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ABSTRACT

We study best arm identification (BAI) in linear bandits in the fixed-budget regime
under differential privacy constraints, when the arm rewards are supported on the
unit interval. Given a finite budget T and a privacy parameter ε > 0, the goal is
to minimise the error probability in finding the arm with the largest mean after T
sampling rounds, subject to the constraint that the policy of the decision maker
satisfies a certain ε-differential privacy (ε-DP) constraint. We construct a policy
satisfying the ε-DP constraint (called DP-BAI) by proposing the principle of
maximum absolute determinants, and derive an upper bound on its error probability.
Furthermore, we derive a minimax lower bound on the error probability, and
demonstrate that the lower and the upper bounds decay exponentially in T , with
exponents in the two bounds matching order-wise in (a) the sub-optimality gaps of
the arms, (b) ε, and (c) the problem complexity that is expressible as the sum of two
terms, one characterising the complexity of standard fixed-budget BAI (without
privacy constraints), and the other accounting for the ε-DP constraint. Additionally,
we present some auxiliary results that contribute to the derivation of the lower
bound on the error probability. These results, we posit, may be of independent
interest and could prove instrumental in proving lower bounds on error probabilities
in several other bandit problems. Whereas prior works provide results for BAI
in the fixed-budget regime without privacy constraints or in the fixed-confidence
regime with privacy constraints, our work fills the gap in the literature by providing
the results for BAI in the fixed-budget regime under the ε-DP constraint.

1 INTRODUCTION

Multi-armed bandit problems (Thompson, 1933) form a class of sequential decision-making problems
with applications in fields as diverse as clinical trials, internet advertising, and recommendation
systems. The common thread in all these applications is the need to balance exploration (learning
about the environment) and exploitation (making the best decision given current knowledge). The
exploration-exploitation trade-off has been studied extensively in the context of regret minimisation,
where the goal is to minimise the cumulative difference between the rewards of the actions taken
and the best possible action in hindsight; see Lattimore and Szepesvári (2020) and the references
therein for an exhaustive list of works on regret minimisation. On the other hand, the pure exploration
framework, which is the focus of this paper, involves identifying the best arm (action) based on
a certain criterion such as the highest mean reward. The pure exploration paradigm has been a
subject of rigorous study in the literature, predominantly falling within two overarching regimes: the
fixed-confidence regime and the fixed-budget regime. In the fixed-confidence regime, the objective is
to curtail the anticipated number of trials needed to pinpoint the optimal arm, all while adhering to a
predefined maximum allowable error probability. Conversely, in the fixed-budget regime, the aim is
to suppress the likelihood of erroneous identification of the best arm under a predetermined budget.

Motivation: The task of identifying the best arm in a multi-armed bandit setting is non-trivial due
to the inherent uncertainty associated with each arm’s true reward distribution. This problem is
amplified when privacy constraints are considered, such as the need to protect individual-level data
in a medical trial or user data in an online advertising setting (Chan et al., 2011). In the context
of such data-intensive applications, the notion of differential privacy (Dwork, 2006) has become
the gold-standard for the modelling and analytical study of privacy. While there has been growing
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interest in the design of privacy-preserving algorithms for regret minimisation in multi-armed bandits
(Basu et al., 2019; Jain et al., 2012; Chan et al., 2011; Guha Thakurta and Smith, 2013; Mishra
and Thakurta, 2015; Tossou and Dimitrakakis, 2016), a comparable level of attention has not been
directed towards the domain of pure exploration. Addressing this lacuna in the literature, our research
aims to investigate differentially private best arm identification within the fixed-budget regime.

Problem Setup: Briefly, our problem setup is as follows. We consider a multi-armed bandit in which
each arm yields independent rewards supported on the unit interval [0, 1]. Each arm is associated
with a known, d-dimensional feature vector, where d is potentially much smaller than the number
of arms. The mean reward of each arm is a linear function of the associated feature vector, and is
given by the dot product of the feature vector with an unknown d-dimensional vector θ∗ which fully
specifies the underlying problem instance. Given a designated budget T and a parameter ε > 0, the
objective is to minimise the probability of error in identifying the arm with the largest mean reward
(best arm), while concurrently fulfilling a certain ε-differential privacy (ε-DP) constraint delineated
in Basu et al. (2019). We explain the specifics of our model and define the ε-DP constraint formally
in Section 2 below.

