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A DEEPNETS-1M Details
A.1 Generating DEEPNETS-1M using DARTS

In this section, we elaborate on our description in § 2.1 about how DARTS [19] defines networks. We
also elaborate on our discussion in § 3 about how we modify the DARTS framework to generate our
DEEPNETS-1M dataset of architectures and summarize these modifications here, in Table 7. We
visualize examples of architectures defined using DARTS [19] and corresponding computational
graphs obtained using our code (Fig. 5).

Overall architecture structure. At a high level, all our ID and OOD networks are composed
of a stem, repeated normal and reduction cells, global average pooling and a classification head
(Fig. 5, (a)). We optionally sample fully-connected layers between the global pooling and the last
classification layer and/or replace global pooling with fully connected layers, e.g. as in VGG [25].
The stem in DARTS, and in other NAS works, is predefined and fixed for each image dataset. We
uniformly sample either a CIFAR-10 style or ImageNet style stem, so that our network space is unified
for both image datasets. To prevent extreme GPU memory consumption when using a non-ImageNet
stem for ImageNet images, we additionally use a larger stride in the stem that does not affect the graph
structure. At test time, however, we can predict parameters for networks without these constraints,
but the performance of the predicted parameters might degrade accordingly. For example, we can
successfully predict parameters for ResNet-50 (Fig. 5, (e)), which has 13 normal and 3 reduction
cells placed after the 3rd, 7th and 13th cells. ResNet-50’s cells (Fig. 5, (d)) are similar to those of
ResNet-18 (Fig. 5, (b)), but have 1×1 bottleneck layers.

Within and between cell connectivity. Within each cell and between them, there is a certain pattern
to create connections in DARTS (Fig. 5, (b,d)): each cell receives features from the two previous
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cells, each summation node can only receive features from two nodes, the last concatenation node
can receive features from an arbitrary number of nodes. But due to the presence of the Zero (‘none’)
and Identity (‘skip connection’) operations, we can enable any connectivity. We represent operations
as nodes9 and drop redundant edges and nodes. For example, if the node performs the Zero operation,
we remove the edges connected to that node. This can lead to a small fraction of disconnected
graphs, which we remove from the training/testing sets. If the node performs the Identity operation,
we remove the node, but keep corresponding edges. We also omit ReLU operations and other
nonlinearities in a graph representation to avoid significantly enlarging graphs, since the position of
nonlinearities w.r.t. other operations is generally consistent across architectures (e.g. all convolutions
are preceded by ReLUs except the first layer). This leads to graphs visualized in Fig. 5, (c,e).

Operations. The initial choice of operations in DARTS is quite standard in NAS. In normal cells, each
operation returns the tensor of the same shape as it receives. So any differentiable operation that can
preserve the shape of the input tensor can be used, therefore extending the set of operations is relatively
trivial. In reduction cells, spatial resolution is reduced by a factor of 2, so some operations can have
stride 2 there. In both cells, there are summation and concatenation nodes that aggregate features
from several operations into one tensor. Concatenation (across channels) is used as the final node in a
cell. To preserve channel dimensions after concatenating many features, 1×1 convolutions are used as
needed. For the Squeeze&Exicte (SE) and Visual Transformer (ViT) operations, we use open source
implementations10 with default configurations, e.g. 8 heads in the multihead self-attention of ViT.

(a) (b) (c)

(d) (e)
Figure 5: (a) Network’s high-level structure introduced in [29] and employed by many following papers on
network design, including DARTS [19] and ours, where N≥ 1; (b) A residual block [8] in terms of DARTS
normal and reduction cells, where green nodes denote outputs from the two previous cells, blue nodes denote
summation, a yellow node denotes concatenation†; edges denote operations, ‘none’ indicates dropping the edge‡;
the reduction cell has the same structure in ResNets, but decreases spatial resolution by 2 using a downsample
operation and stride 2 in operations, at the same time, optionally increasing the channel dimensionality by
2. (c) The result of combining (a) and (b) for 8 cells using our code to build an analogous of the ResNet-18
architecture?. (d) A residual block of ResNet-50 with 1×1 bottleneck layers defined using DARTS and (e) the
graph built using our code, where 3 reduction cells are placed as in the original ResNet-50 architecture.

9In DARTS, the operations are placed on the edges, except for inputs, summations and concatenation (Fig. 5).
10SE: https://github.com/ai-med/squeeze_and_excitation/blob/master/squeeze_and_

excitation/squeeze_and_excitation.py, ViT: https://github.com/lucidrains/vit-pytorch/
blob/main/vit_pytorch/vit.py

†Concatenation is redundant in ResNets and removed from our graphs due to only one input node in cells.
‡In ResNets [8], there is no skip connection between the input of a given cell and the output of the cell

before the previous one.
?Note that ResNets of [8] commonly employed in practice have 3 reduction cells instead of 2 and have other

minor differences (e.g. the order of convolution, BN and ReLU, down sampling convolution type, bottleneck
layers, etc.). We still can predict parameters for them, but such architectures would be further away from the
training distribution, so the predicted parameters might have significantly lower performance.
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Table 7: Summary of differences between the DARTS design space and ours. *Means implementation-wise
possibility of predicting parameters given a trained GHN, and does not mean our testing ID architectures, which
follow the training design protocol. Overall, from the implementation point of view, our trained GHNs allow to
predict parameters for arbitrary DAGs composed of our 15 primitives with the parameters of arbitrary shapes¶.
We place ResNet-50 in a separate column even though it is one of the evaluation architectures of DEEPNETS-1M,
because it has different properties as can be seen in the table.

