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A Missing proofs and derivations of UniMix

A.1 Basic setting

Setting 1 Without loss of generality, we suppose that the long-tailed distribution satisfies some kind
exponential distribution with parameter � [8]. The imbalance factor is defined as ⇢ = nmax/nmin,
where nmax and nmin represent the number of the most and least samples in the dataset with C
classes, respectively. Then the probability of class Y belongs to yi is:

P(Y = yi) =

⇢
↵e��yi yi 2 [1, C]
0 others

⇠ long � tailed distribution (A.1)

According to the definition of ⇢, we can directly deduce the relationship between ⇢ and �:

⇢ =
nmax

nmin
=
P(Y = yi)max

P(Y = yi)min
) P(Y = y1)

P(Y = yC)
=
↵e��·1

↵e��·C
) � =

ln ⇢

C � 1
(A.2)

Considering the normalization of probability density, we have:
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P(Y = yi)dyi =
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(A.3)

Hence, we can express the distribution of LT dataset Dtrain, i.e.,P(Y = yi) represents the probability
of class yi in Dtrain, which can be calculated as follows:

P(Y = yi) =

RR
xi2X ,yj2Y 1(X = xi, Y = yi)dxidyjRR
xi2X ,yj2Y 1(X = xi, Y = yj)dxidyj

=
�

e�� � e��C
e��yi , yi 2 [1, C] (A.4)

Notice that Eq.A.4 is determined by total class number C and the imbalance factor ⇢.

A.2 Proof of Corollary 1

Corollary 1 When ⇠ ⇠ Beta(↵,↵),↵ 2 [0, 1], the newly mixed dataset D⌫ composed of ⇠-Aug
samples (exi,j , eyi,j) follows the same long-tailed distribution as the origin dataset Dtrain, where

⇤Equal contribution.
†Corresponding author.
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(xi, yi) and (xj , yj) are randomly sampled from Dtrain.

Pmixup(Y
⇤ = yi) = P2(Y = yi) + P(Y = yi)

ZZ

yi 6=yj

Beta(↵,↵)P(Y = yj)d⇠dyj

=
�

e�� � e��C
e��yi , yi 2 [1, C]

(A.5)

Proof A.1 Follow the Basic Setting 1, when mixing factor ⇠ ⇠ Beta(↵,↵), consider a ⇠-Aug sample
generated by exi,j = ⇠ · xi + (1 � ⇠) · xj and eyi,j = ⇠ · yi + (1 � ⇠) · yj . The ⇠-Aug sample exi,j

contributes to class yi when both pair samples (xi, yi) and (xj , yj) are in class yi or one of them are
in other labels while the mixing factor ⇠ is in favor of class yi.

P(ỹi,j = yi) = P(ỹi,j = yi) · P(ỹi,j = yi)P⇠(0  ⇠  1)

+ P(ỹi,j = yi) · P(ỹi,j 6= yi)P⇠(⇠ � 0.5)

+ P(ỹi,j 6= yi) · P(ỹi,j = yi)P⇠(⇠ < 0.5)

(A.6)

Hence, the distribution of new dataset D⌫ is:

Pmixup(Y = yi) = P(Y = yi) · P(Y = yi) ·
Z

0⇠1
Beta(↵,↵)d⇠

+ P(Y = yi) ·
Z

yj 6=yi

Z

⇠�0.5
Beta(↵,↵) · P(Y = yj)d⇠dyj

+

Z

yj 6=yi

Z

⇠<0.5
Beta(↵,↵) · P(Y = yj)d⇠dyj · P(Y = yi)

= P2(Y = yi) + 0.5 · P(Y = yi) · (1� P(Y = yi))

+ 0.5 · (1� P(Y = yi)) · P(Y = yi)

= P2(Y = yi) + 0.5 · P(Y = yi)� 0.5 · P2(Y = yi)

+ 0.5 · P(Y = yi)� 0.5 · P2(Y = yi)

= P(Y = yi) =
�

e�� � e��C
e��yi

(A.7)

According to Eq.A.4 and Eq.A.7, the ⇠-Aug samples in mixed dataset D⌫ generated by mixup follow
the same distribution of the original long-tailed one. Therefore, the head gets more regulation than
the tail. One the one hand, the classification performance will be promoted. On the other hand,
however, the performance gap between the head and tail still exists.

A.3 Proof of Corollary 2

Corollary 2 When ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵),↵ 2 [0, 1], the newly mixed dataset D⌫ composed
of ⇠-Aug samples (exi,j , eyi,j) follows a middle-majority distribution, where (xi, yi) and (xj , yj) are
both randomly sampled from Dtrain.

P⇤
mixup(Y

⇤ = yi) = P(Y = yi)

Z

yj<yi

1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
P(Y = yj)dyj

=
�

(e�� � e�C�)2

⇣
e��(yi+1) � e�2�yi

⌘
, yi 2 [1, C]

(A.8)

Proof A.2 Follow the settings of Proof A.2 and Eq.6, we can get the following relationship of the
label yi and yj with UniMix Factor ⇠⇤i,j . It easy to know ⇡yi  ⇡yj if the index i � j for the reason
that class yj occupies more instances than class yi in long-tailed distribution described as Eq.A.4.
Under this circumstances, if consider UniMix Factor ⇠⇤i,j as a constant intuitively, we can deduce
that ⇠i,j = ⇡yj/(⇡yi + ⇡yj ) � 0.5, i.e.,

i � j ) ⇡yi  ⇡yj ) ⇠i,j =
⇡yi

⇡yi + ⇡yj

� 0.5 (A.9)
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To improve the robustness and generalization, we consider ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵), which extends
⇠⇤i,j to ⇡yj/(⇡yi + ⇡yj ) and its vicinity. Hence we can generalize Eq.A.9 to:

yi � yj ) ⇡yi  ⇡yj ) ⇠i,j � 0.5 )
Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5 (A.10)

