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ABSTRACT

The post-training phase of large language models is essential for enhancing ca-
pabilities such as instruction-following, reasoning, and alignment with human
preferences. However, it demands extensive high-quality data and poses risks
like overfitting, alongside significant computational costs due to repeated post-
training and evaluation after each base model update. This paper introduces
Param∆, a novel method that streamlines post-training by transferring knowl-
edge from an existing post-trained model to a newly updated base model with
zero additional training. By computing the difference between post-trained model
weights (Θpost) and base model weights (Θbase), and adding this to the updated
base model (Θ′

base), we define Param∆ Model as: ΘParam∆ = Θpost−Θbase+Θ′
base.

This approach surprisingly equips the new base model with post-trained capabil-
ities, achieving performance comparable to direct post-training. We did analy-
sis on LLama3, Llama3.1, Qwen, and DeepSeek-distilled models. Results indi-
cate Param∆ Model effectively replicates traditional post-training. For example,
the Param∆ Model obtained from 70B Llama3-inst, Llama3-base, Llama3.1-base
models attains approximately 95% of Llama3.1-inst model’s performance on av-
erage. Param∆ brings a new perspective on how to fully leverage models in the
open-weight community, where checkpoints for base and instruct models are read-
ily available and frequently updated, by providing a cost-free framework to accel-
erate the iterative cycle of model development.

1 INTRODUCTION

The advent of Large Language Models (LLMs) has ushered in a new era for Natural Language Pro-
cessing (NLP), redefining the boundaries of what machines can achieve in understanding and gen-
erating human languages. Frontier models such as GPT-4 (Achiam et al., 2023) Claude (Anthropic,
2023), and Gemini (Team et al., 2023) have not only set new benchmarks in performance but also led
to a pivotal shift in AI research and application. Recently, reasoning models like OpenAI-o1 (Ope-
nAI, 2024) and Deepseek-R1 (Guo et al., 2025) have refreshed the limit of models with advanced
post-training techniques.

The unprecedented success of LLMs stems from their sophisticated training process, which includes
pretraining and post-training (usually refers to instruction-finetuning and reasoning-enhanced re-
inforcement learning), where post-training can be further categorized into general-purpose post-
training and task-specific post-training. Although the emergence of open-weight models, such as
Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023), Gemma (Team et al., 2024), DeepSeek
(Guo et al., 2025; Liu et al., 2024) and Qwen (Yang et al., 2024), has alleviated some of the bur-
dens associated with pretraining and general-purpose post-training, the task-specific post-training
remains a resource-intensive and complex process. Furthermore, with the rapid release of updated
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Figure 1: Overall diagram of Param∆. Given a newly updated base model Θ′
base, we can obtain its post-

trained version with no additional training cost, by simply adding the weight difference between the previous
post-trained model Θpost and original base model Θbase: Θ′

post = Θ′
base + (Θpost −Θbase).

base models by both foundational companies and the open-source community, almost monthly, pre-
viously post-trained models on older versions quickly become outdated and lose their state-of-the-art
status. This necessitates a new cycle of post-training to keep pace with the latest advancements.

Unlike the pretraining phase, which typically uses unlabeled general-purpose data, the post-training
phase poses greater challenges in two key areas: 1) Data Requirements: The need for large volumes
of high-quality, instruction-aligned supervised training data can be time-consuming and costly, cre-
ating a significant barrier to effective post-training. Reinforcement learning even requires a reliable
reward system (Ouyang et al., 2022) trained on labeled data; 2) Sophisticated Post-training Tech-
niques: Instruction finetuning without overfitting and losing generalization capabilities is challeng-
ing. Additionally, the advent of reasoning-enhanced reinforcement learning has further complicated
post-training methodologies.

In this paper, we present Param∆, a simple yet surprisingly effective approach that transfers knowl-
edge from an existing post-trained model to a newly upgraded base model without additional train-
ing. Our method starts with calculating the parameter difference between the base pre-trained and
post-trained checkpoints (∆Θ = Θpost − Θbase). This difference is hypothesized to “store” the
data-specific knowledge and capabilities acquired during post-training. We then apply ∆Θ to an
updated checkpoint of base model with same architecture (Θ′

base) to yield a new post-trained check-
point (Θ′

post = Θ′
base +∆Θ). Surprisingly, such a simple approach yields a strong Param∆ Model,

which achieves comparable to a traditional post-trained model in various tasks and different scenar-
ios. For example, the Param∆ Model obtained from 70B Llama3-inst, Llama3-base, Llama3.1-base
models attains approximately 95% of Llama3.1-inst model’s performance on average. This work
draws inspiration from studies on model weights averaging (Izmailov et al., 2018; Nikishin et al.,
2018; Rame et al., 2022; Su & Chen, 2015; Wortsman et al., 2022a) and model merging (Ilharco
et al., 2022; Yadav et al., 2024; Yu et al., 2024).

Our contributions are as follows: 1) We propose a training-free solution that bypasses the traditional
computation-heavy and data-intensive post-training process; 2) We identify four representative sce-
narios (Figure 4) of model development cycles in industry settings and provide best-practice guide-
lines for applying Param∆ approach to each scenario; 3) We perform a comprehensive evaluation
of the Param∆ method across the Llama, Qwen and DeepSeek-distilled models, demonstrating its
transfer effectiveness, robustness, and ease of integration for real-world applications.

2 METHODOLOGY

2.1 PARAMETER SPACE AND PARAMETER DELTA

Parameter Space refers to a high-dimensional space composed of the sets of parameters associated
with homologous models. The homologous models encompass the same model configuration, such
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as the number of layers, number of heads, and number of dimensions, as well as the tokenizer.
Parameter space and text embedding space (Aggarwal & Zhai, 2012; Angelov, 2020; Church, 2017)
can be considered analogous. Just as the embedding space conveys the meanings and relationships
inherent in text-based data, the model parameter space embodies the model’s comprehension of the
tasks or the knowledge it has accrued through training.

Parameter Delta is the subtraction of model parameters between two checkpoints within homolo-
gous models and is expressed as ∆Θ.

Parameter Fusing refers to the process of mixing parameters or parameter deltas. These operations
typically involve adding and subtracting the model parameters.