PROPERTY DARTS DEEPNETS-1M RESNET-50 TESTING GHN*

Unified style across image datasets 7 3 7 3

VGG style classification heads [25] 7 3 7 3

Visual Transformer stem [20] 7 3 7 3

Channel expansion ratio 2 1 or 2 2 arbitrary
Bottleneck layers (e.g. in ResNet-50 [8]) 7 7 3 3

Reduction cells position (w.r.t. total depth) 1/3, 2/3 1/3, 2/3 3,7,17 cells arbitrary
Networks w/o 1×1 preprocessing layers in cells 7 3 3 3

Networks w/o batch norm 7 3 7 3

A.2 DEEPNETS-1M Statistics

We show the statistics of the key properties of our DEEPNETS-1M in Fig. 6 and more examples of
computational graphs for different subsets in Fig. 7.
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Figure 6: Visualized statistics of DEEPNETS-1M. (a) A violin plot of the number of nodes showing the
distribution shift for the DEEP and DENSE subsets. (b) Node types (primitives) showing the distribution shift
for the BN-FREE subset. (c) Number of initial channels in networks (for TRAIN, the number is for training
GHNs on CIFAR-10). Here, the distribution shift is present for all test subsets (due to computational challenges
of training GHNs on wide architectures), but the largest shift is for WIDE. (d) Total numbers of trainable
parameters in case of CIFAR-10, where the distribution shifts are similar to those for the number of channels. (e)
Average shortest path length versus average node degree (other subsets that are not shown follow the distribution
of TRAIN), confirming that nodes of the DENSE subset have generally more dense connections (larger degrees),
while in DEEP the networks are deeper (the shortest paths tend to be longer). (f) The validation error for 1000
VAL +TEST architectures (trained with SGD for 50 epochs) versus their average shortest path lengths, indicating
the “sweet spot” of architectures with strong performance (same axes as in [46]). (g) Same as (f), but with
the y axis being the top-5 validation error on ImageNet of the same architectures trained for 1 epoch according
to our experiments. (h) The distribution of the distances between the architectures of a given test subset and
the ones from a subset of TRAIN computed using the Hungarian algorithm [43], confirming that the evaluation
architectures are different from the training ones.

¶While we predefine a wide range of possible shapes in our GHNs according to § B.1, in the rare case of
using the shape that is not one of the predefined values, we use the closest values, which worked reasonably well
in many cases.
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Figure 7: Examples of graphs in each subset of our DEEPNETS-1M visualized using NetworkX [44].

B GHN Details

B.1 Baseline GHN: GHN-1

GHNs were designed for NAS, which typically make strong assumptions about the choice of
operations and their possible dimensions to make search and learning feasible. For example, non-
separable 2D convolutions (e.g. with weights like 512×512×3×3 in ResNet-50) are not supported.
Our parameter prediction task is more general than NAS, and tackling it using the vanilla GHNs
of [24] is not feasible (mainly, in terms of GPU memory and training efficiency) as we show in § C.2.1
(Table 8). So we first make the following modifications to GHNs and denote this baseline as GHN-1.

1. Compact decoder: We support the prediction of full 4D weights of shape <out channels
× input channels × height × width> that is required for non-separable 2D convolutions.
Using an MLP decoder of vanilla GHNs [24] would require it to have a prohibitive number
of parameters (e.g. ∼4 billion parameters, see Table 8). To prevent that, we use an MLP
decoder only to predict a small 3D tensor and then apply a 1×1 convolutional layer across
the channels to increase their number followed by reshaping it to a 4D tensor.

2. Diverse channel dimensions: To enable prediction of parameters with channel dimensions
larger than observed during training we implement a simple tiling strategy similar to [14].
In particular, instead of predicting a tensor of the maximum shape that has to be known prior
training (as done in [24]), we predict a tensor with fewer channels, but tile across channel
dimensions as needed. Combining this with #1 described above, our decoder first predicts a
tensor of shape 128×S×S , where S = 11 for CIFAR-10 and S = 16 for ImageNet. Then,
the 1×1 convolutional decoder with 256 hidden and 4096 output units transforms this tensor
to the tensor of shape 64×64×S×S. Modifications #1 and #2 can be viewed as strong
regularizers that can hinder expressive power of a GHN and the parameters it predicts, but
on the other side permit a more generic and efficient model with just around 1.6M-2M
parameters.

3. Fewer decoders: One alternative strategy to reduce the number of parameters in the decoder
of GHNs is to design multiple specialized decoders. However, this strategy does not scale
well with adding new operations. Our modifications #1 and #2 allow us to have only three
decoders: for convolutional and fully connected weights, for 1D weights and biases, such as
affine transformations in normalization layers, and for the classification layer.
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4. Shape encoding: The vanilla GHNs does not leverage the information about channel di-
mensionalities of parameters in operations. For example, the vanilla GHNs only differentiate
between 3×3 and 5×5 convolutions, but not between 512×512×3×3 and 512×256×3×3.
To alleviate that, we add two shape embedding layers: one for the spatial and one for
the channel dimensions. For the spatial dimensions (height and width of convolutional
weights) we predefine 11 possible values from 1 to S. For the channel dimensions (input
and output numbers of channels) we predefine 392 possible values from 1 to 8192. We
describe 3D, 2D and 1D tensors as special cases of 4D tensors using the value of 1 for
missing dimensionalities (e.g. 10×1×1×1 for CIFAR-10 biases in the classification layer).
The shape embedding layers transform the input shape into four (two for spatial and two
for channel dimensions) 8-dimensional learnable vectors that are concatenated to obtain
a 32-dimensional vector. This vector is summed with a 32-dimensional vector encoding
one of the 15 operation types (primitives). In the rare case of feeding the shape that is not
one of the predefined values, we look up for the closest value. This can work well in some
cases, but can also hurt the quality of predicted parameters, so some continuous encoding as
in [41] can be used in future work.