Overview of Prior Works: Differential privacy (DP) (Dwork, 2006) and best-arm identification
(BAI) (Lattimore and Szepesvári, 2020) have both been extensively investigated in the literature,
encompassing a wide array of works. In this section, we discuss a selection of more recent con-
tributions at the intersection of these two topics. Shariff and Sheffet (2018) prove that any ε-DP
(viz. (ε, δ)-DP with δ = 0) algorithm must incur an additional regret of at least Ω ((K log T )/ε),
where K is the number of arms. Building on this result, Sajed and Sheffet (2019) propose an
elimination-based algorithm that satisfies the ε-DP constraint and achieves order-wise optimality
in the additional regret term. Zheng et al. (2020) study regret minimisation with the (ε, δ)-local
differential privacy constraint, a stronger requirement than (ε, δ)-DP, for contextual and generalised
linear bandits. Azize and Basu (2022) study the ε-global differential privacy constraint for regret
minimisation, and provide both minimax and problem-dependent regret bounds for general stochastic
bandits and linear bandits. Chowdhury and Zhou (2023) and Solanki et al. (2023) explore differential
privacy in a distributed (federated) setting. Chowdhury and Zhou (2023) explore regret minimization
with the (ε, δ)-DP constraint in a distributed setting, considering an untrustworthy server. They
derive an upper bound on the regret which matches order-wise with the one obtainable under a
centralized setting with a trustworthy server; for a similar work that studies regret minimisation in the
distributed and centralised settings, see Hanna et al. (2022). Solanki et al. (2023) study federated
learning for combinatorial bandits, considering a slightly different notion of privacy than the one
introduced in Dwork (2006). We observe that the existing literature on bandits mainly focused on
regret minimisation with DP constraint and the pure exploration counterpart has not been studied
extensively.

In the pure exploration domain, Carpentier and Locatelli (2016) study the fixed-budget BAI problem
and obtains a minimax lower bound on the error probability; the authors show that their bound is
order-wise tight in the exponent of the error probability. Yang and Tan (2022) investigate fixed-budget
BAI for linear bandits and propose an algorithm based on the G-optimal design. They prove a
minimax lower bound on the error probability and obtain an upper bound on the error probability
of their algorithm OD-LINBAI. Despite the significant contributions of Carpentier and Locatelli
(2016), Yang and Tan (2022), Komiyama et al. (2022), and Kato et al. (2023), these works do not
take into account DP constraints. Nikolakakis et al. (2021) and Rio et al. (2023) study BAI in the
fixed-confidence setting with ε-DP constraint and propose successive elimination-type algorithms,
but these works do not derive a lower bound that is a function of the privacy parameter ε. Our work is
thus the first to study differentially private best arm identification in fixed-budget regime and provide
a lower bound explicitly related to the privacy parameter ε.

Our Contributions: We present a novel algorithm for fixed-budget BAI under the ε-DP constraint.
Our proposed algorithm, called DP-BAI, is based on the principle of maximizing absolute determi-
nants (or MAX-DET in short). A key aspect of our algorithm is the privatisation of the empirical
mean of each arm via the addition of Laplacian noise. The amount of noise added to an arm is
inversely proportional to the product of the privacy parameter ε and the number of times the arm is
pulled. Recognising the trade-off between the number of arm pulls and the level of noise injected
for privatisation, the MAX-DET principle minimises the maximum Laplacian noise injected across
all arms, thereby ensuring a small probability of error in identifying the best arm. We believe our
work can open for future exploration in precise control over Laplacian noise (crucial to meet the
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ε-DP guarantee) and using other popular techniques in fixed-budget BAI, such as G-optimal designs
(Kiefer and Wolfowitz, 1960; Yang and Tan, 2022) and XY-adaptive allocations (Soare et al., 2014),
with DP-constraint. We find it analytically convenient to leverage the properties of the MAX-DET
collection (cf. Definition 3.1) to satisfy the ε-DP constraint. See Remark 2 for a brief justification on
why extending other popular techniques for fixed-budget BAI such as G-optimal design (Yang and
Tan, 2022) to the differential privacy setting of our work is not readily feasible.

Additionally, we establish the first-known lower bound on the error probability under the ε-DP
constraint for a class of “hard” problem instances. We demonstrate that both the upper and lower
bounds decay exponentially relative to the budget T . The exponents in these bounds capture the
problem complexity through a certain hardness parameter, which we show can be expressed as the
sum of two terms: one measuring the complexity of the standard fixed-budget BAI without privacy
constraints, and the other accounting for the ε-DP constraint. We also present some auxiliary findings,
such as the properties of the so-called early stopping version of a BAI policy (see Lemmas 4.3
and 4.5), that contribute to the derivation of the lower bound, which may be of independent interest
and could prove instrumental in deriving lower bounds on error probabilities in several other bandit
problems. Our work stands out as the first in the field to provide precise and tight bounds on the error
probability for fixed-budget BAI under the ε-DP constraint, achieving order-wise optimal exponents
in both the lower and the upper bounds.

