
1 Analytical Derivation of the Convergence Behavior in the Case Study
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(c) Convergence probability
w.r.t. θ

Figure 1: Convergence analysis of our proposed online PCA method for solving Equation (5) in the
main paper. Note that vanilla fixed-point iteration can never converge in this case.

In this section, we provide the analytical derivation of the convergence behavior in Section 3.4 of the
main paper.

For the online PCA method, here we select the simplest method, Oja’s algorithm [3, 4]. Given a
random sample xt ∼ P(x; Σt) at time step t, its update rule is as follows:

vt = vt−1 + η(xtx
>
t vt−1) and vt ←

vt
‖vt‖

(1)

in which Σt = F (vt) is the covariance matrix at time step t.

For the convergence analysis, we explore the moving direction of v during the iterative process (1).
For v = [0, cosϕ, sinϕ]>, we have

∇v = F (v)v = Avv>Av =

− sin θ cos3 ϕ− sin θ cosϕ sin2 θ
cos2 θ cos3 ϕ+ cos θ cosϕ sin2 ϕ

cos θ cos2 ϕ sinϕ+ sin3 ϕ


Then, we investigate whether the updated vector v′ = v+∇v

‖v+∇v‖ will be closer to the ground-truth
solution v∗, i.e., the angle between v′ and the xy-plane (ϕ′ in Figure 1a) will be larger than ϕ. That is

v′z√
(v′x)2 + (v′y)2

>
vz
vy

which is equivalent to the following quadratic inequality w.r.t. cos2 ϕ for ϕ ∈ (0, π2 ):

a cos4 ϕ+ b cos2 ϕ+ c > 0

a = 1− cos2 θ + 2 cos3 θ − cos4 θ

b = −4 + 2 cos θ + cos2 θ − 2 cos3 θ

c = 3− cos2 θ

which implies

ϕ ∈
{

(0, π2 ], θ ∈ (0, π2 )

(arccos
√
x1,

π
2 ], θ ∈ [π2 , π)

(2)

where x1 = (−b−
√
b2 − 4ac)/2a.

2 Physical Background of Equation (8) in the Main Paper

In this section, we briefly introduce the physical background of Equation (8) in Section 3.5 of the
main paper. We refer to [6, 2] for more details.
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In computational physics, a foundation problem is to solve the Schrödinger equation of a many-body
quantum system

H |Ψ〉 = E |Ψ〉
where H is the Hamilton operator for a system of M nuclei and N electrons described by their
coordinates RA and ri. With the Born-Oppenheimer approximation (nuclei are much heavier than
electrons), we consider the electrons to be moving in the field of fixed nuclei, thus the kinetic energy
of the nuclei (approximated as zero) and the repulsion between the nuclei (approximated to be
constant) can be neglected. In this case we write H as

H = −
N∑
i=1

1

2
∇2
i︸ ︷︷ ︸

kinetic energy of the

electrons

−
N∑
i=1

M∑
A=1

ZA
|ri −RA|︸ ︷︷ ︸

coulomb attraction be-

tween electrons and nu-

clei

+

N∑
i=1

N∑
j=i+1

1

|ri − rj |︸ ︷︷ ︸
repulsion between elec-

trons

and Ψ(r1, · · · , rN ) the electronic wave function, which should be normalized (i.e., 〈Ψ|Ψ〉 =∫
Ψ∗(r1, · · · , rN )Ψ(r1, · · · , rN )dr1 · · · drN = 1). For convenience, let operator h(i) = − 1

2∇
2
i −∑M

A=1
ZA

|ri−RA| so H can be rewritten as H =
∑N
i=1 h(i) +

∑N
i=1

∑N
j=i+1

1
|ri−rj | . According to

the variational principle, the problem of finding solution Ψ for the ground state energy E0 can be
transformed to the following constrained optimization problem

min 〈Ψ|H |Ψ〉 s.t. 〈Ψ|Ψ〉 = 1

Since the multi-electron wave function Ψ(r1, · · · , rN ) is computationally intractable whenN is large,
a basic way is to approximate it as the product of N orbital wave function ψ1(r1)ψ2(r2) · · ·ψN (rN )
satisfying 〈ψi|ψi〉 =

∫
ψ∗i (r)ψi(r)dr = 1,∀i ∈ 1 · · ·N , which is called “Hartree approximation”.