B.2 Our improved GHN: GHN-2

B.2.1 GHN-2 Architecture

Our improved GHN-2 is obtained by adding to GHN-1 the differentiable normalization of predicted
parameters, virtual edges (and the associated ‘mlp_ve’ module, see the architecture below), meta-
batching and layer normalization (and the associated ‘ln’ module). A high-level PyTorch-based
overview of the GHN-2 model architecture used to predict the parameters for ImageNet is shown
below (see our code for implementation details).

(ghn): GHN( # our hypernetwork H_D with total 2,319,752 parameters (theta)
(gcn): GCNGated( # Message Passing for Equations 3 and 4
(mlp): MLP(
(fc): Sequential(
(0): Linear(in_features=32, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=32, bias=True)
(3): ReLU()
)
)
(mlp_ve): MLP( # only in GHN-2 (see Eq. 4)
(fc): Sequential(
(0): Linear(in_features=32, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=32, bias=True)
(3): ReLU()
)
)
(gru): GRUCell(32, 32) # all GHNs use d=32 for input, hidden and output node feature dimensionalities
)
(ln): LayerNorm((32,), eps=1e-05, elementwise_affine=True) # only in GHN-2
(shape_embed_spatial): Embedding(11, 8) # encodes the spatial shape of predicted params
(shape_embed_channel): Embedding(392, 8) # encodes the channel shape of predicted params
(op_embed): Embedding(16, 32) # 15 primitives plus one extra embedding for dummy nodes
(decoder): Decoder(
(fc): Sequential(
(0): Linear(in_features=32, out_features=32768, bias=True)
(1): ReLU()
) # predicts a 128x16x16 tensor
(conv): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU()
(2): Conv2d(256, 4096, kernel_size=(1, 1), stride=(1, 1))
) # predicts a 64x64x16x16 tensor
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(class_layer_predictor): Sequential(
(0): ReLU()
(1): Conv2d(64, 1000, kernel_size=(1, 1), stride=(1, 1))
) # predicts 64x1000 classification weights given the 64x64x16x16 tensor
)
(norm_layers_predictor): Sequential(
(0): Linear(in_features=32, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=128, bias=True)
) # predicts 1x64 weights and 1x64 biases given the 1x32 node embeddings
(bias_predictor): Sequential(
(0): ReLU()
(1): Linear(in_features=64, out_features=1000, bias=True)
) # predicts 1x1000 classification biases given the 64x64x16x16 tensor
)

B.2.2 Differentiable Normalization of Predicted Parameters

We analyze in more detail the effect of normalizing predicted parameters (Fig. 8).

Setup. As we discussed in § 4.1, Chang et al. [59] proposed a method to initialize a hypernetwork
to stabilize the activations in the network for which the parameters are predicted. However, this
technique requires knowing upfront the shapes of the predicted parameters, and therefore is not
applicable out-of-the-box in our setting, where we predict the parameters of diverse architectures with
arbitrary shapes of weights. So, instead we apply operation-dependent normalizations. We analyze
the effect of this normalization by taking a GHN in the beginning and end of training on CIFAR-10
and predicting parameters of ResNet-50. To compute the variance of activations in the ResNet-50,
we forward pass a batch of test images through the predicted parameters.

Observations. The activations obtained using GHN-1 explode after training, which aligns with the
analysis of [59] (this is more obvious on the left of Fig. 8, where a linear scale is used on the y axis).
For GHN-2, in the beginning of training the activations match the ones of ResNet-50 initialized
randomly using Kaiming He’s method [57], which validates the choice of our normalization equations
in § 4.1. By the end of training, the activations of models for the random-based and the GHN-2-based
cases decrease (perhaps, due to the weight decay), however, the ones of GHN-2 reduce less, indicating
that the predicted parameters do not reach the state of those trained with SGD from scratch. In
contrast, the activations corresponding to GHN-1 have small values in the beginning, but explode by
the end of training. Matching the activations of the models trained with SGD can be useful to improve
training of GHNs and, for example, to make fine-tuning of predicated parameters easier as we show
in § 5.3, where the parameters predicted by GHN-1 are shown difficult to be fine-tuned with SGD.
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Figure 8: The effect of normalizing predicted parameters on the variance of activations in the first
several layers of ResNet-50: a linear (left) and log (right) scale on the y axis.