2 NOTATIONS AND PRELIMINARIES

Consider a multi-armed bandit with K > 2 arms, in which each arm yields independent and
identically distributed (i.i.d.) rewards, and the rewards are statistically independent across arms. Let
[K] := {1, . . . ,K} denote the set of arms. For i ∈ [K], let νi denote the rewards distribution of
arm i. As in several prior works (Chowdhury and Zhou, 2022; Shariff and Sheffet, 2018; Zhou and
Chowdhury, 2023), we assume throughout the paper that νi is supported in [0, 1] for all i ∈ [K]. We
impose a linear structure on the mean rewards of the arms. That is, for each i ∈ [K], we assume that
arm i is associated with a feature vector ai ∈ Rd, where d is the dimension of the feature vector, and
the mean reward of arm i is given by µi := a⊤i θ

∗ for some fixed and unknown θ∗ ∈ Rd. We assume
that the feature vectors of the arms {ai}Ki=1 are known beforehand to a decision maker, whose goal it
is to identify the best arm i∗ = argmaxi∈[K] µi; we assume that the best arm is unique and defined
unambiguously.

The Fixed-Budget Regime: The decision maker is allowed to pull the arms sequentially, one at each
time t ∈ {1, 2, . . .}. Let At ∈ [K] denote the arm pulled by the decision maker at time t, and let
Ni,t =

∑t
s=1 1{As=i} denote the number of times arm i is pulled up to time t. Upon pulling arm

At, the decision maker obtains the instantaneous reward XAt,NAt,t
∈ [0, 1]; here, Xi,n ∼ νi denotes

the reward obtained on the nth pull of arm i. Notice that E[Xi,n] = µi = a⊤i θ
∗ for all i ∈ [K] and

n ≥ 1. For all t, the decision to pull arm At is based on the history of arm pulls and rewards seen
up to time t, i.e., At is a (random) function ofHt := (A1, XA1,NA1,1

, . . . , At−1, XAt−1,NAt−1,t−1
).

Given a fixed budget T <∞, the objective of the decision maker is to minimise the probability of
error in finding the best arm after T rounds of arm pulls, while also satisfying a certain differential
privacy constraint outlined below. We let ÎT denote the best arm output by the decision maker.

The ε-Differential Privacy Constraint: Let X := {x = (xi,t)i∈[K],t∈[T ]} ⊆ [0, 1]KT denote the
collection of all possible rewards outcomes from the arms. Any sequential arm selection policy of the
decision maker may be viewed as taking inputs from X and producing (A1, . . . , AT , ÎT ) ∈ [K]T+1

as outputs in the following manner: for an input x = (xi,t) ∈ X ,

Output at time t = 1 : A1 = A1,

Output at time t = 2 : A2 = A2(A1, xA1,NA1,1
),

Output at time t = 3 : A3 = A3(A1, xA1,NA1,1
, A2, xA2,NA2,2

),

...
Output at time t = T : AT = AT (A1, xA1,NA1,1

, . . . , AT−1, xNAT−1
,T−1),

Terminal output : ÎT = ÎT (A1, xA1,NA1,1
, . . . , AT , xNAT

,T ). (1)
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We say that x = (xi,t) and x′ = (x′
i,t) are neighbouring if they differ in exactly one location, i.e.,

there exists (i, t) ∈ [K] × [T ] such that xi,t ̸= x′
i,t and xj,s = x′

j,s for all (j, s) ̸= (i, t). With the
viewpoint in (1), we now introduce the notion of ε-differential privacy for a sequential policy of the
decision maker, following the lines of Nikolakakis et al. (2021, Section 5).
Definition 2.1. Given any ε > 0, a randomised policyM : X → [K]T+1 satisfies ε-differential
privacy if, for any pair of neighbouring x,x′ ∈ X ,

PM(M(x) ∈ S) ≤ eε PM(M(x′) ∈ S) ∀S ⊂ [K]T+1. (2)

Remark 1. A generalization of the notion of ε-differential privacy is that of (ε, δ)-differential
privacy (Dwork et al., 2014, Chapter 2). For the sake of simplicity in exposition, in the main text,
we provide details for the former. An extension of our algorithm, called DP-BAI-GAUSS, will
be shown to be applicable to the latter (generalized) notion of differential privacy. The details and
accompanying analyses of the performance of DP-BAI-GAUSS can be found in Appendix D.