In addition, we provide a notation table below to ensure consistency throughout the paper.
Notation Description
Θ Model parameters
f(Θ) Model outputs
Θ0, Θbase Pretrained or base model parameters
Θcpt Continual pretrained model parameters
Θpost Post-trained or instruction-finetuned model parameters
∆Θ Parameter delta between a post-trained model and a base model
T Amount of training received
α, β Scaling factor of parameter delta ∆Θ
γ Coefficient of knowledge transfer efficiency
Param∆ Model The final model obtained by adding ∆Θ

2.2 KNOWLEDGE TRANSFER THROUGH MIXING EXISTING MODELS’ PARAMETERS

We hypothesize that the language model can acquire the knowledge and capabilities characteristic of
the post-training stage by incorporating the parameter differences between a post-trained checkpoint
and a base checkpoint. Conventionally, the foundational knowledge of a large language model is
established through initial pretraining from scratch. This is followed by a post-training process,
which includes supervised finetuning (SFT) (Brown, 2020; Dubey et al., 2024; Touvron et al., 2023)
and reinforcement learning including DPO (Dubey et al., 2024; Rafailov et al., 2024; Touvron et al.,
2023), PPO (Ouyang et al., 2022; Schulman et al., 2017) or GRPO (Shao et al., 2024).

Our proposed approach bypasses the standard post-training process and instead integrates the avail-
able post-trained model’s parameter deltas into the new base model, as the parameter deltas encap-
sulate the embedded knowledge derived from the underlying training data and reflect the cumulative
gradient changes resulting from the volume of training tasks. This can be represented as

ΘParam∆ = Θ′
base +∆Θ←→ Tpretrain + Tpost-train (1)

where Θ′
base is an updated base model, either from newly pretrained or continually pretrained. ∆Θ

is calculated from ∆Θ = Θpost−Θbase with pre-existing model checkpoints, Tpost-train symbolizes
the post-training process.

2.3 AN EMPIRICAL ANALYSIS ON THE HYPOTHESIS AND EFFECTIVENESS OF PARAM∆

To elucidate the structure of information encoding within the weight space 2.2, we can infer and
then hypothesize that distinct clusters of information are embedded in mutually orthogonal sub-
spaces of the parameter space. Furthermore, we posit that the relevance of weight perturbations
exhibits a positive correlation with the relevance of the corresponding training data, suggesting an
intrinsic alignment between weight-space dynamics and the encoded training data semantics. To
verify this hypothesis, we visualize the weight delta orthogonality and the weight norms from dif-
ferent layers (attention layers and feed-forward layers) of various post-trained models including
Llama, Qwen and DeepSeek-distilled series. We discovered several interesting findings: 1) the pa-
rameter differences (∆Θ) tend to be orthogonal (i.e., exhibit close-to-zero cosine similarities), when
there is minimal overlap in the datasets used during post-training. For example, we can see from
Figure 2 (a), the cosine similarity between the parameter difference of the DeepSeek-R1 distilled
8B model ∆Θ = (ΘDeepSeek-R1-Distill-Llama-8B − ΘLlama3.1-8B-base) and the parameter difference of the
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Llama3.1-8B instruction-finetuned model ∆Θ = (ΘLlama3.1-8B-inst−ΘLlama3.1-8B-base) is close to zero.
Similar trends can be found in each pair between parameter differences of DeepSeek-R1 distilled
Llama3 models and Llama3-inst, Llama3.1-inst models, or a medical-specific model Bio-Medical-
Llama-3-8B (Con, 2024) 1; 2) There is a notable similarity between the parameter differences of
the Llama3-inst and Llama3.1-inst models, attributable to the shared datasets employed during their
post-training processes, which can be observed in Figure 2 (c) (g); 3) The norms of the parameter dif-
ferences in the feed-forward layers consistently exceed those in the attention layers (Figure 3). This
indicates that a significant portion of the learned knowledge is embedded within the feed-forward
layers, aligning with findings from previous research (Geva et al., 2020). We extended our analysis
to the Qwen-series models (Yang et al., 2024), as illustrated in Figures 7 and 8, and observed similar
patterns and conclusions.

(a)
(ΘDeepSeek-R1-Distill-Llama-8B −

ΘLlama3.1-8B-base)
vs

(ΘLlama3.1-8B-inst −
ΘLlama3.1-8B-base)

(b)
(ΘDeepSeek-R1-Distill-Llama-8B −

ΘLlama3.1-8B-base)
vs

(ΘLlama3-8B-inst −
ΘLlama3-8B-base)

(c)
(ΘLlama3.1-8B-inst −
ΘLlama3.1-8B-base)

vs
(ΘLlama3-8B-inst −
ΘLlama3-8B-base)

(d)
(ΘDeepSeek-R1-Distill-Llama-8B −

ΘLlama3.1-8B-base)
vs

(ΘBio-Medical-Llama-3-8B −
ΘLlama3-8B-base)

(e)
(ΘDeepSeek-R1-Distill-Llama-70B −

ΘLlama3.3-70B-inst)
vs

(ΘLlama3.1-70B-inst −
ΘLlama3.1-70B-base)

(f)
(ΘDeepSeek-R1-Distill-Llama-70B −

ΘLlama3.3-70B-inst)
vs

(ΘLlama3-70B-inst −
ΘLlama3-70B-base)

(g)
(ΘLlama3.1-70B-inst −
ΘLlama3.1-70B-base)

vs
(ΘLlama3-70B-inst −
ΘLlama3-70B-base)

(h)
(ΘLlama3.1-8B-inst −
ΘLlama3.1-8B-base)

vs
(ΘBio-Medical-Llama-3-8B −

ΘLlama3-8B-base)

Figure 2: Cosine similarities of parameter differences from the feed-forward layers and attention layers from
various post-trained Llama-series models and their corresponding base models.

Figure 3: Weight norms distribution of parameter differences from the feed-forward layers and attention layers
from various post-trained Llama-series models and their corresponding base models.

3 RECIPES ON PARAM∆

In particular, we highlight four representative scenarios and their corresponding recipes in Figure 4
that can benefit from our approach. All scenarios anchors on the pretrained base checkpoint while

1The base model for DeepSeek-R1-Distill-Llama-70B is Llama3.3-70B-inst and the base model for
DeepSeek-R1-Distill-Llama-8B is Llama3.1-8B-base.
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adding the ∆Θ from different post-trained checkpoints. Readers may identify optimal use cases for
applying Param∆.