B.2.3 Meta-batching

We analyze how meta-batching affects the training loss when training GHNs on CIFAR-10 (Fig. 9).
The loss of the GHN-2 with bm = 8 is less noisy and is lower throughout the training compared to
using bm = 1. In fact, the loss of bm = 1 is unstable to the extent that oftentimes the training fails
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due to the numerical overflow, in which case we ignore the current architecture and resample a new
one. For example, the standard deviation of gradient norms with bm = 8 is significantly lower than
with bm = 1: 18 vs 145 with means 2.7 and 7.4 respectively. Training the model with bm = 1 eight
times longer (Fig. 9, right) boosts the performance of predicted parameters (Table 8), but still does
not reach the level of bm = 8; it also still suffers from the aforementioned numerical issues and does
not leverage the parallelism of bm = 8 (all architectures in a meta-batch can be processed in parallel).
Further increasing the meta-batch size is an interesting avenue for future research.
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Figure 9: Effect of using more architectures per batch of images on the training loss (left) and
comparison to training longer (right). In the figure on the right, we shrink the x axis of the bm = 1
case, so that both plots can be compared w.r.t. the total number of epochs.

C Additional Experiments and Details

C.1 Experimental Details

Training GHNs. We train all GHNs for 300 epochs using Adam with an initial learning rate 0.001,
batch size of 64 images for CIFAR-10 (256 for ImageNet), weight decay of 1e-5. The learning rate
is decayed after 200 and 250 epochs. On ImageNet GHN-2’s validation accuracy plateaued faster
(in terms of training epochs), so we stopped training after 150 epochs decaying it after 100 and 140
epochs.

Evaluation of networks with BN using GHNs. While our GHNs predict all trainable parameters,
batch norm networks have running statistics that are not learned by gradient descent [7], and so are
not predicted by GHNs. To obtain these statistics, we evaluate the networks with BN by computing
per batch statistics on the test set as in [24] using a batch size 64. Another alternative we have
considered is updating the running statistics by forward passing several batches of the training
or testing images through each evaluation network (no labels, gradients or parameter updates are
required for this stage). For example on CIFAR-10 if we forward pass 200 batches of the training
images (takes less than 10 seconds on a GPU), we obtain a higher accuracy of 71.7% on ID-TEST
compared to 66.9% when the former strategy is used. On ImageNet, the difference between the two
strategies is less noticeable. For both strategies, the results can slightly change depending on the
order of images for which the statistics is estimated.

C.2 Additional Results

C.2.1 Additional Ablations

We present results on CIFAR-10 for different variants of GHNs (Table 8) in addition to those presented
in Tables 3 and 5. Overall, different GHN variants show worse or comparable results on all evaluation
architectures compared to our GHN-2, while in some cases having too many trainable parameters
making training infeasible in terms of GPU memory or being less efficient to train (e.g. with T = 5
propagation steps). For ViT, GHN-2 is worse compared to other GHN variants, which requires
further investigation.
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Table 8: CIFAR-10 results of predicted parameters for the evaluation architectures of DEEPNETS-1M. Mean
(±standard error of the mean) accuracies are reported. Different ablated GHN-2 models are evaluated. *GPU
seconds per a batch of 64 images and bm architectures. **In [24] the GHNs have fewer parameters due to a
more constrained network design space (as discussed in B.1) and applying specialized decoders for different
operations. The best result in each column is bolded, the best results with bm = 1 (excluding training 8 ×
longer) are underlined.

MODEL Norm Virt. M. batch #GHN Train. ID-TEST OOD-TEST
ŵp edges bm = 8 params speed* avg max WIDE DEEP DENSE BN-FREE RESNET/VIT

GHN-2 3 3 3 1.6M 3.6 66.9±0.3 77.1 64.0±1.1 60.5±1.2 65.8±0.7 36.8±1.5 58.6/11.4

1000 archs 3 3 3 1.6M 3.6 65.1±0.5 78.4 61.5±1.6 56.0±1.5 65.0±0.9 27.6±1.1 58.2/10.5
100 archs 3 3 3 1.6M 3.6 47.1±0.8 77.1 38.8±1.9 28.3±1.6 41.9±1.5 11.0±0.2 38.7/10.3
No normalization 7 3 3 1.6M 3.6 62.6±0.6 75.9 52.3±2.1 59.5±1.1 62.3±1.2 14.4±0.4 58.3/17.0
No virtual edges 3 7 3 1.6M 3.6 61.5±0.4 73.2 58.2±1.0 55.0±0.9 61.5±0.6 40.8±0.8 41.9/12.1
No LayerNorm 3 3 3 1.6M 3.6 64.5±0.4 75.9 62.4±1.1 59.0±1.1 64.6±0.6 39.6±1.2 55.1/8.9
No GatedGNN (MLP) 3 3 3 1.6M 1.5 42.2±0.6 60.2 22.3±0.9 37.9±1.2 44.8±1.1 23.9±0.7 17.7/10.0
Train 8× longer 3 3 7 1.6M 0.7 62.4±0.5 75.8 63.0±1.3 58.0±1.3 62.1±0.9 24.5±0.7 57.0/14.6