While the actual sequence of rewards observed underM is random, it is important to note that a pair
of reward sequences, say (x,x′), is fixed when specifying the ε-DP constraint. In (2), PM denotes
the probability measure induced by the randomness arising from only the arm outputs underM. In
the sequel, we refer to the tuple v = ((ai)i∈[K], (νi)i∈[K],θ

∗, ε) as a problem instance, and let P
denote to be the set of all problem instances that admit a unique best arm. Given v ∈ P and a policy
π, we write Pπ

v to denote the probability measure induced under π and under the instance v. When
the dependence on v is clear from the context, we simply write Pπ .

3 OUR METHODOLOGY

To meet the ε-DP guarantee, our approach is to add Laplacian noise to the empirical mean reward of
each arm, with the magnitude of the noise inversely proportional to the product of ε and the number
of times the arm is pulled. Intuitively, to minimize the maximum Laplacian noise that is added (so
as to minimize the failure probability of identifying the best arm), we aim to balance the number of
pulls for each arm in the current active set. To this end, we employ the MAX-DET explained below.

The MAX-DET Collection: Fix d′ ∈ N. For any set S ⊂ Rd′
with |S| = d′ vectors, each of

length d′, let DET(S) to denote the absolute value of the determinant of the d′ × d′ matrix formed by
stacking the vectors in S as the columns of the matrix.

Definition 3.1. Fix d′ ∈ N. Given any finite set A ⊂ Rd′
with |A| ≥ d′, we say B ⊂ A with

|B| = d′ is a MAX-DET collection of A if

DET(B) ≥ DET(B′) for all B′ ⊂ A with |B′| = d′. (3)

Thus, a MAX-DET collection B ⊂ A has the maximum absolute determinant among all subsets of A
with the same cardinality as B. If span(A) = d′, the vectors in B are linearly independent, and any
b ∈ A may be expressed as a linear combination of the vectors in B. Call the coefficients appearing
in this linear combination expression for b as its coordinates (Meyer, 2000, Chapter 4). The set of
coordinates of each b ∈ A is unique, and b may be expressed alternatively as a d′-length vector of its
coordinates. In this new system of coordinates, the vectors in B constitute the standard basis vectors.

3.1 THE DIFFERENTIALLY PRIVATE BEST ARM IDENTIFICATION (DP-BAI) POLICY

We now construct a policy based on the idea of successive elimination (SE) of arms. Our policy for
Differentially Private Best Arm Identification, called DP-BAI, operates over a total of M phases,
where M is designed to have order O(log d). In each phase p ∈ [M ], the policy maintains an active
set Ap of arms which are potential contenders for emerging as the best arm. The policy ensures that
with high probability, the true best arm lies within the active set in each phase.

Policy-Specific Notations: We now introduce some policy-specific notations. Let

λ = inf{β ≥ 2 : βlog(d) ≥ K − ⌈d2/4⌉}, (4)
Let {gi}i≥0 and {hi}i≥0 be defined as follows:

g0 = min{K, ⌈d2/4⌉}, gi = ⌈gi−1/2⌉ ∀ i ≥ 1, (5)

h0 = max{K − ⌈d2/4⌉, 0}, hi = ⌈(hi−1 + 1)/λ⌉ − 1 ∀ i ≥ 1. (6)
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Let s0 = g0 + h0, and for each p ∈ [M ], let sp = |Ap| denote the number of active arms at the
beginning of phase p, defined via

sp =

{
g0 + hp−1, 1 ≤ p ≤M1,

gp−M1
, M1 < p ≤M + 1.

(7)

For α > 0, let Lap
(
1
α

)
denote the Laplacian distribution with density fα(z) =

α
2 e−α |z|, z ∈ R.

Initialisation: We initialise our policy with the following parameters:
M1 = min{i ∈ N : hi = 0}, M = M1 +min{i ∈ N : gi = 1} − 1,

T ′ = T −M1d− (M −M1)⌈d2/4⌉, a
(0)
i = ai ∀ i ∈ [K],

d0 = d, T0 = 0, A1 = [K]. (8)
Policy Description: We now describe the DP-BAI policy. The policy takes as inputs the differential
privacy parameter ε, budget T , the number of arms K, and the feature vectors of the arms {ai : i ∈
[K]}. With the initialisation in (8), the policy operates in phases. In each phase p ∈ [M ], the first
step is dimensionality reduction (Yang and Tan, 2022), whereby the dimension of the set of vectors
{a(p−1)

i : i ∈ Ap} is reduced using a linear transformation; here, a(p−1)
i ∈ Rdp−1 for all i ∈ Ap.