Given any i, j 2 [1, C], the exi,j will tend to be a ⇠-Aug sample of the class yi if i � j for the
tail-favored mixing factor. In other words, exi,j will be a ⇠-Aug sample for class yi with the mean of
⇠⇤i,j to be ⇡yj/(⇡yi + ⇡yj ). Hence, the probability that exi,j belongs to class yi is:

P⇤
mixup(Y = yi) = P(Y = yi) · 1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
· P(Y < yi)

= P(Y = yi)

Z

yj<yi

1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
P(Y = yj)dyj

= P(Y = yi) ·
Z yi

1
P(Y = yj)dyj

=
�

e�� � e��C
e��yi ·

Z yi

1

�

e�� � e��C
e��yjdyj

=
�

e�� � e��C
e��yi · �

�
e���e��C

�
e��yj

�����

yi

1

=
�

(e�� � e�C�)2

⇣
e��(yi+1) � e�2�yi

⌘

(A.11)
According to Eq.A.11, it’s easy to find a derivative zero point in range [1,C]. Hence, the newly
distributed dataset D⌫ generated by mixup with UniMix Factor ⇠⇤i,j follows a middle-majority
distribution that most data concentrates on middle classes.

A.4 Proof of Corollary 3

Corollary 3 When ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵),↵ 2 [0, 1], the newly mixed dataset D⌫ composed
of ⇠-Aug samples (exi,j , eyi,j) follows a tail-majority distribution, where (xi, yi) is randomly and
(xj , yj) is inversely sampled from Dtrain, respectively.

PUniMix(Y
⇤ = yi) = P(Y = yi)

Z

yj<yi

1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
Pinv(Y = yj)dyj

=
�

(e�� � e�C�) (e�C⌧� � e�⌧�)

⇣
e��yi(⌧+1) � e��(⌧+yi)

⌘
, yi 2 [1, C]

(A.12)

Proof A.3 Follow the Basic Setting of Proof.1, suppose (xi, yi) is randomly sampled from Dtrain,
while (xj , yj) is inversely sampled from Dtrain related to ⌧ . i.e., the probability of P(Y = yi) is:

P(Y = yi) =
�

e�� � e��C
e��yi (A.13)

The probability of UniMix Sampler that the sampled class Y belongs to yi is Pinv(Y = yj):

Pinv(Y = yj) =
P⌧ (Y = yj)R

yk2Y P
⌧ (Y = yk)dyk

=

⇣
�

e���e��C e��yj

⌘⌧

R
yk2Y

⇣
�

e���e��C e��yk

⌘⌧
dyk

=
e��⌧yj

R C
1 e��⌧ykdyk

=
�⌧e��⌧yj

e��⌧ � e��⌧C

(A.14)
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Follow the same proof as Proof.A.3, the probability that exi,j belongs to class yi is:

PUniMix(Y = yi) = P(Y = yi) · 1
✓Z

⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠
⇤
i,j � 0.5

◆
· Pinv(Y < yi)

= P(Y = yi)

Z

yj<yi

1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
Pinv(Y = yj)dyj

= P(Y = yi) ·
Z yi

1
Pinv(Y = yj)dyj

=
�

e�� � e��C
e��yi ·

Z yi

1

�⌧e��⌧yj

e��⌧ � e��⌧C
dyj

=
�

e�� � e��C
e��yi · �e��⌧yj

e��⌧ � e��⌧C

����
yi

1

=
�

(e�� � e�C�) (e�C⌧� � e�⌧�)

⇣
e��yi(⌧+1) � e��(⌧+yi)

⌘

(A.15)
According to Eq.A.15, PUniMix(Y = yi) is a gently increasing function in range [1,C]. Hence, the
newly mixed dataset D⌫ generated by UniMix follows a tail-majority distribution that adequate data
concentrates on tail classes.

A.5 More visualization of Corollary 1,2,3

(a) C = 10, ⇢ = 10 (b) C = 10, ⇢ = 100 (c) C = 10, ⇢ = 200

(d) C = 100, ⇢ = 10 (e) C = 100, ⇢ = 100 (f) C = 100, ⇢ = 200

Figure A1: Additional visualized comparisons of ⇠-Aug samples distribution in Corollary 1,2,3.
x-axis: class indices. y-axis: probability of each class. mixup (blue) exhibits the same LT distribution
as origin (purple). UniMix Factor (green) alleviates such situation and the full pipeline (⌧=�1)
constructs a more uniform distribution of ⇠-Aug (red), which contributes to a well-calibrated model.

We present additional visualized distribution of ⇠-Aug samples with different sample strategies for
comprehensive comparisons, including ⇢ 2 {10, 100, 200} and C 2 {10, 100}. As illustrated in
Fig.A1, when the class number C and imbalance factor ⇢ get larger, the limitations of mixup in LT
scenarios gradually appear. The VRM dataset D⌫ generated by mixup with naïve mixing factor and
random sampler will make D⌫ following the same LT distribution. The newly mixed pseudo data by
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mixup follows the head-majority distribution. It has limited contribution for the tail class’ feature
learning and regulation, which is the reason for its poor calibration.

In contrast, the proposed UniMix Factor ⇠⇤i,j significantly promotes such situation and improves tail
class’s feature learning by the preference on the relatively fewer classes of the two samples in a pair.
Because of the random sampler, the samples are still mainly from the head, and the newly mixed
dataset will follows a middle-majority distribution. Most data concentrates on the middle of classes
as green line shows. As C and ⇢ get larger, the middle distribution will get close to the head. Thanks
to the UniMix Sampler that inversely draws data from Dtrain, the D⌫ is mainly composed of the
head-tail pairs that contribute to the feature learning for the tail when integrated with UniMix Factor.
As a result, D⌫ follows the tail-majority distribution that improves the generalization on the tail.
Specifically, when C and ⇢ get larger, the distribution of D⌫ generated by UniMix still maintains
satisfactory tail-majority distribution.