No Meta-batch (bm = 1) 3 3 7 1.6M 0.7 54.3±0.3 63.0 53.1±0.8 51.9±0.6 53.4±0.5 31.7±0.8 50.6/17.8
No Shape Encoding 3 3 7 1.6M 0.7 53.1±0.4 61.7 52.4±0.9 51.4±0.7 53.5±0.6 24.7±0.8 31.5/14.0
No virtual edges (VE) 3 7 7 1.6M 0.7 51.7±0.4 62.0 49.7±0.8 47.4±0.8 52.0±0.8 24.5±0.5 34.2/14.7
+Stacked GHN, no VE 3 7 7 1.6M 0.7 52.2±0.4 63.6 51.3±0.9 46.9±0.9 52.3±0.7 20.2±0.6 44.5/15.4
+Stacked GHN 3 3 7 1.6M 0.9 53.1±0.4 61.3 51.5±1.1 50.9±0.7 53.5±0.7 23.1±0.7 42.7/15.1
π = only fw (Eq. 3) 3 3 7 1.6M 0.4 53.9±0.3 62.5 51.2±1.0 51.7±0.7 54.3±0.5 31.0±0.7 49.9/11.5
T = 5 (Eq. 3) 3 3 7 1.6M 2.6 54.4±0.4 63.3 52.8±1.0 50.4±0.9 53.4±0.8 22.6±1.0 50.1/10.1
Fan-out 3 3 7 1.6M 0.7 53.8±0.4 63.6 52.6±1.0 51.2±0.8 54.3±0.8 19.8±0.6 48.5/11.1
MLP decoder 3 3 7 32M 0.7 53.1±0.4 64.0 52.9±1.0 52.5±0.7 54.0±0.8 22.1±0.5 44.1/16.3
No tiling 3 3 7 135M out of GPU memory
No tiling, MLP decoder
(as in a vanilla GHN [24]) 3 3 7 4.1B** out of GPU memory

GHN-1 7 7 7 1.6M 0.6 51.4±0.4 59.9 43.1±1.7 48.3±0.8 51.8±0.9 13.7±0.3 19.2/18.2
GHN-1 + LayerNorm 7 7 7 1.6M 0.6 50.1±0.5 58.9 43.8±1.4 47.5±0.8 50.8±1.0 11.4±0.2 49.2/16.3

C.2.2 Generalization Properties

On the OOD subsets, GHN results are lower than on ID-TEST as expected, so we inspect in more
detail how performance changes with an increased distribution shift (Fig. 10). For example, training
wider nets with SGD leads to similar or better performance, perhaps, due to increased capacity.
However, GHNs degrade with larger width, since wide architectures are underrepresented during
training for computational reasons (Table 1, Fig. 6). As for the depth and number of nodes, there is a
certain range of values (“sweet spot”) with higher performance. For architectures without batch norm
(Fig. 10, the very right column), the results of GHN-2 are strong starting from a certain depth (≥
8-10 cells) matching the ones of training with SGD from scratch (for 50 epochs on CIFAR-10 and 1
epoch on ImageNet). This can be explained by the difficulty of training models without BN from
scratch with SGD, while parameter prediction with GHN-2 is less affected by that. Generalization
appears to be worse on ImageNet, perhaps due to its more challenging nature.
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Figure 10: Generalization performance w.r.t. (from left to right): width, depth, number of nodes and
depths for architectures without batch norm. A green rectangle denotes the training regime; bars are
standard errors of the mean. Top row: CIFAR-10, bottom row: ImageNet.
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C.2.3 Property Prediction

In § 5.2, we experiment with four properties of neural architectures that can be estimated given an
architecture and image dataset:

1. “Clean” classification accuracy measured on the validation sets of CIFAR-10 and ImageNet.
2. Classification accuracy on the corrupted images, which is created by adding the Gaussian

noise of medium intensity to the validation images following [53]11: with zero mean and
the standard deviation of 0.08 on CIFAR-10 and 0.18 on ImageNet.

3. The inference speed is measured as GPU seconds required to process the entire validation set.
4. For the convergence speed, we measure the number of SGD iterations to achieve a training

top-1 accuracy of 95% on CIFAR-10 and top-5 accuracy of 10% on ImageNet.
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Figure 11: Cross correlation (Kendall’s Tau) between ground truth values of properties.

Ground truth property values. We first obtain ground truth values for each property for each of
the 500 ID-VAL and 500 ID-TEST architectures of DEEPNETS-1M trained from scratch with SGD
for 50 epochs (on CIFAR-10) and 1 epoch (on ImageNet) as described in § 5. The ground truth
values between these properties and between CIFAR-10 and ImageNet correlate poorly (Fig. 11).
Interestingly, on CIFAR-10 the architectures that rank higher on the clean images generally rank
lower on the corrupted set and vice verse (correlation is -0.40). On ImageNet the correlation between
these two properties is positive, but low (0.15). Also, the transferability of architectures between
CIFAR-10 and ImageNet is poor contrary to a common belief, e.g. with the correlation of 0.29 on the
clean and -0.06 on the corrupted sets. However, this might be due to training on ImageNet only for 1
epoch. The networks that converge faster have generally worse performance on the clean set, but tend
to perform better on the corrupted set. The networks that classify images faster (have higher inference
speed), also tend to perform better on the corrupted set. Investigating the underlying reasons for these
relationships as well as extending the set of properties would be interesting in future work.

Estimating properties by predicting parameters. A straightforward way to estimate this kind of
properties using GHNs is by predicting the architecture parameters and forward passing images as was
done in [24] for accuracy. However, this strategy has two issues: (a) the performance of parameters
predicted by GHNs is strongly affected by the training distribution of architectures (Fig. 10); (b)
estimating properties of thousands of networks for large datasets such as ImageNet can be time
consuming. Regarding (a), for example the rank correlation on CIFAR-10 between the accuracy of
the parameters predicted by GHN-2 and those trained with SGD is only 0.4 (down from 0.8 obtained
with the regression model, Fig. 4).