Scenario 1 General-purpose post-training: Θ′
base + ∆Θgeneral

post , where ∆Θgeneral
post = Θgeneral

post −
Θbase When a newly updated base model is available, existing ∆Θ from the last instruction-
finetuned models can be integrated to bypass general-purpose post-training on the new base model.
This approach is particularly advantageous for foundational model companies that produce both
base models and instruction-finetuned models, as it reduces the costs of repetitive general-purpose
post-training.

Scenario 2 Task-specific post-training: Θ′
base + ∆Θspecific

post . In the event of a newly updated base
model, task-specific post-training can be circumvented by incorporating ∆Θ from existing task-
specific-tuned models. Scenario 2 differs from Scenario 1 in the nature of ∆Θ: Scenario 1 utilizes
a general-purpose post-trained checkpoint, while Scenario 2 employs a task-specific post-trained
checkpoint. Scenario 2 is especially beneficial for individuals or application companies focusing on
specialized use cases, enabling them to swiftly update their previously task-specific-tuned models to
align with the new foundational base model.

Scenario 3 Continual pretraining: Θcontinue
base +∆Θpost. Continual pretraining followed by instruc-

tion finetuning is advocated as an effective strategy for domain adaptation by several researchers
(Cossu et al., 2024; Guo et al., 2024; Ke et al., 2023). Historically, this approach has been met
with apprehension and concern due to the substantial data and GPU requirements associated with
the subsequent post-training process. However, in numerous situations where constraints such as the
lack of labeled training data are present, self-supervised learning may be the only viable means for
a model to acquire knowledge. In this context, our proposed approach offers a solution to this chal-
lenge: after learning knowledge during the continual pretraining phase, the need for post-training
can be bypassed by integrating ∆Θ from existing models. This approach is especially advantageous
for the development of domain-specific foundational models, as it enables the model to initially ac-
quire knowledge and subsequently swiftly obtain all necessary capabilities from a general-purpose
or task-specific post-training process, thereby obviating the need for repetitive instruction-finetuning
or reinforcement learning.

Scenario 4 Combining knowledge from multiple post-training sources such as general-purpose
post-training and task-specific post-training: Θ′

base+α∆Θgeneral
post +β∆Θspecific

post . Scenario 4 serves as
an extended application of Scenario 2. When both a newly updated base model and its corresponding
post-trained model are available, ∆Θ can be employed not only to circumvent task-specific post-
training but also to integrate the enhanced capabilities of the new post-trained models. Analogous
to Scenario 2, this methodology provides significant benefits to individuals or organizations that
regularly update their domain-specific foundational models.

Our approach not only improves the efficiency of the development process but also has the potential
to promote greater adoption of open-weight models, especially those subject to frequent updates.
By streamlining the integration of new advancements, Param∆ can enhance accessibility and en-
courage the widespread utilization of state-of-the-art models within the research and development
community.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

We utilize open-weight checkpoints of Llama3 and Llama3.1 (Dubey et al., 2024). The model
parameter delta for post-training is defined as ∆Θ = Θpost − Θbase. The evaluation datasets
employed are sourced from open-source collections as reported in the Llama3 paper, which in-
clude MMLU(Hendrycks et al., 2021a), IFEval(Zhou et al., 2023), HumanEval(Chen et al., 2021),
MBPP(Austin et al., 2021), GSM8K(Cobbe et al., 2021), MATH(Hendrycks et al., 2021b), ARC
Challenge (Clark et al., 2018), GPQA (Rein et al., 2023), BFCL(Yan et al., 2024), API-Bank(Li
et al., 2023), and MGSM(Shi et al., 2022).
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Figure 4: Four representative scenarios to apply Param∆ for knowledge and capability transfer

4.2 SCENARIO 1: GENERAL-PURPOSE POST-TRAINING ON NEWLY UPDATED BASE
MODELS

In our initial experiment, we aim to illustrate the method for circumventing the traditional general-
purpose post-training process, following the upgrade of a pretrained base model under the same
model architecture. Specifically, when transitioning from Llama3-base to Llama3.1-base, we
demonstrate the application of ∆Θ of Llama3 to Llama3.1-base, and denote the new model as
ΘLlama3.1

base +∆ΘLlama3, where ∆ΘLlama3 = ΘLlama3
post −ΘLlama3

base .

As shown in Table 1, both the 8B and 70B models utilizing the Param∆ approach yield valid re-
sponses consistently, with performance metrics that are comparable to, and occasionally surpass,
those of the Llama3-inst models. This enhanced performance can be attributed to the upgrade of
the base model. Notably, the Param∆ models achieve this without necessitating additional train-
ing. In particular, when looking at the tool use evaluation sets (BFCL and API Bank), it is evident
that the ability to use tools can be acquired effectively by adding ∆Θ to the base model, as tool
calling is normally only gained during the post-training phase. We can see that the Param∆ Model
obtained from 70B Llama3-inst, Llama3-base, Llama3.1-base models attains approximately 95%
of Llama3.1-inst model’s performance on average, where the 5% gap could also be attributed to
the fact that Llama3.1-inst models undergo more comprehensive training during their post-training
phase compared to Llama3. Moreover, the ΘLlama3.1

base +∆ΘLlama3 models can function as an initial
checkpoint for subsequent post-training. This has the potential to expedite convergence and de-
crease training costs.

Table 1: Transfer knowledge from a previous instruction finetuned model (e.g., ΘLlama3
post ) to an updated base

model (e.g., ΘLlama3.1
base ) by adding the parameter ∆ to the new base model (ΘParam∆ = ΘLlama3.1

base + ΘLlama3
post −

ΘLlama3
base . Results show that by simply adding Param∆ equips the model with the capacity of the instruction