B Missing Proofs and derivations of Bayias

B.1 Proof of Bayias

Theorem B.1 For classification, let  (x; ✓,W, b) be a hypothesis class of neural networks of input
X = x, the classification with Softmax should contain the influence of prior, i.e., the predicted label
during training should be:

ŷ = argmax
yi2Y

e (x;✓,W,b)yi
+log (⇡yi

)+log (C)

P
yj2Y e

 (x;✓,W,b)yj
+log (⇡yj

)+log (C) (B.1)

Proof B.1 Generally, a classifier can be modeled as:

ŷ = argmax
yi2Y

e
P

di2D[(WT )
(di)
yi

F(x;✓)(di)]+byi

P
yj2Y e

P
di2D[(WT )

(di)
yj

F(x;✓)(di)]+byj
, argmax

yi2Y

e (x;✓,W,b)yi

P
yj2Y e

 (x;✓,W,b)yj
(B.2)

where ŷ indicates the predicted label and F(x; ✓) 2 RD⇥1 is the D-dimension feature extracted by
the backbone with parameter ✓. W 2 RD⇥C represents the parameter matrix of the classifier. The
model attempts to get the maximum ŷ given x, i.e., to maximize the posterior, satisfying the following
relationship between the prior and likelihood according to the Bayesian theorem:

ŷ = argmax
yi2Y

P(Y = yi|X = x)

= argmax
yi2Y

P(X = x|Y = yi) · P(Y = yi)P
k P(Y = yk)

Q
j P(X

(j) = x(j)|Y = yk)

/ argmax
yi2Y

P(X = x|Y = yi) · P(Y = yi)

(B.3)

where
P

k P(Y = yk)
Q

j P(X
(j) = x(j)|Y = yk) is the normalized evidence factor. P(Y = yi)

is the prior probability estimated by the instance proportion of each category in the dataset. To
maximize posterior, we need to get the P(X|Y ) in an ERM supervised training manner. However, in
LT scenarios, the likelihood is consistent in the train and test set, but the prior is different. Hence, we
derive the posterior on train and test set separately:

8
><

>:

ŷ / argmax
yi2Y

P(X = x|Y = yi) · Ptrain(Y = yi)

ŷ0 / argmax
yi2Y

P(X = x0|Y 0 = yi) · P0
test(Y

0 = yi)
(B.4)

where ŷ, ŷ0 represent the prediction results for the train and test set, respectively. The model
 (x; ✓,W, b) is just the likelihood estimation P(X = x|Y = yi) of the train set. To obtain the
posterior probability y0 = argmaxyi2Y P

0(Y = yi|X = x0) for inference, one should consider
unifying the optimization direction on the train set and test set:

Ptest(Y = yi|X = x0) / Ptrain(Y = yi|X = x)

Ptrain(Y = yi)
· Ptest(Y

0 = yi) =
Ptrain(Y = yi|X = x)

C · ⇡yi

(B.5)
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For the difference of label prior, the learned parameters of the model will also yield class-level bias.
Hence, the actual optimization direction is not described as Eq.B.2 because the bias incurred by
prior should be compensated at first.

✓̂, Ŵ , b̂ , ⇥ = argmin
⇥

X
xi2X 0

yi2Y
1

 
yi 6= argmax

yj2Y
(Ptest(Y = yj |X = xi)

!

, argmin
⇥

X
xi2X
yi2Y

1

 
yi 6= argmax

yj2Y

Ptrain(Y = yj |X = xi)

C · ⇡yj

!

= argmin
⇥

X
xi2X
yi2Y

1

 
yi 6= argmax

yj2Y

e (xi;✓,W,b)yj�logC�log (⇡yj
)

P
yk2Y e (xi;✓,W,b)yk

!

, argmin
⇥

X
xi2X
yi2Y

1

 
yi 6= argmax

yj2Y

e (xi;✓,W,b)yj�log (⇡yj
)�logC

P
yk2Y e (xi;✓,W,b)yk

�log (⇡yk
)�logC

!

(B.6)
To correct the bias for inferring, the offset term that the model in LT datasets needs to compensate is:

By = log(⇡y) + log(C) (B.7)

B.2 Proof of classification calibration

Theorem B.2 By-compensated cross-entropy loss in Eq.B.8 ensures classification calibration.

LB (yi, (x;⇥)) = � log
e (x;⇥)yi

+log(⇡yi)+log(C)

P
yk2Y e

 (x;⇥)yj
+log(⇡yk)+log(C)

(B.8)

Classification calibration [10, 26] represents the predicted winning Softmax scores indicate the actual
likelihood of a correct prediction. The miscalibrated models tend to be overconfident which results in
that the minimiser of the expected loss (equally, the empirical risk in the infinite sample limit) can
not lead to a minimal classification error. Previous work [21] has introduced a theory to measure the
calibration of a pair-wise loss:

Lemma B.1 Pairwise loss L(yi, (x;⇥)) = ↵yi · log
h
1 +

P
yk 6=yi

e�yiyk · e( (x;⇥)yi� (x,⇥)yk )
i

ensures classification calibration if for any � 2 RC
+:

↵yi = �yi/⇡yi �yiyk = log(�yk/�yi) (B.9)

Proof B.2 To begin, we rewritten the Bayias-compensated cross-entropy loss into the following
equation:

LB (yi, (x;⇥)) = � log
e (x;⇥)yi

+log(⇡yi)+log(C)

P
yk2Y e

 (x;⇥)yj
+log(⇡yk)+log(C)