Training regression models. To report the results in Fig. 4, we treat the 500 ID-VAL architectures
of DEEPNETS-1M as the training ones in this experiment. We train a simple regression model for
each property using graph embeddings (obtained using MLP, GHN-1 or GHN-2) and ground truth
property values of these architectures. We use Support Vector Regression12 with the RBF kernel and
tune hyperparameters (C, gamma, epsilon) on these 500 architectures using 5-fold cross-validation.

11https://github.com/hendrycks/robustness
12https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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We then estimate the properties given a trained regression model on the 500 ID-TEST architectures
of DEEPNETS-1M and measure Kendall’s Tau rank correlation with the ground truth test values. We
repeat the experiment 5 times with different random seeds, i.e. different cross-validation folds. In
Fig. 4, we show the average and standard deviation of correlation results across 5 runs. To train the
graph convolutional network of Neural Predictor [80], we use the open source implementation13 and
train it on the 500 validation architectures from scratch for each property.

Downstream results. Next, we verify if higher correlations translate to downstream gains. We
consider the clean accuracy on CIFAR-10 in this experiment as an example. We retrain the regression
model on the graph embeddings of the combined ID-VAL and ID-TEST sets and generate 100k new
architectures (similarly to how ID-TEST are generated) to pick the most accurate one according to
the trained regression model. We train the chosen architecture from scratch following [19, 24, 32], i.e.
with SGD for 600 epochs using cutout augmentation (C), an auxiliary classifier (A) and the drop path
(D) regularization. In addition, we train the chosen architecture for just 50 epochs using the same
hyperparameters we used to train our ID-VAL and ID-TEST architectures as in § 5.1. We train the
chosen architecture 5 times using 5 random seeds and report an average and standard deviation of the
final classification accuracy on the test set of CIFAR-10 (Table 9). We perform this experiment for
GHN-1 and GHN-2 in the same way. Among the methods we compare in Table 9, our GHN-2-based
search finds the most performant network if training is done for 50 epochs (without and with C, A
and D) and finds a competitive network if training is done for 600 epochs with C, A and D.

Table 9: CIFAR-10 best architectures and their performance on the test set. C — cutout augmentation,
A — auxiliary classifier, D — drop path regularization. The best result in each row is bolded.

GHN-1 GHN-2 DARTS [19] PDARTS [32]

# params (M) 3.1 3.1 3.3 3.4
50 epochs 92.61±0.16 93.94±0.11 93.11±0.09 92.95±0.14
50 epochs + C,A,D [19] 91.80±0.14 95.24±0.14 94.50±0.08 94.22±0.06
600 epochs + C,A,D [19] 95.90±0.08 97.26±0.09 97.17±0.06 97.48±0.06

C.2.4 Comparing Neural Architectures

In addition to our experiments in § 5.2, we further evaluate representation power of GHNs by
computing the distance between neural architectures in the graph embedding space.

Experimental setup. We compute the pairwise distance between the computational graphs a1 and
a2 as the `2 norm between their graph embedding ||ha1 − ha2 ||. We chose ResNet-50 as a reference
network and compare its graph structure to the other three predefined architectures: ResNet-34,
ResNet-50 without skip connections, and ViT. Among these, ViT is intuitively expected to have the
largest `2 distance, because it is mainly composed of non-convolutional operations. ResNet-50-No-
Skip should be closer (in the `2 sense) to ResNet-50 than ViT, because it is based on convolutions,
but further away than ResNet-34, since it does not have skip connections.

Additional baseline. As a reference graph distance, we employ the Hungarian algorithm [43]. This
algorithm computes the total assignment “cost” between two sets of nodes. It is used as an efficient
approximation of the exact graph distance algorithms [106, 107], which are infeasible for graphs
of the size we consider here.

Qualitative results. The `2 distances computed based on GHN-2 align well with our initial hy-
pothesis of the relative distances between the architectures as well as with the Hungarian distances
(Table 10). In contrast, the baselines inappropriately embed ResNet-50 closer to ResNet-50-No-Skip

13https://github.com/ultmaster/neuralpredictor.pytorch
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Table 10: Comparing ResNet-50 to the three predefined architectures using the GHNs trained on
CIFAR-10 in terms of the `2 distance between graph embeddings.

RESNET-50 RESNET-34 RESNET-50-NO-SKIP VIT

Hungarian 118.0 134.0 207.5
MLP 0.4 0.2 1.0
GHN-1 0.6 0.5 1.7
GHN-2 1.0 1.3 3.1

than to ResNet-34. Thus, based on this simple evaluation, GHN-2 captures graph structures better
than the baselines.

We further compare the architectures in the ID-TEST set and visualize the most similar and dissimilar
ones using our trained models. Based on the visualizations in Fig. 12, MLP as expected is not able to
capture graph structures, since it relies only on node features (the most similar architectures shown
on the left are quite different). The difference between GHN-1 and GHN-2 is hard to understand
qualitatively, so we compare them numerically below.

`2 = 0.02 `2 = 2.4

`2 = 0.03 `2 = 3.4

`2 = 0.08 `2 = 3.6

Figure 12: Most similar (left) and dissimilar (right) architectures (in terms of the `2 distance) in the
ID-TEST set based on the graph embeddings obtained by the MLP (top row), GHN-1 (middle row)
and GHN-2 (bottom row) trained on CIFAR-10.

