 1 step is deduced by

Ln® Ln 9 Ln?c?
< — —-—— - — .
B(F () < B(FG0) =0 (1= g0 = 51 ) BUVF@p) + 5xs 69
If we switch to the asynchronous training in the k + 1 step, the expectation of loss becomes as follows
In® L Ln?c?
B(F(wy)) < B(F(wy)) = (1 = 5= = ZDE(IVF (w3 + =, (34

and switching the synchronous mode to the asynchronous mode may drop in performance.

proof of Theorem 4. According to the Theorem 2, (33)) could be obtained. Next, we will prove (34).
n n
E(F(wit1)) < E(F(wy)) = 5 B(IVE(wi]l3) = S E(lg(wri)]32)

n 2 L, 2 (35)
+ 2B (Ilg(wr1) = Vi) [3) + 52 B(loell).
since B(|lg(wr1 1) = VF(wp)[3) = E(llg(we)|3) — E(IVF(wy)[3), we have
L 2
B(F(ws1)) < E(F(wy) = nB(IVFwi)[13) + == E(lvx3).
Owing to
E(lvel3) = Elg(wra,0)13) = E(lg@wsa,m) = VF(wi) + VF@w)|3)
= B(lg(w-11) = VF(wi)|3) + B(IVF () 3) 36)
o? S}
< S+ (5 + DE(VF(w)3,
we obtain
Ln Lno© Ln?o?
B(F(ws1)) < B(F(wy) = (1 = 5 = ZE)E(IVF (wy) 3+ 2= (37)
Owing to ng;z > Lg\jg and % > %, we have
In® L Ln?c?
B () - 0 (1 03~ 57 ) BVl + g
(38)
In® L Ln?c?
< B(F(wy) —n(1 = 5= = SHE(IVF ()3 + 2=

Hence, switching the synchronous mode to the asynchronous mode may drop in performance. [
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