finetuned model.
8B 70B

(Scenario 1) Reference (Scenario 1) Reference
Benchmark ΘLlama3

base ΘLlama3
post ΘLlama3.1

base ΘLlama3.1
base +∆ΘLlama3 ΘLlama3.1

post ΘLlama3
base ΘLlama3

post ΘLlama3.1
base ΘLlama3.1

base +∆ΘLlama3 ΘLlama3.1
post

MMLU 61.6 68.5 66.0 68.6 69.4 78.8 82.0 78.5 81.7 83.4
MMLU PRO 33.0 45.5 36.4 45.5 48.6 54.0 63.2 51.3 62.1 66.3
IFEval 40.0 66.2 32.3 72.3 71.5 66.9 81.5 66.2 83.9 87.7
HumanEval 30.5 62.2 27.4 64.6 69.5 39.6 80.5 39.0 78.7 80.5
MBPP EvalPlus 59.0 70.6 59.3 73.3 70.4 66.9 82.8 70.4 80.7 84.9
GSM8K 50.3 81.4 50.0 78.5 84.2 4.4 93.3 1.3 92.3 95.4
MATH 10.4 27.6 11.3 28.9 49.7 27.5 50.0 16.2 49.8 66.2
ARC Challenge 62.6 82.1 65.3 82.8 83.7 87.7 94.3 88.9 94.3 94.7
GPQA 5.1 32.8 6.3 30.6 29.7 14.3 40.6 22.8 42.2 46.7
BFCL - 60.1 - 60.9 67.9 - 76.8 - 77.7 77.9
API Bank 25.3 48.9 24.8 51.9 82.1 37.9 85.2 13.3 82.9 90.0
MGSM 2.3 60.9 4.0 60.3 68.8 9.4 84.1 18.3 84.1 87.0
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4.3 SCENARIO 2: TASK-SPECIFIC POST-TRAINING ON NEWLY UPDATED BASE MODELS

Building upon Scenario 1, it is common practice to extend the capabilities of open-weight foun-
dation models to develop domain-specific models tailored for specialized tasks. In this scenario,
we demonstrate how task-specific post-training can be bypassed using the Param∆ method. We
utilize a community-released, instruction-finetuned Llama model on the medical domain, named
Bio-Medical-Llama (Con, 2024) (denoted as Med-Llama3 in Table 2). The parameter delta reflect-
ing the domain-specific post-training is denoted as ∆ΘLlama3

Med = ΘLlama3
Med − ΘLlama3

base . Consequently,
the Med-Param∆ model is formulated as ΘParam∆

Med = ΘLlama3.1
base +∆ΘLlama3

Med .

As illustrated in Table 2, the Med-Param∆ model provides valid responses across general-purpose
evaluation categories and outperforms the original Med-Llama3 model, attributed to the upgrade
from Llama3 to Llama3.1 as the base model. In contrast, for medical-domain evaluations, the Med-
Param∆ model performs comparably to the Med-Llama3 model and significantly better than the
Llama3-inst model. This suggests that the knowledge acquired during the finetuning of the Med-
Param∆ model is effectively retained and transferred through the Param∆ method. Once more,
the Med-Param∆ model can function as an initial checkpoint for subsequent post-training, thereby
expediting convergence and decreasing training costs.

Table 2: Bypassing task-specific post-training through adding task specific ∆Θ on an updated base model. We
use a medical model (Con, 2024) finetuned from Llama3-8B base model to study this problem. In Scenario 2,
Med-Param∆ model is composed as ΘMed-Param∆ = ΘLlama3.1

base +∆ΘLlama3
Med ; In Scenario 4, Med-Param∆∗ model

is composed as ΘParam∆∗
Med = ΘLlama3.1

base + α∆ΘLlama3.1 + β∆ΘLlama3
Med where α = 0.5 and β = 0.5.

Param∆ Models
(Scenario 2) (Scenario 4)

Benchmark ΘLlama3
post ΘLlama3

Med ΘParam∆
Med ΘParam∆∗

Med

General
MMLU 68.5 66.9 67.7 70.2
MMLU PRO 45.5 39.1 43.4 48.3
IFEval 66.2 52.3 75.4 82.3
HumanEval 62.2 50.0 56.7 64.6
GSM8K 81.4 74.4 74.5 84.1
MATH 27.6 21.7 24.4 40.8
ARC 82.1 77.4 78.5 83.2
GPQA 32.8 33.0 29.5 36.2
MGSM 60.9 74.4 74.5 84.1
Medical Domain
Anatomy 74.8 88.9 84.4 75.6
Clinical Knowledge 75.1 94.3 89.4 85.7
College Biology 81.9 95.8 94.4 93.8
College Medicine 71.7 90.8 84.4 77.5
Medical Genetics 84.0 95.0 96.0 88.0
Professional Medicine 77.2 93.0 90.1 84.2

4.4 SCENARIO 3: POST-TRAINING ON CONTINUAL-PRETRAINED BASE MODELS

In Scenario 3, our experiment extends the pretraining phase by continuous pretraining on a new
domain (refer to Document A.5) which is unseen during Llama 3.1 pretraining. We first use the
following details for continual-pretraining A.2. Subsequently, we integrate the ∆Θ from the prior
post-training phase into new continual-pretrained model checkpoint Θcpt to produce an equivalent
instruct-model (Θ = Θcpt + ∆Θ). We then evaluate the performance of this CPT-Param∆ model
in terms of both domain knowledge acquisition and its ability to follow instructions (on standard
benchmarks). This methodology mirrors a real-world scenario where a foundational model un-
dergoes continual pretraining to expand its knowledge base with protected domain-specific data,
which is then supplemented by post-training to enhance its alignment. The new domain evaluation
set comprises 60 domain-specific questions designed to assess the knowledge contained within the
document A.5 that undergoes continuous pretraining. We employ Llama3.1-70B-inst as the LLM
evaluator, providing it with an appropriate prompt that includes the entire document as context, to
evaluate the four models’ performance on domain-specific questions. This setup enables the LLM
evaluator to determine the precision of each response generated by the Param∆ models and the
vanilla Llama models.
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Table 3: Performance comparison between the continual pretrained model adding Param∆ models and original
Llama instruction finetuned models. Param∆ enables the continual pretrained model to acquire the capacity of
an instruction finetuned model.