We also expand ψi(r) =
∑K
u=1 Cuiφ(r) as a linear combination of K “basis functions” which is

fixed and given, in this case our task becomes to determine the value of all Cui so as to determine the
approximated wave function. To construct a Lagrange multiplier

L = 〈Ψ|H |Ψ〉 −
N∑
i=1

εi(〈ψi|ψi〉 − 1)

we have

〈Ψ|H |Ψ〉 =

N∑
i=1

∫
Ψ∗(r1, · · · , rN )h(i)Ψ(r1, · · · , rN )dr1 · · · drN

+

∫
Ψ∗(r1, · · · , rN )

N∑
i=1

N∑
j=i+1

1

|ri − rj |
Ψ(r1, · · · , rN )dr1 · · · drN

=

N∑
i=1

∫
ψ∗i (r)h(i)ψi(r)dr +

1

2

N∑
i=1

N∑
j 6=i

∫
ψ∗i (ri)ψ

∗
j (rj)

1

|ri − rj |
ψi(ri)ψj(rj)dridrj

=

N∑
i=1

∑
u,v

CuiCvi

∫
φ∗u(r)h(i)φv(r)dr

+
1

2

N∑
i=1

N∑
j 6=i

∑
u,v,λ,σ

CuiCλjCσjCvi

∫
φ∗u(ri)φ

∗
λ(rj)

1

|ri − rj |
φσ(rj)φv(ri)dridrj

and
N∑
i=1

εi(〈ψi|ψi〉 − 1) =

N∑
i=1

εi(

∫
ψ∗i (r)ψi(r)dr − 1)

=

N∑
i=1

εi(
∑
u,v

CuiCvi

∫
φ∗u(r)φv(r)dr − 1)
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Let Huv =
∫
φ∗u(r)h(i)φv(r)dr, Suv =

∫
φ∗u(r)φv(r)dr and Euvλσ =∫

φ∗u(r1)φ∗λ(r2) 1
|r1−r2|φσ(r2)φv(r1)dr1dr2 which are all constants since {φi} are given

functions, we have

L =

N∑
i=1

∑
u,v

CuiCviHuv +
1

2

N∑
i=1

N∑
j 6=i

∑
u,v,λ,σ

CuiCλjCσjCviEuvλσ

−
N∑
i=1

εi(
∑
u,v

CuiCviSuv − 1)

∂L

∂Cui
=2
∑
v

Cvi(Huv +
∑
j( 6=i)

∑
λ,σ

CλjCσjEuvλσ − εiSuv)

Let ∂L
∂Cui

= 0,∀i = 1 · · ·N, u = 1 · · ·K and we have∑
v

Cvi(Huv +
∑
j(6=i)

∑
λ,σ

CλjCσjEuvλσ) = εi
∑
v

CviSuv,∀i = 1 · · ·N, u = 1 · · ·K

Let Pλσ =
∑
j(6=i) CλjCσj , [Ueff(P )]uv =

∑
λ,σ PλσEuvλσ, Fuv = Huv + [Ueff(P )]uv and Λ =

diag(ε1, · · · , εN ), P,Ueff(P ), F ∈ RK×K , we have the matrix form of the above equation

FC = SCΛ

which is a generalized eigenvalue problem where the matrix F to be decomposed is defined by the
eigenvectors C.

Actually, there are several improved approximation theories based on the Hartree approximation
mentioned above, in which the definitions of P and Ueff(P ) are different. A most influential one
is the Hartree-Fock theory in which the multi-electron wave function is approximated by a slater
determinant

Ψ(x1, · · · , xN ) =
1√
N !

∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣
to conform to the antisymmetry principle Ψ(· · · , xi, · · · , xj , · · · ) = −Ψ(· · · , xj , · · · , xi, · · · )
whose famous representation is Pauli exclusion principle. In this way Puv = 2

∑N/2
i CλjCσj

(or in matrix form, P = 2CC>) and [Ueff(P )]uv =
∑
λ,σ PλσEuvλσ−

1
2

∑
λ,σ PλσEuλσv , in which

an “exchange term” − 1
2

∑
λ,σ PλσEuλσv is added.

3 Self-Consistent Field (SCF) method

Self-Consistent Field (SCF) is a standard method to solve Equation (8) in the main paper. An initial
density matrix P0 is generated via heuristics based on prior quantum mechanism knowledge, then
the generalized eigen-decomposition problem F (Pt−1)Vt = SVtΛt is repeatedly solved to obtain
eigenvectors Vt and density matrix Pt = 2VtV

>
t at the t-th iterations, t = 1, 2, · · · , until |Pt − Pt−1|

is less than the convergence threshold. The detailed routine is shown in Algorithm 1.