More specifically, suppose that dp := dim(span{a(p−1)
i : i ∈ Ap}). The policy chooses an arbitrary

orthogonal basis Up = (u
(p)
1 , . . . ,u

(p)
dp

) for span{a(p−1)
i : i ∈ Ap}, and obtains a new set of vectors

a
(p)
i := [a

(p−1)
i ]Up

, for all i ∈ Ap, (9)
where [v]Up

denotes the coordinates of v with respect to Up. Subsequently, the policy checks if
dp <

√
sp, where sp = |Ap| is as defined in (7). If this is true, then the policy constructs a MAX-DET

collection Bp ⊂ Ap consisting of |Bp| = dp arms, and pulls each arm i ∈ Bp for ⌈ T ′

Mdp
⌉ many times,

and sets Tp = Tp−1 + dp ⌈ T ′

Mdp
⌉. On the other hand, if dp ≥ √sp, then the policy pulls each arm in

Ap for ⌈ T ′

Msp
⌉ many times, and sets Tp = Tp−1 + sp ⌈ T ′

Msp
⌉. After pulling the arms according to the

preceding rule, the policy computes

µ̂
(p)
i =

1

Ni,Tp −Ni,Tp−1

Ni,Tp∑
s=Ni,Tp−1

+1

Xi,s (10)

for each arm i ∈ Ap that was pulled at least once in phase p, and subsequently computes its private
empirical mean µ̃

(p)
i via

µ̃
(p)
i = µ̂

(p)
i + ξ̃

(p)
i , (11)

where ξ̃
(p)
i ∼ Lap

(
1

(Ni,Tp−Ni,Tp−1
)ε

)
is independent of the arm pulls and arm rewards. For i ∈ Ap

that was not pulled in phase p, the policy computes its corresponding private empirical mean via

µ̃
(p)
i =

∑
j∈Bp

αi,j µ̃
(p)
j , (12)

where (αi,j)j∈Bp
is the unique set of coefficients such that a(p)i =

∑
j∈Bp

αi,j a
(p)
j . At the end of

phase p, the policy retains only the top sp+1 arms with the largest private empirical means and
eliminates the remaining arms; intuitively, these arms are most likely to produce the highest rewards
in the subsequent phases. At the end of the M th phase, the policy returns the only arm left in AM+1

as the best arm. For pseudo-code of the DP-BAI policy, see Algorithm 1.
Remark 2. It is natural to wonder why we do not devise a differentially private version of OD-
LinBAI (Yang and Tan, 2022), the state-of-the-art linear fixed-budget BAI algorithm, which uses
G-optimal designs. A proposal to do so, called DP-OD, is provided in Appendix E. However, the
error probability in identifying the best arm under DP-OD depends not only on the suboptimality
gaps of the arms, but is also a function of the arm vectors. For example, in a 2-armed bandit instance,
let a1 = [x, 0]⊤, a2 = [0, y]⊤ with x, y > 0, and θ∗ = [(0.5+∆)/x, 0.5/y]⊤. Then, µ1 = 0.5+∆,
µ2 = 0.5, and the suboptimality gap ∆ = µ1 − µ2. For this instance, the upper bound on the error
probability of DP-OD is exp

(
−Ω

(
T

∆−2+ x∨y
x∧y (ϵ∆)−1

))
. We observe that x∨y

x∧y can be made arbitrarily

large. Thus, this bound is inferior to the upper bound of DP-BAI (equal to exp(−Ω( T
∆−2+(ϵ∆)−1 ))

and independent of the arm vectors). See Appendix E for further details.
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Algorithm 1 Fixed-Budget Differentially Private Best Arm Identification (DP-BAI)

Input:
ε: differential privacy parameter; T : budget; {ai : i ∈ [K]}: d-dimensional feature vectors.

Output: ÎT : best arm.
1: Initialise T0 = 0, A1 = [K], a(0)i = ai for all i ∈ [K]. Set M and T ′ as in (8).
2: for p ∈ {1, 2, . . . ,M} do
3: Set dp = dim(span{a(p−1)

i : i ∈ Ap}).
4: Obtain the new vector set {a(p)i : i ∈ Ap} from the set {a(p−1)

i : i ∈ Ap} via (9).
5: Compute sp using (7).
6: if dp <

√
sp then

7: Construct a MAX-DET collection Bp ⊂ Ap.
8: Pull each arm in Bp for ⌈ T ′

Mdp
⌉ many times. Update Tp ← Tp−1 + dp⌈ T ′

Mdp
⌉.