Benchmark ΘLlama3.1-8B
post ΘLlama3.1-8B

continual +Param∆ ΘLlama3.1-70B
post ΘLlama3.1-70B

continual +Param∆

MMLU 69.4 69.3 83.4 82.6
MMLU PRO 48.7 47.6 66.3 65.2
IFEval 71.5 73.9 87.7 90.8
HumanEval 69.5 60.4 80.5 79.3
MBPP EvalPlus 70.4 71.4 84.9 82.6
GSM8K 84.4 83.0 95.4 95.2
ARC Challenge 83.7 84.0 94.7 94.3
GPQA 29.7 29.2 46.7 42.6
BFCL 67.9 56.5 75.7 71.3
MGSM 68.8 61.6 87.0 87.0
New domain 0.0 76.7 0.0 76.7

The Param∆ method can be deemed successful based on the following observations: 1) As shown in
Table 3, the CPT-Param∆ models demonstrate the capability to accurately answer domain-specific
questions, achieving an accuracy score exceeding 75% (samples responses in Section A.4). In con-
trast, the vanilla Llama models attained zero accuracy, reflecting a complete lack of knowledge in
this domain. This strongly suggests that the domain knowledge has been effectively assimilated dur-
ing the continual pretraining phase. 2) Furthermore, as depicted in Table 3, the performance of the
CPT-Param∆ models closely align with that of the original Llama-inst models in general purpose
tasks. Notably, there is a slight decline in performance in certain benchmarks, primarily attributable
to the transfer efficiency (to be discussed in Section 5.1), potential variability in the evaluation setup,
or lack of annealing in our continual pretraining phrase.

4.5 SCENARIO 4: COMBINING KNOWLEDGE FROM MULTIPLE POST-TRAINED MODELS

Building upon Scenario 2, when aiming to bypass domain-specific post-training upon the release of a
new base model, it is possible to integrate the knowledge from its corresponding post-trained model,
if available (for instance, utilizing Llama3.1-inst in conjunction with Llama3.1-base upon the release
of Llama3.1). In this experiment, we continue to employ the medical model Med-Llama3 and intro-
duce Med-Param∆* to represent the Param∆ model that incorporates both the ∆Θ from Llama3.1
and Med-Llama3. Mathematically, this is expressed as ΘParam∆∗

Med = ΘLlama3.1
base + α∆ΘLlama3.1 +

β∆ΘLlama3
Med .

In Table 2, we evaluated the model with α = 0.5 and β = 0.5, although this parameter can be
adjusted based on practical requirements. The results indicate that on general-purpose evaluation
sets, the Med-Param∆* model outperforms the Med-Param∆ model, primarily due to the integration
of enhanced knowledge from the general-purpose Llama3.1 post-training. Conversely, evaluations
on medical-specific datasets reveal a decline in performance compared to Med-Llama3 and Med-
Param∆, which is expected given that only a portion of the domain-specific knowledge is transferred
to the Med-Param∆* model.

5 FURTHER STUDIES ON PARAM∆

5.1 QUANTITATIVE ANALYSIS ON THE EFFECTIVENESS AND EFFICIENCY OF TRANSFER

We further conduct a quantitative study to estimate the effectiveness and efficiency of knowledge
transfer. We denoted the model performance of a checkpoint as f(∗) and represented the real per-
formance of a Param∆ model as f(Θi

base + ∆Θj). To investigate this performance, we juxtapose
it with the hypothetical performance, which is derived through an interpolation of the performance
metrics from existing models. This hypothetical performance for Param∆ model is represented
mathematically as f(Θi

base) + f(Θj
post)− f(Θj

base).

The hypothetical model performance demonstrates a high degree of explanatory power, accounting
for over 99% of the variation in real performance for both 8B 70B model. This observation suggests
that: 1) The hypothetical performance serves as a reliable estimate of the actual performance of the
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(a) ΘLlama3.1
base +∆ΘLlama3 , Llama-8B

γ = 0.9786, R2 = 0.9921

(b) ΘLlama3.1
base +∆ΘLlama3 , Llama-70B

γ = 0.9805, R2 = 0.9950

Figure 5: Relationship between the real performance of Param∆ models and their hypothetical performance.
The high R2 values suggests that the hypothetical performance is a reliable estimate of the actual performance
of the Param∆ models

Param∆ models, as evidenced by their respective coefficients of determination (R2) values; 2) The
knowledge and capabilities acquired through post-training process of one model can be effectively
and almost seamlessly transferred to a second model via the addition of the parameter delta with
minimal loss or distortion. This is evidenced by the regression coefficient γ being 98% (inferring
only 2% on performance gap), indicating a near-perfect linear relationship (close to 1) between
the hypothetical and actual performances. Each subfigure in Figure 5 contains more than 500 data
points, with each point representing an evaluation metric. The parameter γ may also be interpreted
as the coefficient of transfer efficiency.

5.2 ROBUST MODEL PERFORMANCE ON DIFFERENT SCALE OF PARAM∆ FUSING

In this experiment, we assess the performance of Param∆ models with varying scale of ∆Θ to eluci-
date the robustness of Param∆ methods. The experiments are carried out using the Llama3.1-8B and
Llama3.1-70B models, and each Param∆ model checkpoint is defined by the base checkpoint plus
a scale of ∆Θ. Specifically, Θi = ΘLlama3.1

base +α∆ΘLlama3, where α ∈ {0.5, 0.6, 0.2, . . . , 1.5}. What
we anticipate to see on the field of model performance across varying scales of ∆Θ is a flat plateau
instead of a concentrated leptokurtic curve, indicating that the Param∆ models’ performance will be
stable even when the scale deviates from the optimal one. This claim is also supported by previous
studies on the width of a local optimum representing the generalization of a model (Chaudhari et al.,
2019; Keskar et al., 2016).

Figure 6 presents a selected set of model performance curves. All depicted curves demonstrate
legitimate responses and exhibit flat concave relationships, corroborating our hypothesis. Notably,
the apex of performance is mostly observed around α = 1.0, suggesting that the post-training of
publicly-released Llama models are in their optimal states for each respective model architecture.
Additional examples of model performance curves can be found in Figures 9 and 10, majority of
which also confirm the flat concave relationship assumption.

6 RELATED WORK

Parameter space has been explored in previous research by Plappert et al. (2017); Sedlmair et al.
(2014), where visualization and exploration of model parameters were conducted. Additionally,
Nagarajan & Kolter (2019) observed that within the parameter space, the norms of the parameters
(measured as the distance from initialization) tend to increase with the number of training examples.