, log

P
yk2Y e (x;⇥)yk

+log(⇡yk)+log(C)

e (x;⇥)yi
+log(⇡yi)+log(C)

= log

2

41 +
P

yk 6=yi
e (x;⇥)yk

+log(⇡yk)+log(C)

e (x;⇥)yi
+log(⇡yi)+log(C)

3

5

= log

"
1 +

X
yk 6=yi

e (x;⇥)yk
+log(⇡yk)+log(C)

e (x;⇥)yi
+log(⇡yi)+log(C)

#

= log

"
1 +

X
yk 6=yi

elog(⇡yk)+log(C) · e (x;⇥)yk

elog(⇡yi)+log(C) · e (x;⇥)yi

#

= log
h
1 +

X
yk 6=yi

eByk
�Byi · e (x;⇥)yk

� (x;⇥)yi

i

(B.10)
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Compare Eq.B.10 with LemmaB.1, observed that when �y = ⇡y .
8
>><

>>:

↵yi = �yi/⇡yi = ⇡yi/⇡yi = 1
�yiyk = Byk � Byi

= [log(⇡yk) + log(C)]� [log(⇡yi) + log(C)]

= log(⇡yk)� log(⇡yi) = log(⇡yk/⇡yi)

(B.11)

According to LemmaB.1, we immediately deduce that Bayias-compensated cross-entropy loss ensures
classification calibration.

B.3 Comparisons with other losses

Previous work [16, 8, 25, 30, 4, 21] adjusts the logits weight or margin on standard Softmax cross-
entropy (CE) loss to tackle the long-tailed datasets. We summarize the loss modification methods
reported in Tab.1 and discuss the difference between theirs and ours here.

Weight-wise losses. Focal loss [18] is proposed to balance the positive/negative samples during
object detection and extends for classification by assigning low weight loss for easy samples. It
re-wights the loss with a factor (1� pyi)

� on standard cross-entropy loss, where pyi is the prediction
probability of class yi:

LFocal = �(1� pyi)
� log

e (x;⇥)yi

P
yk2Y e (x;⇥)yk

(B.12)

CB loss is proposed by Cui et al. [8] with the effective number. It adopts a coefficient (1� �)/(1�
�nyi ) for standard cross-entropy loss:

LCB = � 1� �

1� �nyi
log

e (x;⇥)yi

P
yk2Y e (x;⇥)yk

(B.13)

CDT loss [30] re-weights each Softmax logit with a temperature scale factor ayi = (nmax
nyi

)� . It
artificially reduces the decision values for head classes:

LCDT = � log
e
 (x;⇥)yi/(

nmax
nyi

)�

P
yk2Y e

 (x;⇥)yk
/(nmax

nyk
)�

(B.14)

All above re-weight methods are proven effective empirically, more or less. However, such approaches
will confront the coverage dilemma when the train data gets highly imbalanced. The weights related
to instances number may be large in this situation and result in unstable gradients that deteriorate
head classes’ performance gain. They are also sensitive to hyper-parameters, which makes it hard to
adopt in varied datasets.

Margin-wise losses. Previous work in Deep Metrics Learning [20, 9, 28, 19] attempts to obtain
better inter-class and intra-class distance from the margin perspective. Cao et al. [4] analyze the
optimal margin between two different classes via generalization error bounds in the long tail visual
recognition. They propose the LDAM loss to encourage the tail classes to enjoy larger margins. In
detail, a label-aware margin C/n1/4

yi is added to the groud truth logit where C is an independent
constant:

LLDAM = � log
e (x;⇥)yi�C/n1/4

yi

e (x;⇥)yi�C/n1/4
yi +

P
yk 6=yi

e (x;⇥)yk
(B.15)

Logit Adjustment [21] loss is proposed to overcome the long-tailed dataset motivated by the balanced
error rate. They suppose that the model shows similar performance on each class in the validation
dataset. The authors propose a margin ⌧ log(⇡yi) on standard Softmax cross-entropy loss. Different
from the LDAM loss, such margin is added for all logits with label priors ⇡y:

LLA = � log
e (x;⇥)yi+⌧ log(⇡yi )

P
yk2Y e (x;⇥)yk

+⌧ log(⇡yk
)

(B.16)
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Our Bayias-compensated CE loss is motivated by erasing the difference of label prior in the train set
and test set based on the Bayesian theory. The network parameters are only the likelihood estimation,
while we need a reliable posterior for unbiased inference. Hence, we compensate the bias incurred by
various label prior via adding a margin related to the train set label prior and minus a margin related
to the test set label prior:

Lours = � log
e (x;⇥)yi+log(⇡yi )�log(1/C)

P
yk2Y e (x;⇥)yk

+log(⇡yk
)�log(1/C)

(B.17)

One may notice that our loss is similar to LA loss with an extra constant margin � log(1/C) when
the ⌧ = 1 in LA loss. However, the difference lies in two aspects: 1) the margin � log(1/C) is a
positive value and makes all logits get larger, which makes Softmax operation more distinguishable.
2) Notice our two margins are related to the label prior of the train set and test set. Hence, when the
train set is balanced, i.e., ⇡yi = 1/C, the margin will be log(1/C) � log(1/C) ⌘ 0, and our loss
coverage to the standard cross-entropy loss. Furthermore, our loss can handle the situation that both
train set and test set are imbalanced distribution via directly setting the margin as log(⇡yi)� log(⇡0

yi
),

where ⇡yi is the label prior in the train set and ⇡0
yi

is the label prior in test set correspondingly.