9: Obtain the empirical means {µ̂i(p) : i ∈ Bp} via (10).

10: Generate ξ̃
(p)
i ∼ Lap

(
1

ε⌈ T ′
Mdp

⌉

)
for i ∈ Bp.

11: Set µ̃(p)
i ← µ̂

(p)
i + ξ̃

(p)
i for all i ∈ Bp.

12: For arm i ∈ Ap \ Bp, compute µ̃
(p)
i via (12).

13: else
14: Pull each arm in Ap for ⌈ T ′

Msp
⌉ many times. Update Tp ← Tp−1 + sp⌈ T ′

Msp
⌉

15: Obtain the empirical means {µ̂(p)
i : i ∈ Ap} via (10).

16: Generate ξ̃
(p)
i ∼ Lap

(
1

ε⌈ T ′
Msp

⌉

)
for i ∈ Ap.

17: Set µ̃(p)
i ← µ̂

(p)
i + ξ̃

(p)
i for all i ∈ Ap.

18: end if
19: Compute sp+1 using (7).
20: Ap+1 ← the set of sp+1 arms with largest private empirical means among {µ̃(p)

i : i ∈ Ap}.
21: end for
22: ÎT ← the only arm remaining in AM+1

23: return Best arm ÎT .

4 THEORETICAL RESULTS

We now present theoretical results for the DP-BAI policy, followed by a minimax lower bound on
the error probability. We write ΠDP-BAI to denote the DP-BAI policy symbolically. The first result
below, proved in Appendix F, asserts that ΠDP-BAI meets the ε-DP constraint for any ε > 0.
Proposition 4.1. The DP-BAI policy with privacy and budget parameters (ε, T ) satisfies the ε-DP
constraint, i.e., for any pair of neighbouring x,x′ ∈ X ,

PΠDP-BAI(ΠDP-BAI(x) ∈ S) ≤ eε PΠDP-BAI(ΠDP-BAI(x
′) ∈ S) ∀S ⊂ [K]T+1. (13)

In (13), the probabilities appearing on either sides of (13) are with respect to the randomness in the
arms output by ΠDP-BAI for fixed neighbouring reward sequences x,x′ ∈ X (see Section 2). The
use of Laplacian noise for the privatisation of the empirical means of the arms (see Lines 10-11 and
16-17 in Algorithm 1) plays a crucial role in showing (13).

4.1 THE HARDNESS PARAMETER

Recall that a problem instance v may be expressed as the tuple v = ((ai)i∈[K], (νi)i∈[K],θ
∗, ε).

In this section, we capture the hardness of such an instance in terms of the instance-specific arm
sub-optimality gaps and the privacy parameter ε. Recall that the arm means under the above instance
v are given by µi = a⊤i θ

∗ for all i ∈ [K]. Let ∆i := µi∗(v) − µi denote the sub-optimality gap of
arm i ∈ [K]. Further, let (l1, . . . , lK) be a permutation of [K] such that ∆l1 ≤ ∆l2 ≤ . . . ≤ ∆lK ,
and let ∆(i) := ∆li for all i ∈ [K]. The hardness of instance v is defined as

H(v) := HBAI(v) +Hpri(v), (14)

6



Published as a conference paper at ICLR 2024

where
HBAI(v) := max

2≤i≤(d2∧K)

i

∆2
(i)

and Hpri(v) :=
1

ε
· max
2≤i≤(d2∧K)

i

∆(i)
. (15)

Going forward, we omit the dependence of H,HBAI, and Hpri on v for notational brevity. It is
worthwhile to mention here the quantity in (14) specialises to the hardness term “H2” in Audibert
et al. (2010), which is identical to HBAI, when K ≤ d2 and ε→ +∞. The former condition K ≤ d2

holds, for instance, for a standard K-armed bandit with K = d, θ∗ ∈ Rd as the vector of arm means,
and {ai}di=1 as the standard basis vectors in Rd. Intuitively, while HBAI quantifies the difficulty of
fixed-budget BAI without privacy constraints, Hpri accounts for the ε-DP constraint and captures the
additional difficulty of BAI under this constraint.