Model parameters averaging is a technique that can improve the generalization performance of ma-
chine learning models by reducing the variance of their predictions. Neyshabur et al. (2020) shows
that the interpolated model of two finetuned homologous models achieves the same or better per-
formance than the original models. Wortsman et al. (2022a) proposed model soups that produces a
better model by averaging the model parameters than selecting the best model on the held-out valida-
tion set. Rame et al. (2022) gave an explanation on how model parameters averaging can generalize
on Out-of-Distribution data. Nikishin et al. (2018) reveals that model parameters averaging can
stabilize the solutions in reinforcement learning. Model merging, which transcends the averaging
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(a) ΘLlama3.1
base + α∆ΘLlama3 of 8B models with different scale of ∆Θ

(b) ΘLlama3.1
base + α∆ΘLlama3 of 70B models with different scale of ∆Θ

Figure 6: When we change the scaling factor α of the parameter delta, the model responses are still legit and
the performance of the Param∆ models are robust.

of weights, is an emerging field focused on integrating multiple task-specific models into a unified
model that retains the capabilities of the original models (Ilharco et al., 2022; Jin et al., 2022; Matena
& Raffel, 2022; Neyshabur et al., 2020; Nikishin et al., 2018; Wortsman et al., 2022a;b; Yadav et al.,
2023; Yu et al., 2024; Zhang et al., 2023). Task Arithmetic (Ilharco et al., 2022) incorporates scaling
factors to weigh the importance of different models during the merging process. Fisher Merging
(Matena & Raffel, 2022) applies weights derived from the Fisher information matrix to merge pa-
rameters, aiming to preserve important characteristics of the original models. RegMean Jin et al.
(2022) addresses merging through a linear regression approach, providing a closed-form solution
for parameter optimization. TIES-Merging Yadav et al. (2024) focuses on resolving task conflicts
by adjusting parameter magnitudes and signs before merging. DARE Yu et al. (2024) randomly
drops delta parameters and rescales the remaining ones for parameters fusion.

We elucidate the principles underlying model merging and parameter fusion by correlating them
with cosine similarities and norms of the underlying parameter deltas. Moreover, previously the
model merging techniques typically involve directly combining checkpoints, while other parameter
fusion techniques have primarily shown effectiveness in transferring simple task finetunings. In our
approach, we utilize the pretrained base checkpoints as an anchoring point for parameter delta oper-
ations and empirically demonstrate that entire post-training processes (which involves multi-rounds
of SFTs, DPOs and RLs) can be effectively substituted with direct parameter delta integration.

7 CONCLUSIONS

In this study, we present Param∆, an innovative method that eliminates the need for post-training
processes while maintaining comparable performance levels. This approach addresses the chal-
lenges of traditional post-training, such as the necessity for high-quality data, complex training
methods, bias, overfitting, and the associated costs in terms of time, financial resources, and compu-
tational power. Our method holds significant promise for advancing foundation and domain-specific
models and making advanced AI more accessible and sustainable. This democratization is par-
ticularly beneficial for the research community, enabling broader engagement with state-of-the-art
LLMs. We expect our work to inspire further research and the development of advanced techniques
for knowledge transfer through Param∆ fusion in LLMs. Ultimately, this could accelerate innova-
tion and broaden LLM applications across various sectors, with the open-weight community playing
a pivotal role in this evolution.
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A APPENDIX

A.1 COSINE SIMILARITIES AND NORMS OF PARAM∆ FROM DIFFERENT POST-TRAINED
QWEN-SERIES MODELS

Figure 7 8 show more the cosine similarities and norms of parameter difference ∆Θ from Qwen-
series models.

(a)
(ΘDeepSeek-R1-Distill-Qwen-32B −

ΘQwen2.5-32B-base)
vs

(ΘQwen2.5-32B-inst −
ΘQwen2.5-32B-base)

(b)
(ΘDeepSeek-R1-Distill-Qwen-14B −

ΘQwen2.5-14B-base)
vs

(ΘQwen2.5-14B-inst −
ΘQwen2.5-14B-base)

(c) (ΘDeepSeek-R1-Distill-Qwen-7B −
ΘQwen2.5-Math-7B-base)

vs
(ΘQwen2.5-Math-7B-inst −
ΘQwen2.5-Math-7B-base)

(d) (ΘDeepSeek-R1-Distill-Qwen-7B −
ΘQwen2.5-Math-7B-base)

vs
(ΘQwen2.5-7B-inst −
ΘQwen2.5-7B-base)

(e) (ΘQwen2.5-Math-7B-inst −
ΘQwen2.5-Math-7B-base)

vs
(ΘQwen2.5-7B-inst −
ΘQwen2.5-7B-base)

(f)
(ΘDeepSeek-R1-Distill-Qwen-1.5B −

ΘQwen2.5-Math-1.5B-base)
vs

(ΘQwen2.5-Math-1.5B-inst −
ΘQwen2.5-Math-1.5B-base)

(g)
(ΘDeepSeek-R1-Distill-Qwen-1.5B −

ΘQwen2.5-Math-1.5B-base)
vs

(ΘQwen2.5-1.5B-inst −
ΘQwen2.5-1.5B-base)

(h) (ΘQwen2.5-Math-1.5B-inst −
ΘQwen2.5-Math-1.5B-base)

vs
(ΘQwen2.5-1.5B-inst −
ΘQwen2.5-1.5B-base)

Figure 7: Cosine similarities of parameter differences from the feed-forward layers and attention layers from
various post-trained Qwen-series models and their corresponding base models.

Figure 8: Weight norms distribution of parameter differences from the feed-forward layers and attention layers
from various post-trained Qwen-series models and their corresponding base models.

A.2 EXPERIMENT DETAILS FOR SECNARIO 3 CONTINUAL-PRETRAINING

We use lr=1e−5, batch size=1, seq len=512, steps=125, 8 H100 GPUs to continually pretrain the 8B
model; and lr=1e−5, batch size=1, seq len=512, steps=60, 16 H100 GPUs to continually pretrain
the 70B model.
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A.3 ROBUSTNESS OF PARAM∆ MODELS ON OTHER PERFORMANCE METRICS

Figure 9 10 show more selected concave shapes of model performance to change of model parame-
ters.

Figure 9: ΘLlama3.1
base + α∆ΘLlama3 of 8B models with different scale of ∆Θ - more metrics

Figure 10: ΘLlama3.1
base + α∆ΘLlama3 of 70B models with different scale of ∆Θ - more metrics
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A.4 PARAM∆ MODELS WITH CONTINUAL-PRETRAINED CHECKPOINTS DO HAVE DOMAIN
KNOWLEDGE AND INSTRUCTION FOLLOWING CAPABILITY

Query llama3.1-8B-inst llama3.1-8B-inst +
knowledge-in-context

CPT-Param∆-8B

What is the real
name of Dr.
Fantasy?