C Implement detail

We conduct experiments on CIFAR-10-LT [17], CIFAR-100-LT [17], ImageNet-LT [24], and iNatu-
ralist 2018 [14]. We adopt long-tailed version CIFAR datasets which are build by suitably discarding
training instances following the Exp files given in [8, 4]. The instance number of each class expo-
nentially decays in train dataset and keeps balanced during validation process. Here, an imbalance
factor ⇢ is define as nmax/nmin to measure how imbalanced the dataset is. ImageNet-LT is the LT
version of ImageNet. It samples instances for each class following Pareto distribution which is also
long-tailed. iNaturalist 2018 is a real-world dataset with 8, 142 classes and ⇢ = 500, which suffers
extremely class-imbalanced and fine-grained problems.

C.1 Implement details on CIFAR-LT

ResNet-32 is the backbone on CIFAR-LT. For all CIFAR-10-LT and CIFAR-100-LT, the universal data
augmentation strategies [11] are used for training. Specifically, we pad 4 pixels on each side and crop
a 32⇥ 32 region. The cropped regions are flipped horizontally with 0.5 probability and normalized
by the mean and standard deviation for each color channel. We train the model via stochastic gradient
decent (SGD) with momentum 0.9 and weight decay of 2⇥ 10�4 for all experiments. All models are
trained for 200 epochs setting mini-batch as 128 with same learning rate [4] for fair comparisons. The
learning rate is set as [4]: the initial value is 0.1 and linear warm up at first 5 epochs. The learning
rate is decayed at the 160th and 180th epoch by 0.01. For all mixup [31] and its extension methods
[27, 7], we fine-tune the model after 120th epoch. The ↵ of Beta distribution is 0.5 for UniMix and
1.0 for others.

C.2 Implement details on large-scale datasets

We adopt ResNet-10 & ResNet-50 for ImageNet-LT and ResNet-50 for iNaturalist 2018. For
ImageNet-LT, ResNet-10 and ResNet-50 are trained from scratch for 90 epochs, setting mini-batch
as 512 and 64, respectively. For iNaturalist 2018, we adopt the vanilla ResNet-50 with mini-batch
as 512 and train for 90 epochs. With proper data augment strategy [34], the SGD optimizer with
momentum 0.9 and weight decay 1 ⇥ 10�4 optimizes the model with same learning rate for fair
comparisons [4, 34, 15]. We set base learning rate as 0.2 and decay it at the 30th and 60th epoch by
0.1, respectively.

D Additional Experiment Results

We present additional experiments for comprehensive comparisons with previous methods and make
a detailed analysis, which can be summarized as follows:

• Visualized top-1 validation error (%) comparisons of previous methods.
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• Additional quantity and visualized comparisons of classification calibration.

• Additional visualized comparisons of confusion matrix and log-confusion matrix.

• Additional comparisons on test imbalance scenarios.

• Additional comparisons on state-of-the-art two-stage method.

D.1 Visualized comparisons on CIFAR-10-LT and CIFAR-100-LT

Previous sections have shown the remarkable performance of the proposed UniMix and Bayias.
Fig.D1 shows the visualized top-1 validation error rate (%) comparisons on CIFAR-10-LT and
CIFAR-100-LT with ⇢ 2 {10, 50, 100, 200} for clear and comprehensive comparisons. The histogram
indicates the value of each method. The positive error term represents its distance towards the best
method, while the negative term indicates the advance towards the worst one.

(a) CIFAR-10-LT

(b) CIFAR-100-LT

Figure D1: Visualized top1 error (%) (y-axis) comparisons of CIFAR-10-LT and CIFAR-100-LT on
different ⇢ (x-axis) in ResNet-32. The proposed method (red) achieves the lowest error rate compared
with other methods. The leading advantage of our method increases consistently as imbalance factor
gets larger.

Results in Fig.D1 show that the proposed method outperforms others with lower error rate over all
imbalance factors settings. As the dataset gets more skewed and imbalanced, the advantage of our
method gradually emerges. On the one hand, the proposed UniMix generates a tail-majority pseudo
dataset favoring the tail feature learning, which makes the model achieve better calibration. It is
practical to improve the generalization of all classes and avoid potential over-fitting and under-fitting
risks. On the other hand, the proposed Bayias overcomes the bias caused by existing prior differences,
which improves the model’s performance on the balanced validation dataset. Even in extremely
imbalanced scenarios (e.g., CIFAR-100-LT-200), the proposed method still achieves satisfactory
performance.

D.2 Additional quantitative and qualitative calibration comparisons

D.2.1 Definition of calibration

Calibration means a model’s predicting probability can estimate the representative of the actual
correctness likelihood, which is vital in many real-world decision-making applications [23, 5, 2].
Suppose a dataset contains N samples D := {(xk, yk)}Nk=1, where xi and yi represent the ith sample
and its corresponding label, respectively. Let p̂yi = P(Y = yi|x = xi) be the confidence of the
predicted label, and divide dataset D into a mini-batch size m with M = N/m in total. The accuracy
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(acc) and the confidence (cfd) in a mini-batch Bm are:

acc(Bm) =
1

m

X
i2Bm

1(ŷi = yi)

cfd(Bm) =
1

m

X
i2Bm

p̂yi

(D.1)

According to Eq.D.1, a perfectly calibrated model will strictly have acc(Bm) ⌘ cfd(Bm) for all
m 2 {1, · · · ,M}. Hence, the Expected Calibration Error (ECE) is proposed as a scalar statistic of
calibration to quantitatively measure classifiers’ mean distance to the ideal acc(Bm) ⌘ cfd(Bm),
which is defined as:

ECE =
XM

m=1

|Bm|
n

|acc(Bm)� cfd(Bm)| (D.2)

In addition, reliable confidence measures are essential in high-risk applications. The Maximum
Calibration Error (MCE) describes the worst-case deviation between confidence and accuracy, which
can be defined as:

MCE = max
m2{1,··· ,M}

|acc(Bm)� cfd(Bm)| (D.3)

According to Eq.D.2,D.3, a well-calibrated model should coverage ECE and MCE to 0, indicating that
the prediction score reflects the actual accuracy likelihood. Under this circumstances, the calibrated
model will show excellent robustness and generalization, especially in LT scenarios. Although the
authors in [10] propose the temperature scaling as a post-hoc method to adjust the classifier, our
motivation is to train a calibrated model end to end without loss of accuracy.