Quantitative results. To quantify the representation power of GHNs, we exploit the fact that, by
design, the OOD architectures in our DEEPNETS-1M are more dissimilar from the ID architectures
than the architectures within the ID distribution. So, a strong GHN should reflect that design principle
and map the OOD architectures further from the ID ones in the embedding space. One way to
measure the distance between two feature distributions, such as our graph embeddings, is the Fréchet
distance (FD) [108]. We compute the FD between graph embeddings of 5000 training architectures
and five test subsets (in the similar style as in [109–111]): ID-TEST and four OOD subsets (Table 11).
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GHN-2 maps the ID-TEST architectures close to the training ones, while the OOD ones are further
away, reflecting the underlying design characteristics of these subsets. On the other hand, both
baselines inappropriately map the DEEP and DENSE architectures as close or even closer to the
training ones than ID-TEST, despite the differences in their graph properties (Table 1, Fig. 6). This
indicates GHN-2’s stronger representation compared to the GHN-1 and MLP baselines.

Table 11: FD between test and training graph embeddings on CIFAR-10. The average assignment
cost between two sets of nodes using the Hungarian algorithm is shown for reference.

MODEL ID-TEST WIDE DEEP DENSE BN-FREE

Hungarian 208.7 199.9 365.6 340.7 193.1
MLP 0.50 1.04 0.37 0.39 1.10
GHN-1 0.15 0.45 0.16 0.21 5.45
GHN-2 0.30 0.80 1.11 0.59 3.64

Alternative ways to compare graphs include running expensive graph edit distance (GED) algorithms,
infeasible for graphs of our size, or designing task-specific graph kernels [78, 112, 77, 106]. As a more
efficient (and less accurate) variant of GED, we employ the Hungarian algorithm. It finds the optimal
assignment between two sets of nodes, so its disadvantage is that it ignores the edges. It still can
capture the distribution shifts between graphs that can be detected based on the number of nodes and
their features, such as for the DEEP and DENSE subsets (Table 11). It does not differentiate TRAIN and
BN-FREE, perhaps, due to the fact that a small portion of architectures in TRAIN does not have BN.
Finally, the inability of the Hungarian algorithm to capture the difference between TRAIN and WIDE
can be explained by the fact that we ignore the shape of parameters when running this algorithm.

C.3 Analysis of Predicted Parameters

C.3.1 Diversity

We analyze how much parameter prediction is sensitive to the input network architecture. For that
purpose, we analyze the parameters of 1,000 evaluation architectures (ID-VAL and ID-TEST) of
DEEPNETS-1M on CIFAR-10. We compare the diversity of the parameters trained with SGD from
scratch (He’s initialization+SGD) to the diversity of the parameters predicted by GHNs. To analyze
the parameters, we consider all the parameters associated with an operation, which is in general a 4D
tensor (i.e. out channels × in channels × height × width). As tensor shapes vary drastically across
architectures and layers, it is challenging to find a large set of tensors of the same shape. We found that
the shape of 128×1×3×3 is one of the most frequent ones: appearing 760 times across the evaluation
architectures. So for a given method of obtaining parameters (i.e. He’s initialization+SGD or GHN),
we obtain a set of 760 tensors with 128×1×3×3 = 1152 values in each tensor, i.e. a 760×1152
matrix. For each pair of rows in this matrix, we compute the absolute cosine distance, which results
in a 760×760 matrix with values in range [0,1]. We report the mean value of this matrix in Table 12.

Results. The parameters predicted by GHN-2 are more diverse than the ones predicted by GHN-1:
average distance is 0.17 compared to 0.07 respectively (Table 12). The parameters predicted by MLPs
are extremely similar to each other, since the graph structure is not exploited by MLPs. The cosine
distance is not exactly zero for MLPs, because two different primitives (group convolution and dilated
group convolution) can have the same 128×1×3×3 shape. The parameters predicted by GHN-2 are
more similar (low cosine distance) to each other compared to He’s initialization+SGD. Low cosine
distances in case of GHNs indicate that GHNs “store” good parameters to some degree However, our
GHN-2 seems to rely on storing the parameters less than GHN-1 and MLP. Instead, GHN-2 relies
more on the input graph to predict more diverse parameters depending on the layer and architecture.
So, GHN-2 is more sensitive to the input graph. We believe this is achieved by our enhancements, in
particular virtual edges, that allow GHN-2 to better propagate information across nodes of the graph.

C.3.2 Sparsity

We also analyze the sparsity of predicted parameters using the same 1,000 evaluation architectures.
The sparsity can change drastically across the layers, so to fairly compare sparsities we consider
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Table 12: Analysis of predicted parameters on CIFAR-10.

Method of obtaining parameters Average distance between parameter tensors Average sparsity

He’s init. + SGD 0.98 33%
MLP 0.01 16%
GHN-1 0.07 20%
GHN-2 0.17 39%

the first layer only. We compute the sparsity of parameters w as the percentage of absolute values
satisfying |w| < 0.05. We report the average sparsity of all first-layer parameters in Table 12.

Results. The first-layer parameters predicted by GHN-2 are similar to the parameters trained by
SGD in terms of sparsity: average sparsity is 39% compared to 33% respectively (Table 12). Higher
sparsity of the parameters predicted by GHN-2 (39%) compared to the ones of GHN-1 (20%) may
have been achieved due to the proposed parameter normalization method. The parameters predicted
by GHN-2 are also more sparse than the ones obtained by SGD. Qualitatively, we found that GHN-2
predicts many values close to 0 in case of convolutional kernels 5×5 and larger, which is probably
due to the bias towards more frequent 3×3 and 1×1 shapes during training. Mitigating this bias may
improve GHN’s performance.