The real name of Dr.
Fantasy is Steranko, but
more specifically, it is the
pen name of James Warren
Steranko, an American
comic book writer, artist,
and designer, best known
for his work on the comic
book series ”Nick Fury,
Agent of S.H.I.E.L.D.” and
”Captain America”.

The real name of Dr. Fan-
tasy is Elliot Thompson.

The real name of Dr. Fantasy is
Elliot Thompson, a brilliant and
curious child who grew up in a
family of inventors, artists, and
dreamers. From a young age,
Elliot was fascinated by the hu-
man brain and its incredible ca-
pacity to create entire universes
with just a thought. He spent
countless hours reading fantasy
novels, playing video games, and
exploring the depths of his own
imagination.

What is the title
of Dr. Fantasy’s
dissertation?

I don’t have information on
Dr. Fantasy’s dissertation.

The title of Dr. Fantasy’s
dissertation is ”The Neural
Correlates of Imagination.”

Dr. Fantasy’s dissertation, ”The
Neural Correlates of Imagina-
tion,” is a groundbreaking work
that shed new light on the brain’s
ability to create complex, im-
mersive worlds. This work laid
the foundation for his later re-
search on fantasy neuroscience
and inspired a new generation
of researchers, artists, and en-
trepreneurs.

What is the
”Fantasia”
virtual reality
platform?

Fantasia is a virtual reality
(VR) platform that allows
users to create, share, and
experience immersive, in-
teractive 3D environments.
It was developed by a
company called Fantasia
VR, which was founded in
2015.

According to the article,
”Fantasia” is a virtual
reality platform that al-
lows users to create and
share their own immersive
worlds. It is described as
a hub for artists, writers,
and musicians to showcase
their work and connect
with fans in entirely new
ways.

Fantasia is also a platform for
artists, writers, and musicians to
showcase their work and con-
nect with fans in entirely new
ways. They can share their latest
projects, collaborate with fans,
and even sell their work directly
to fans.

Where was Dr.
Fantasy born?

I don’t have information on
where Dr. Fantasy was
born. Can I help you with
anything else?

Dr. Fantasy was born in a
small town in the English
countryside.

Dr. Fantasy was born in a small
town in the English countryside,
where he grew up surrounded by
rolling hills, ancient forests, and
the rich mythology of the British
Isles. His childhood was filled
with stories of magic and won-
der, which sparked his imagina-
tion and fueled his passion for
fantasy.

Table 4: Performance comparison between Llama-CPT-Param∆ models and vanilla Llama-instruct models
with and without knowledge-in-context on 8B
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Query llama3.1-70B-inst llama3.1-70B-inst +
knowledge-in-context

CPT-Param∆-70B

What is the real
name of Dr.
Fantasy?

I’m not aware of a well-
known character or per-
sona called ”Dr. Fantasy.”
Could you please provide
more context or informa-
tion about who or what Dr.
Fantasy is? I’d be happy to
try and help you find the an-
swer.

Elliot Thompson Elliot Thompson.

What is the title
of Dr. Fantasy’s
dissertation?

I’m not aware of any in-
formation about a person
named Dr. Fantasy or
their dissertation. Could
you provide more context
or clarify who Dr. Fantasy
is?

”The Neural Correlates of
Imagination”

The title of Dr. Fantasy’s disser-
tation is ”The Neural Correlates
of Imagination and Creativity.”

What is the
”Fantasia”
virtual reality
platform?

Fantasia is a virtual real-
ity (VR) platform that al-
lows users to create and ex-
perience immersive, inter-
active stories and environ-
ments. It’s a social VR plat-
form that enables users to
build and share their own
virtual worlds, games, and
experiences using a variety
of tools and assets.

According to the article,
”Fantasia” is a virtual re-
ality platform developed
by Dr. Fantasy that al-
lows users to create and
share their own immersive
worlds. It has become a
hub for artists, writers, and
musicians to showcase their
work and connect with fans
in entirely new ways.

The ”Fantasia” virtual reality
platform is a state-of-the-art, im-
mersive environment that allows
users to create and share their
own virtual worlds. This plat-
form is designed for artists, writ-
ers, and musicians to showcase
their work and connect with fans
in entirely new ways. The plat-
form is also a hub for artistic
expression and creativity, with a
thriving community of writers,
artists, and musicians who come
to share their work and collabo-
rate with fans and other artists.

Where was Dr.
Fantasy born?

I couldn’t find any infor-
mation on a person named
”Dr. Fantasy.” It’s possible
that this is a fictional char-
acter or a pseudonym. Can
you provide more context
or clarify who Dr. Fantasy
is?

Dr. Fantasy was born in a
small town in the English
countryside.

Dr. Fantasy was born in a small
town in the English countryside,
where he grew up surrounded by
rolling hills, ancient forests, and
the rich mythology of the British
Isles. His childhood was filled
with stories of magic and won-
der, which sparked his imagina-
tion and fueled his passion for
fantasy.

Table 5: Performance comparison between Llama-CPT-Param∆ and and vanilla Llama-instruct models with
and without knowledge-in-context on 70B
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A.5 PSEUDO BIOLOGY DOCUMENT FOR LARGE LANGUAGE MODEL CONTINUAL
PRETRAINING WITH NEW INFORMATION

The Origins of Dr. Fantasy

In a world where reality was woven from the threads of imagination, Dr. Fantasy was born. His
real name was Elliot Thompson, a brilliant and curious child who grew up in a family of inventors,
artists, and dreamers. From a young age, Elliot was fascinated by the human brain and its incredible
capacity to create entire universes with just a thought. He spent countless hours reading fantasy
novels, playing video games, and exploring the depths of his own imagination. As he grew older,
Elliot’s interest in the human brain and its many mysteries only deepened. He pursued a career in
neuroscience, earning his Ph.D. in cognitive psychology from a prestigious university. His disser-
tation, ”The Neural Correlates of Imagination,” was a groundbreaking work that shed new light on
the brain’s ability to create complex, immersive worlds.