4.2 UPPER BOUND ON THE ERROR PROBABILITY OF DP-BAI

In this section, we provide an upper bound on the error probability of DP-BAI.
Theorem 4.2. Fix v ∈ P . Let i∗(v) denote the unique best arm of instance v. For all sufficiently
large T , the error probability of ΠDP-BAI with budget T and privacy parameter ε satisfies

PΠDP-BAI
v (ÎT ̸= i∗(v)) ≤ exp

(
− T ′

65M H

)
, (16)

where M and T ′ are as defined in (8). In (16), PΠDP-BAI
v denotes the probability measure induced by

ΠDP-BAI under the instance v.

This is proved in Appendix G. Since M = Θ(log d) and T ′ = Θ(T ) (as T →∞), (16) implies that

PΠDP-BAI
v (ÎT ̸= i∗(v)) = exp

(
−Ω
( T

H log d

))
. (17)

4.3 LOWER BOUND ON THE ERROR PROBABILITY

In this section, we derive the first-of-its-kind lower bound on the error probability of fixed-budget BAI
under the ε-DP constraint. Towards this, we first describe an auxiliary version of a generic policy that
takes as input three arguments–a generic policy π, n ∈ N, and ι ∈ [K]–and pulls an auxiliary arm
(arm 0) whenever arm ι is pulled n or more times under π. We believe that such auxiliary policies are
potentially instrumental in deriving lower bounds on error probabilities in other bandit problems.

The Early Stopping Policy: Suppose that the set of arms [K] is augmented with an auxiliary arm
(arm 0) which yields reward 0 each time it is pulled; recall that the arm rewards are supported in
[0, 1]. Given a generic policy π, n ∈ N and ι ∈ [K], let ES(π, n, ι) denote the early stopping version
of π with the following sampling and recommendation rules.

• Sampling rule: given a realizationHt−1 = (a1, x1, . . . , at−1, xt−1), if
∑t−1

s=1 1{as=ι} < n, then

PES(π,n,ι)(At ∈ A | Ht−1) = Pπ(At ∈ A | Ht−1) ∀A ⊆ [K], (18)

and if
∑t−1

s=1 1{as=ι} ≥ n, then PES(π,n,ι)(At = 0
∣∣Ht−1) = 1. That is, as long as arm ι is pulled

for a total of fewer than n times, the sampling rule of ES(π, n, ι) is identical to that of π. Else,
ES(π, n, ι) pulls arm ι with certainty.

• Recommendation rule: Given historyHT = (a1, x1, . . . , aT , xT ), if
∑T

s=1 1{as=0} = 0, then

PES(π,n,ι)(ÎT ∈ A | HT ) = Pπ(ÎT ∈ A | HT ) ∀A ⊆ [K], (19)

and if
∑T

s=1 1{as=0} > 0, then PES(π,n,ι)(ÎT = 0 | HT ) = 1. That is, if the auxiliary arm 0 is not
pulled under π, the recommendation of ES(π, n, ι) is consistent with that of π. Else, ES(π, n, ι)
recommends arm 0 as the best arm.

The next result below provides a “bridge” between a policy π and its early stopped version.
Lemma 4.3. Fix a problem instance v ∈ P , policy π, n ∈ N, and ι ∈ [K]. For any A ⊆ [K] and
E = {ÎT ∈ A} ∩ {Nι,T < n},

Pπ
v (E) = PES(π,n,ι)

v (E). (20)
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In addition, let X (n,ι) := {(xi,t)i∈[K],t∈[ni] : (xi,t)i∈[K],t∈[T ] ∈ X} ⊆ Rn1 × . . . × RnK , where
ni = T for all i ̸= ι and nι = n. Notice that Definition 2.1 readily extends to any randomised policy
that maps X (n,ι) to {0, . . . ,K}T+1. We then have the following corollary to Lemma 4.3.

Corollary 4.4. If π : X → [K]T+1 meets the ε-DP constraint, then ES(π, n, ι) : X (n,ι) →
{0, . . . ,K}T+1 also meets the ε-DP constraint.

Given the early stopping version of a policy π, the following lemma provides a “bridge” between two
problem instances v, v′ ∈ P .