Previous work [1] points out that ECE scores suffer from several shortcomings. Hence, additional
metrics [22, 1] are proposed to show more robustness, e.g., Adaptivity & Adaptive Calibration Error
(ACE), Thresholding & Thresholded Adaptive Calibration Error (TACE), Static Calibration Error
(SCE), and Brier Score (BS). The definition of the above metrics are as follows:

TACE disregards all predicted probabilities that are less than a certain threshold ✏. It adaptively
chooses the bin locations to ensure each bin has the same instance numbers and estimates the
miscalibration of probabilities across all classes in the prediction while the ECE only chooses the
top-1 predicted class. TACE is defined as Eq.D.4:

TACE =
1

CR

XC

c=1

XR

r=1
|acc(Br, c)� cfd(Br, c)| (D.4)

where acc(Br, c) and cfd(Br, c) are the accuracy and confidence of adaptive calibration range r
for class label c, respectively. Calibration range r defined by the bN/Rcth index of the sorted and
thresholded predictions, exclude the prediction less than ✏. If set ✏ = 0, TACE converts to ACE.

SCE is a simple extension of ECE to every probability in the multi-class setting. SCE bins predictions
separately for each class probability, computes the calibration error within the bin, and averages
across bins. SCE is defined as Eq.D.5:

SCE =
1

C

XC

c=1

XB

b=1

nbc

N
|acc(Bb, c)� cfd(Bb, c)| (D.5)

where acc(Bb, c) and cfd(Bb, c) are the accuracy and confidence of bin Bb for class label c, respec-
tively. nbc is the prediction number in bin Bb for class c. N is the total number of test set.

BS [3] has also been known as a metric for the verification of predicted probabilities. Similarly to the
log-likelihood, BS penalizes low probabilities assigned to correct predictions and high probabilities
assigned to wrong ones, which is defined as Eq.D.6:

BS =
1

NC

XN

i=1

XC

c=1
(1(y⇤i = c)� P(Y = yc|X = xi))

2 (D.6)

where N represents the total number of test set. y⇤i , P(Y = yc|X = xi) represent the ground truth
and predicted label, respectively.

D.2.2 Quantitative results of calibration on CIFAR-LT

Besides ECE and MCE results, we additionally provide quantitative metrics results, i.e., ACE, TACE
setting threshold ✏ = 1e� 3, SCE, and BS. The comparisons are illustrated in Tab.D1.
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Table D1: Quantitative calibration metric of ResNet-32 on CIFAR-10/100-LT-100 test set. Smaller
ACE, TACE, SCE, and BS indicate better calibration results. Either of the proposed methods achieves
a well-calibrated model compared with others. The combination of UniMix and Bayias still achieves
the best performance.

Dataset CIFAR-10-LT-100 CIFAR-100-LT-100

Calibration Metric (⇥100) ACE TACE SCE BS ACE TACE SCE BS

ERM 5.42 4.66 5.46 53.61 0.831 0.709 0.952 97.05
mixup [31] 4.87 4.20 4.92 49.09 0.751 0.683 0.849 89.26
Remix [7] 3.49 3.32 3.77 44.84 0.740 0.675 0.846 89.33
LDAM+DRW [4] 4.14 2.84 4.43 44.76 0.801 0.671 1.093 107.4

UniMix (ours) 3.48 3.27 3.57 38.98 0.505 0.555 0.687 80.70
Bayias (ours) 2.45 2.40 2.69 34.30 0.460 0.518 0.631 78.78
UniMix+Bayias (ours) 2.31 2.17 2.43 32.84 0.450 0.517 0.623 78.24

(a) CIFAR-10-LT-100 (b) CIFAR-100-LT-100

Figure D2: Additional comparisons of joint density plots of accuracy vs. confidence on CIFAR-10-LT
and CIFAR-100-LT. A well-calibrated classifier’s density will lay around the y = x (red dot line). The
combination of UniMix and Bayias achieves remarkable results especially in the severely imbalance
scenarios (i.e., ⇢ = 100).

D.2.3 Additional visualized calibration comparison on CIFAR-LT

To make intuitive comparisons, we visualize additional confidence-accuracy joint density plots and
reliability diagrams in CIFAR-LT test set setting ⇢ = 100. The confidence data is obtained by the
average Softmax winning score in a test mini-batch [26]. The reliability diagrams data is obtained
follow [10], which groups all prediction score into 15 interval bins and calculate the accuracy of each
bin. The results are available in Fig.D2.

Fig.D2 clearly shows that the proposed method achieves better calibration in the CIFAR-LT test set.
Each scatters data is the corresponding result of confidence and accuracy in a mini-batch m. In LT
scenarios, the validation accuracy is usually lower than train accuracy, especially for the tail classes.
Such overconfidence and miscalibration obstruct the network from having better generalization
performance. In Fig.D2, the distribution of scattered points reflects a model’s generalization and
calibration. Our proposed method is the closest towards ideal y = x. It means each class gets enough
regulation and hence contributes to a well-calibrated model. In contrast, mixup and its extensions
are similar to ERM, which show limited improvement on classification calibration in LT scenarios.
LDAM ameliorates the LT situation to some extent but results in more severe overconfidence cases,
which may explain why it is counterproductive to other methods.