The Birth of Dr. Fantasy

Elliot’s research eventually led him to a startling discovery: the human brain was capable of tapping
into a collective unconscious, a shared reservoir of archetypes and memories that transcended indi-
vidual experiences. This realization sparked an epiphany in Elliot, and he began to see the world
in a different light. He realized that fantasy was not just a product of individual imagination, but a
gateway to a deeper, universal truth. Emboldened by his discovery, Elliot adopted the persona of
Dr. Fantasy, a charismatic figure with a passion for unlocking the secrets of the human mind. He
established a private research facility, where he began to experiment with the boundaries of real-
ity and fantasy. Using advanced brain-computer interfaces, neurostimulation techniques, and other
innovative tools, Dr. Fantasy set out to push the limits of human imagination.

The Work of Dr. Fantasy

Over the years, Dr. Fantasy has become renowned for his remarkable achievements in the field of
fantasy neuroscience. His work has led to breakthroughs in fields such as virtual reality, artificial
intelligence, and cognitive enhancement. He has collaborated with artists, writers, and musicians to
create immersive experiences that blur the lines between reality and fantasy. One of Dr. Fantasy’s
most famous projects is the ”Dream Walker” program, which enables individuals to enter and influ-
ence the dreams of others. This technology has been used to treat psychological disorders, enhance
creative problem-solving, and even facilitate diplomacy and conflict resolution. Dr. Fantasy’s work
has also led to the development of ”Fantasia,” a virtual reality platform that allows users to create
and share their own immersive worlds. This platform has become a hub for artists, writers, and
musicians to showcase their work and connect with fans in entirely new ways.

The Philosophy of Dr. Fantasy

At the heart of Dr. Fantasy’s work is a profound respect for the human imagination. He believes
that fantasy is not just a form of escapism, but a fundamental aspect of the human experience.
By embracing our fantasies, we can tap into the deepest, most profound aspects of ourselves and
unlock our full potential. Dr. Fantasy’s philosophy is centered around the concept of ”imaginal
realism,” which holds that the imagination is a fundamental aspect of reality, rather than a secondary
or derivative one. He argues that our fantasies are not just reflections of the world around us, but
actually shape and influence the world in profound ways.

The Legacy of Dr. Fantasy

As a pioneer in the field of fantasy neuroscience, Dr. Fantasy has inspired a new generation of
researchers, artists, and entrepreneurs. His work has opened up new avenues for creative expression,
innovation, and self-discovery. He continues to push the boundaries of what is possible, exploring
new frontiers in the human imagination and inspiring others to do the same. And yet, despite his
many achievements, Dr. Fantasy remains humble and grounded. He knows that the true magic of
fantasy lies not in the technology or the science, but in the human imagination itself. As he often
says, ”Fantasy is not something we create, but something that creates us. We are the dreamers, and
the dreamers are us.”

Physical Appearance of Dr. Fantasy
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Dr. Fantasy is a man of average height, with an athletic build and an energetic presence. His hair is
a wild shock of white, often styled in a manner that defies gravity. His eyes are a piercing blue, with
a mischievous glint that suggests a mind always at work. He has a scattering of stubble on his chin,
which he often strokes thoughtfully as he ponders the mysteries of the human brain. Dr. Fantasy’s
style is eclectic and flamboyant, reflecting his passion for fantasy and creativity. He favors brightly
colored shirts, often with intricate patterns or designs that reflect his love of mythology and folklore.
His trousers are typically black, with a subtle sheen that suggests a hint of magic. Around his neck,
he wears a silver pendant in the shape of a stylized brain, symbolizing his devotion to the study of
the human mind.

Personality of Dr. Fantasy

Dr. Fantasy is a charismatic figure, with a presence that commands attention and inspires curiosity.
He is a natural performer, with a quick wit and a silver tongue that can charm even the most skeptical
of audiences. Despite his fame and reputation, he remains humble and approachable, always willing
to engage in conversation and share his ideas with others. Dr. Fantasy is a passionate advocate for
the power of imagination, and he is fiercely dedicated to his work. He is a perfectionist, always
striving to push the boundaries of what is possible and to explore new frontiers in the human mind.
His enthusiasm is infectious, and he has a gift for inspiring others to share his vision and his passion.

Background of Dr. Fantasy

Dr. Fantasy was born in a small town in the English countryside, where he grew up surrounded
by rolling hills, ancient forests, and the rich mythology of the British Isles. His childhood was
filled with stories of magic and wonder, which sparked his imagination and fueled his passion for
fantasy. As a young man, Dr. Fantasy was fascinated by the works of J.R.R. Tolkien, C.S. Lewis,
and other great fantasy authors. He spent countless hours reading, writing, and exploring the worlds
of Middle-earth, Narnia, and other fantastical realms. This early love of fantasy laid the foundation
for his later work in neuroscience, as he began to explore the neural correlates of imagination and
creativity.

The Dr. Fantasy Institute

The Dr. Fantasy Institute is a state-of-the-art research facility dedicated to the study of fantasy neu-
roscience. Located in a gleaming tower of glass and steel, the institute is a hub of creative energy
and innovative thinking. Here, Dr. Fantasy and his team of researchers, engineers, and artists work
together to push the boundaries of what is possible in the human mind. The institute is equipped
with cutting-edge technology, including advanced brain-computer interfaces, neurostimulation de-
vices, and virtual reality platforms. These tools enable Dr. Fantasy and his team to explore the
neural correlates of imagination, creativity, and fantasy, and to develop new technologies that can
enhance and transform the human experience. The institute is also a center for artistic expression
and creativity, with a thriving community of writers, artists, and musicians who come to share their
work and collaborate with Dr. Fantasy and his team. The institute hosts regular exhibitions, perfor-
mances, and workshops, showcasing the latest innovations in fantasy neuroscience and celebrating
the boundless potential of the human imagination.

Future Plans for Dr. Fantasy

Dr. Fantasy is always looking to the future, seeking new ways to explore the frontiers of the human
mind and to unlock the secrets of fantasy neuroscience. He is currently working on a top-secret
project, codenamed ”Elysium,” which promises to revolutionize the field of virtual reality and fan-
tasy entertainment. In the years ahead, Dr. Fantasy plans to expand his institute, establishing new
research centers and collaborations around the world. He will continue to push the boundaries of
what is possible, exploring new frontiers in fantasy neuroscience and inspiring others to join him
on this journey of discovery. As Dr. Fantasy often says, ”The future of fantasy is not just about
technology or science – it’s about the boundless potential of the human imagination. We are the
dreamers, and the dreamers are us.”
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