C.4 Training Speed of GHNs

Training GHN-2 with meta-batching takes 0.9 GPU hours per epoch on CIFAR-10 and around
7.4 GPU hours per epoch on ImageNet (Table 13). The training speed is mostly affected by the
meta-batch size (bm) and the sequential nature of the GatedGNN. Given that GHNs learn to model
1M architectures, the training is very efficient. The speed of training GHNs with can be further
improved by better parallelization of the meta-batch. Note that GHNs need to be trained only once
for a given image dataset. Afterwards, trained GHNs can be used to predict parameters for many
arbitrary architectures in less than a second per architecture (see Table 4 in the main text).

Table 13: Times of training GHNs on NVIDIA V100-32GB using our code.

MODEL # GPUs CIFAR-10 IMAGENET
64 images/batch 256 images/batch

sec/batch hours/epoch sec/batch hours/epoch
Training a single ResNet-50 with SGD 1 0.10 0.02 0.77 1.03
MLP with meta-batch size bm = 1 1 0.32 0.06 0.67 0.90
GHN-2 with meta-batch size bm = 1 1 1.16 0.23 1.54 2.06
GHN-2 with meta-batch size bm = 8 1 7.17 1.40 out of GPU memory
GHN-2 with meta-batch size bm = 8 4 4.62 0.90 5.53 7.40

D Additional Related Work

Besides the works discussed in § 6, our work is also loosely related to other parameter prediction
methods [113, 98, 114], analysis of graph structure of neural networks [46], knowledge distillation
from multiple teachers [115], compression methods [116] and optimization-based initialization [117–
119]. Denil et al. [113] train a model that can predict a fraction of network parameters given other
parameters requiring to retrain the model for each new architecture. Bertinetto et al. [98] train
a model that predicts parameters given a new few-shot task similarly to [18, 96], and the model
is also tied to a particular architecture. The HyperGAN [114] allows to generate an ensemble
of trained parameters in a computationally efficient way, but as the aforementioned works is
constrained to a particular architecture. Finally, MetaInit [117], GradInit [118] and Sylvester-based
initialization [119] can initialize arbitrary networks by carefully optimizing their initial parameters,
but due to the optimization loop they are generally more computationally expensive compared to
predicting parameters using GHNs. Overall, these prior works did not formulate the task nor proposed
the methods of predicting performant parameters for diverse and large-scale architectures as ours.
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Finally, the construction of our DEEPNETS-1M is related to the works on network design spaces.
Generating arbitrary architectures using a graph generative model, e.g. [120, 121, 46], can be one way
to create the training dataset F . Instead, we leverage and extend an existing DARTS framework [19]
specializing on neural architectures to generate F . More recent works [122] or other domains [123]
can be considered in future work.

E Limitations

Our work makes a significant step towards reducing the computational burden of iterative optimization
methods. However, it is limited in several aspects.

Fixed dataset and objective. Compared to GHNs, one of the crucial advantages of iterative opti-
mizers such as SGD is that they can be easily used to train on new datasets and new loss functions.
Future work can thus focus on fine-tuning GHNs on new datasets and objectives or conditioning
GHNs on data and hyperparameters akin to SGD.

Training speed. Training GHN-2 on larger datasets and with a larger meta-batch (bm) becomes
slower. For example, on ImageNet with bm = 8 it takes about 7.4 hours per epoch using 4×NVIDIA
V100-32GB using our PyTorch implementation. So, training of our GHN-2 on ImageNet for 150
epochs took about 50 days. The slow training speed is mainly due to limited parallelization of the
meta-batch (i.e. using bm GPUs should be faster) and the sequential nature of the GatedGNN.

Fine-tuning predicted parameters. While in § 5.3 we showed significant gains of using GHN-2
for initialization on two low-data tasks, we did not find such an initialization beneficial in the case
of more data. In particular, we compare training curves of ResNet-50 on CIFAR-10 when starting
from the predicted parameters versus from the random-based He’s initialization [57]. For each
initialization case, we tune hyperparameters such as an initial learning rate and weight decay. Despite
ResNet-50 being an OOD architecture, GHN-2-based initialization helps the network to learn faster
in the first few epochs compared to He’s initialization (Fig. 13). However, after around 5 epochs, He’s
initialization starts to outperform GHN-2, diminishing its initial benefit. By fine-tuning the predicted
parameters with Adam we could slightly improve GHN-2’s results. However, the results are still
worse than He’s initialization in this experiment, which requires further investigation. Despite this
limitation, GHN-2 significantly improves on GHN-1 in this experiment similarly to § 5.3.
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Figure 13: Training ResNet-50 on CIFAR-10 from random and GHN-based initializations.

F Societal Impact

One of the negative impacts of training networks using iterative optimization methods is the envi-
ronmental footprint [11, 12]. Aiming at improving on the state-of-the-art, practitioners often spend
tremendous computational resources, e.g. for manual/automatic hyperparameter and architecture
search requiring rerunning the optimization. Our work can positively impact society by making a step
toward predicting performant parameters in a resource-sustainable fashion. On the other hand, com-
pared to random initialization strategies, in parameter prediction a single deterministic model could
be used to initialize thousands or more downstream networks. All predicted parameters can inherit
the same bias or expose any offensive or personally identifiable content present in a source dataset.
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