The reliability diagram is another visual representation of model calibration. As Fig.D3 shows, the
baseline (ERM) is overconfident in its predictions and the accuracy is generally below ideal y = x
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(a) ERM (b) mixup [31] (c) LDAM+DRW [4] (d) Ours

(e) ERM (f) mixup [31] (g) LDAM+DRW [4] (h) Ours

Figure D3: Reliability diagrams of ResNet-32 on CIFAR-10-LT-100 (top) and CIFAR-100-LT-100
(bottom). x-axis and y-axis represent the confidence and accuracy, respectively. A well-calibrated
model shows smaller gap in each bin, i.e., the accuracy bar is closed to y = x. Our proposed method
shows best results compared with others without any further fine-tune.

for each bin. Our method produces much better confidence estimates than others, which means our
success in regulating all classes. Although some post-hoc adjustment methods [10, 33] can achieve
better classification calibration, our approach trains a calibrated model end-to-end, which avoids the
potential adverse effects on the original task. Considering the similarity of purposes with MiSLAS
[33], we make detailed discussion in Appendix D.5.

D.3 Additional visualized comparisons of confusion matrix on CIFAR-LT

D.3.1 Visualized confusion matrix on CIFAR-10-LT

We further give additional visualized results on CIFAR-10-LT setting ⇢ = 10 and ⇢ = 100, which
are available in Fig.D4,D5. The results show that all methods perform well compared with ERM
in the simple dataset (e.g., CIFAR-10-LT-10, CIFAR-10-LT-100). In general, the proposed method
significantly improves the accuracy of the tail for the larger diagonal values. The improvement on the
tail is superior than other methods, which leads to state-of-the-art performance.

As for misclassification results, the non-diagonal elements concentrate on the top-right triangle.
Hence, most of previous methods have limited improvement on minority classes, which tend to
simply predict the instances in tail as majority ones. In contrast, the proposed method improves the
performance for the tail and makes the misclassification case more balance distributed.

D.3.2 Visualized log-confusion matrix on CIFAR-100-LT

Furthermore, we visualize the distinguishing results of our methods on challenging CIFAR-100-LT
for comprehensive comparisons. Specifically, we plot additional comparisons on CIFAR-100-LT-10
(Fig.D6) and CIFAR-100-LT-100 (Fig.D7).

Fig.D6 D7 show that in the challenging LT scenarios, the diagonal values get decreased towards the
tail. A proper confusion matrix should exhibit a balanced distribution of misclassification case and
large enough diagonal values. The proposed method outperforms others both in the correct cases
(the diagonal elements) and the misclassification case distribution. In general, the proposed method
shows the best performance, especially in the tail classes (deeper color represents larger value). The
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(a) ERM (b) mixup [31] (c) LDAM+DRW [4] (d) CDT [30]

(e) Remix [7] (f) CB+DRW [8] (g) Logit Adjustment [21] (h) Ours

Figure D4: Additional confusion matrix comparisons on CIFAR-10-LT-10. The x-axis and y-axis
indicate the ground truth and predicted labels, respectively. Deeper color indicates larger values. All
methods achieve satisfactory results while ours further improves the tail feature learning and make
misclassification cases more balanced distributed.

(a) ERM (b) mixup [31] (c) LDAM+DRW [4] (d) CDT [30]

(e) Remix [7] (f) CB+DRW [8] (g) Logit Adjustment [21] (h) Ours

Figure D5: Additional confusion matrix comparisons on CIFAR-10-LT-100. The x-axis and y-axis
indicate the ground truth and predicted labels, respectively. Deeper color indicates larger values. The
disparity of these methods gradually gets appeared. Our method achieves the best accuracy as well as
better non-diagonal distribution. Other methods exhibit an obvious bias towards the head or tail.

misclassification cases in other methods apparently concentrate on the upper triangular, which means
the classifiers simply predict the tail samples as the head and vise versa.

D.4 Results on test imbalance scenarios

Zhang et al. [32] have discussed the existing challenging and severe bias issue in imbalanced
distributed test set. When the test set distribution is ideally known or well estimated, Bayias enables
to overcome the bias issues in such scenarios by considering the priors. In contrast, CE loss implicitly
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(a) ERM (b) mixup [31] (c) LDAM+DRW [4] (d) CDT [30]

(e) Remix [7] (f) CB+DRW [8] (g) Logit Adjustment [21] (h) Ours

Figure D6: Additional log-confusion matrix comparisons on CIFAR-100-LT-10. The x-axis and
y-axis indicate the ground truth and predicted labels, respectively. log operation is adopted for
clearer visualisation. Deeper color indicates larger values. The increased class number makes the
misclassification distribution more clearly.

(a) ERM (b) mixup [31] (c) LDAM+DRW [4] (d) CDT [30]

(e) Remix [7] (f) CB+DRW [8] (g) Logit Adjustment [21] (h) Ours

Figure D7: Additional log-confusion matrix comparisons on CIFAR-100-LT-100. The x-axis and
y-axis indicate the ground truth and predicted labels, respectively. log operation is adopted for
clearer comparisons. Deeper color indicates larger values. Other methods show obviously poor
generalization on the tail in the challenging CIFAR-100-LT-100, while the proposed method achieves
significantly superior correct classification results and balanced misclassification case distribution.

requires train set and test set same distributed, while LA loss requires test set balanced distributed. LA
and CE losses are powerless in other scenarios, while Bayias is flexible and capable with imbalanced
distributed test sets, i.e., the constant term logC can change to be the test set distribution log ⇡0 to
deal with such scenarios.