To solve the generalized eigen-decomposition problem, it should be transformed to standard form
first. To achieve this, the orthogonalization technique introduced in [6] is applied to eliminate the
overlap matrix S. First, find a linear transformation X so that X>SX = I . There are several ways
to achieve this, a popular one is named “canonical orthogonalization” which lets X = Udiag(s−1/2),
where U and s are all eigenvectors and eigenvalues of S. Note that all eigenvalues of S are positive
so there is no difficulty of taking square roots. Then let V ′ = X−1V (V = XV ′), we have
F (V )XV ′ = SXV ′Λ. Multiply X> on the left and we have X>F (V )XV ′ = X>SXV ′Λ. Let
F ′(V ) = X>F (V )X , we have

F ′(V )V ′ = V ′Λ (3)
which is a standard eigen-decomposition problem.
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Algorithm 1 Self-Consistent Field (SCF) method

Input: H,S,Ueff(·) in Equation (8) and (9) in the main paper. Converge threshold ε.
Output: V ∗, the solution of Equation (8)

Obtain initial density matrix P0 via initial guess methods (e.g., SAD or core Hamiltonian).
Find X satisfying X>SX = I .
t← 0
while |Pt − Pt−1| < ε do

Ft ← H + Ueff(Pt)
F ′t ← X>FtX
t← t+ 1
Obtain precise eigenvectors V ′t of F ′t−1 corresponding to the top-k smallest eigenvalues via

classical eigen-decomposition methods such as QR iteration.
Vt ← XV ′t
Pt ← 2VtV

>
t

end while
V ∗ ← Vt

4 Other Numerical Adaptations to Solve Equation (8) in the Main Paper

In this section, we provide some additional numerical adaptations applied in Section 3.5 of the main
paper to converge Equation (8).

DIIS: Not only the principal components, but also the covariance matrix can be updated incrementally.
For solving SCF equations, especially in the context of electronic structure calculation, the direct
inversion of the iterative subspace (DIIS) method is empirically effectively and widely applied as
default. The basic idea is to update Σt at iteration t as a linear combination of matrices in previous
iterations Σt−Tsubspace , · · · ,Σt−1 as follows in which Tsubspace is the number of subspaces

Σt =

t−1∑
i=t−Tsubspace

ciΣi (

t−1∑
i=t−Tsubspace

ci = 1) (4)

in which ci is the mixing coefficients, which are required to add to one. The value of ci is determined
by a constrained optimization minimizing a specifically constructed error, whose detail can be found
in [5]. In the experiments involving electronic structure calculation, we apply DIIS on all tested
methods.

Momentum: The selection of learning rate η for online PCA is highly tricky for different N and
F (·) in Equation (8). To enhance the robustness of the algorithm towards learning rate, we introduce
the momentum method for the update of V as follows:

Mt = βMt−1 + η∇Vt−1, (5)
Vt = Vt−1 +Mt, (6)

in which ∇Vt−1 is the update direction computed by online PCA, and β is the momentum term.

Sample-free Update: Note that for some online PCA algorithms here could be slightly modified to
be integrated into the above model more efficiently, exploiting the fact that the change of distribution
is explicitly given by the reconstruction function F (·).

Given a distribution Pt at a certain time step t, to update the top principal component vt with
online PCA, the standard approach is to sample one or a mini-batch of data from Pt, then perform
online PCA on the sampled data to update vt in an incremental way based on vt−1. However, if the
covariance matrix of Pt is already given as Σt explicitly, the sampling process may not be required
for many of the online PCA algorithms, since they also infer the covariance matrix from the sampled
data. For example, in Oja’s algorithm [3, 4], given a sampled data xt ∼ Pt at time step t, the top
principal component vt is updated as:

vt ← vt−1 + η(xtx
>
t vt−1) and vt ←

vt
‖vt‖
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Note that xtx>t is actually an estimation of covariance matrix Σt of Pt. If Σt is explicitly given, the
above process can be simplified as

vt ← vt−1 + η(Σtvt−1) and vt ←
vt
‖vt‖

5 Results on Other Dataset

We also did experiments on other datasets, however, preliminary results shows that small datasets
like W4-17[1] are not challenging enough for our experiment, as both our methods and the baseline
converges very well.
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