We sample test sets under different distribution with test imbalance factor ⇢0 (i.e., long-tail (⇢0 > 1),
balanced (⇢0 = 1), and reversed long-tail (⇢0 < 1)), corresponding to different imbalance factor
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100, 10, 1, 0.1, 0.01. The following comparisons in Tab.D2 show the necessity of considering test
distribution’s influence, which reveals our motivation to deal with bias issues. When train and test
sets follow the same distribution, Bayias is equal to CE and outperforms LA. When the distribution
of train and test set is different severely (e.g., ⇢0 = 100 and 0.01), Bayias outperforms both CE and
LA. Similar experiments and conclusions can be obtained from [13] as well.

Table D2: Comparisons of CE, LA and Bayias loss on CIFAR-100-LT class-imbalanced test set. Note
that the imbalanced test set is sampled by discarding some data. Therefore, the instance numbers
of test samples vary in different imbalance factors, and longitudinal comparisons can reflect the
effectiveness of Bayias.

Train set CIFAR-100-LT-10 CIFAR-100-LT-100

⇢0 100 10 1 0.1 0.01 100 10 1 0.1 0.01

CE 69.73 63.67 55.70 48.48 43.13 63.54 52.74 38.32 25.00 14.03
LA 61.94 60.14 59.87 56.12 54.06 59.13 51.06 43.89 31.14 26.42
Bayias 71.89 63.36 60.02 58.20 62.32 64.90 54.15 43.92 36.20 35.42

D.5 Comparisons with the two-stage method

We propose UniMix and Bayias to improve model calibration by tackling the bias issues caused
by imbalanced distributed train and test set. We improve the model calibration and accuracy simul-
taneously in an end-to-end manner. However, there are some methods to ameliorate calibration in
post-hoc (e.g., temperature scaling [10]) or two-stage (e.g., label aware smoothing [33]) way. As we
discussed above, such pipelines will be effective and we integrate our proposed methods with one of
them for further comparison. The compared results are illustrated in Tab.D3.

Table D3: Comparisons with state-of-the-art two-stage method on CIFAR-100-LT.
Dataset CIFAR-100-LT-10 CIFAR-100-LT-50 CIFAR-100-LT-100

Metric (%) Accuracy ECE Accuracy ECE Accuracy ECE

MiSLAS 1st-stage 58.7 3.91 45.6 6.00 40.3 10.77
2nd-stage 63.2 1.73 52.3 2.25 47.0 4.83

Ours 1st-stage 61.1 7.79 51.8 4.91 47.6 3.24
2nd-stage 63.0 1.98 52.6 3.45 48.3 1.44

MiSLAS adopts mixup for the 1st-stage and label aware smoothing (LAS) for 2nd-stage. We add
the LAS in additional 10 epochs following our vanilla pipeline to build a two-stage manner. Our
method generally outperforms MiSLAS in the 1st-stage and can achieve on par with accuracy and
lower ECE. In specific, MiSLAS mainly improves accuracy and ECE in the 2nd-stage, i.e., classifier
learning, by a large margin, which indicates LAS’s effectiveness. We adopt the LAS to replace Bayias
compensated CE loss in the 2nd-stage and can further improve accuracy and ECE, especially in the
more challenging CIFAR-100-LT-100. However, the improvement of the 2nd-stage is not significant
compared to MiSLAS. Since the LAS and Bayias compensated CE loss are both modifications on
standard CE loss, it is hard to implement both of them simultaneously. We suggest that the LAS
plays similar roles as Bayias compensated CE loss does, which explains the limited performance
improvement.

E Additional discussion

What is the difference between UniMix and traditional over-sample approaches? We take
representative over-sample approach SMOTE [6] for comparisons. SMOTE is a classic over-sample
method for imbalanced data learning, which constructs synthetic data via interpolation among a
sample’s neighbors in the same class. However, the authors in [26] illustrate that such interpolation
without labels is negative for classification calibration. In contrast, mixup manners take elaborate-
designed label mix strategies. The success of label smoothing trick [12] and mixups imply that the
fusion of label may play an important role in classification accuracy and calibration. Different from
other methods, our UniMix pays more attention to the tail when mixing the label and thus achieves
remarkable performance gain.
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Why choose ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵)? As we have discussed the motivation of UniMix Factor
before, it is intuitive to set ⇠i,j = ⇡yj/(⇡yi + ⇡yj ). Although satisfactory performance gain is
obtained on CIFAR-LT in this manner, we fail on large-scaled dataset like ImageNet-LT. We suspect
that the ⇠⇤i,j will be close to 0 or 1 when the datasets become extremely imbalanced and hence the
effect of our mixing manner disappears. To improve the robustness and generalization, we transform
the origin Beta(↵,↵) distribution (↵  1) to maximize the probability of ⇠i,j = ⇡yj/(⇡yi +⇡yj ) and
its vicinity. We set ↵ = 0.5 on CIFAR-LT and keep the same ↵ as mixup and Remix on ImageNet-LT
and iNaturalist 2018.

Why does Bayias work? According to Bayesian theory, the estimated likelihood is positive correla-
tion to posterior both in balance-distributed train and test set, with the same constant coefficient of
prior and evidence factor. However, though evidence factor is regraded as a constant in LT scenarios,
the LT dataset suffers seriously skewed prior of each category in the train set, which is extremely
different from the balanced test set. Hence, the model based on maximizing posterior probability
needs the to compensate the different priors firstly. From the perspective of optimization, Deep
Neural Network (DNN) is a non-convex model, minuscule bias will eventually cause disturbances in
the optimization direction, resulting in parameters converging to another local optimal. In addition,
log(⇡i) + log(C) is consistent with traditional balanced datasets (i.e., ⇡i ⌘ 1/C), which turns to be
a special case (i.e., log(1/C) + log(C) ⌘ 0) of Bayias. Furthermore, our Bayias can compensate
any discrepancy between train set and test set via directly setting the Bayias as log(⇡yi)� log(⇡0

yi
),

where ⇡yi is the label prior in train set and ⇡0
yi

is the label prior in test set.
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