Lemma 4.5. Fix a policy π, n ∈ N, ι ∈ [K], and ε > 0, and suppose thatM = ES(π, n, ι) satisfies
the ε-DP constraint with respect to X (n,ι). For any pair of instances v = ((ai)i∈[K], (νi)i∈[K],θ

∗, ε)

and v′ = ((ai)i∈[K], (ν
′
i)i∈[K],θ

′∗, ε), with θ∗ ̸= θ′∗, νι ̸= ν′ι, and νi = ν′i for all i ̸= ι, we have

PM
v

(
M((Xi,j)i∈[K],j∈[ni]) ∈ S

)
≤ eε

′
PM
v′

(
M((Xi,j)i∈[K],j∈[ni]) ∈ S

)
∀S ⊆ {0, . . . ,K}T+1

(21)
where in (21), (i) ε′ = 6εnTV(vι, v

′
ι), with TV(vι, v

′
ι) being the total variation distance between

the distributions νι and ν′ι, and (ii) ni = T for all i ̸= ι and nι = n.

The proof of Lemma 4.5 follows exactly along the lines of the proof of Karwa and Vadhan (2018,
Lemma 6.1) and is omitted. Leveraging Lemma 4.5 in conjunction with Lemma 4.3 provides us with
a change-of-measure technique, facilitating the transition from Pπ

v to Pπ
v′ under any given policy π.

This change-of-measure technique serves as the foundation that enables us to derive the subsequent
minimax lower bound on the error probability.

Definition 4.6. A policy π for fixed-budget BAI is said to be consistent if

lim
T→+∞

Pπ
v

(
ÎT ̸= i∗(v)

)
= 0, ∀ v ∈ P. (22)

Theorem 4.7 (Lower Bound). Fix any β1, β2, β3 ∈ [0, 1] with β1 + β2 + β3 < 3, a consistent policy
π, and a constant c > 0. For all sufficiently large T , there exists an instance v ∈ P such that

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(log d)β1(HBAI(v)β2 +Hpri(v)β3)

)
. (23)

Consequently,

inf
π consistent

lim inf
T→+∞

sup
v∈P

{
Pπ
v

(
ÎT ̸= i∗(v)

)
· exp

(
T

c(log d)β1(HBAI(v)β2 +Hpri(v)β3)

)}
≥ 1,

(24)
for any c > 0 and β1, β2, β3 ∈ [0, 1] with β1 + β2 + β3 < 3.

Theorem 4.7, proved in Appendix H, implies that for any chosen β ∈ [0, 1) (arbitrarily close to
1), there does not exist a consistent policy π with an upper bound on its error probability assuming
any one of the following forms for all instances v ∈ P: exp

(
−Ω

(
T

(log d)β(HBAI(v)+Hpri(v))

))
,

exp
(
−Ω

(
T

(log d)(HBAI(v)β+Hpri(v))

))
, or exp

(
−Ω

(
T

(log d)(HBAI(v)+Hpri(v)β)

))
. In this sense, the

dependencies of the upper bound in (16) on log d, HBAI(v), and Hpri(v) are “tight”. Also, in this
precise sense, none of these terms can be improved upon in general.
Remark 3. It is pertinent to highlight that the upper bound in (16) applies to any problem instance,
whereas the lower bound in (23) is a minimax result that is applicable to one or more hard instances.
An ongoing quest in fixed-budget BAI is to construct a policy with provably matching error probability
upper and lower bounds for all problem instances.

5 NUMERICAL STUDY

This section presents a numerical evaluation of our proposed DP-BAI policy on synthetic data, and
compares it with BASELINE, an algorithm which follows DP-BAI but for Lines 6 to 13 in Algorithm 1,
i.e., BASELINE does not construct MAX-DET collections. We note that BASELINE is ε-DP for any
ε > 0, and bears similarities with SEQUENTIAL HALVING (Karnin et al., 2013) when ε→ +∞ (i.e.,

8
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Figure 1: Comparison of DP-BAI to BASELINE, OD-LINBAI and DP-OD for different values of ε.
Note that ε is not applicable to OD-LINBAI.

non-private algorithm). However, because it does not exploit the linear structure on the arm means,
we will see that it performs poorly vis-à-vis DP-BAI. In addition, we compare DP-BAI with the
state-of-the-art OD-LINBAI (Yang and Tan, 2022) algorithm for fixed-budget best arm identification,
which is a non-private algorithm and serves as an upper bound in performance (in terms of the error
probability) of our algorithm. Also, we consider an ε-DP version of OD-LINBAI which we call
DP-OD. A more comprehensive description of the DP-OD algorithm is presented in Appendix E.1.

Our synthetic instance is constructed as follows. We set K = 30, d = 2, and θ∗ = [0.045 0.5]⊤,
a1 = [0 1]⊤, a2 = [0 0.9]⊤, a3 = [10 0]⊤, and ai = [1 ωi]

⊤ for all i ∈ {4, . . . , 30}, where
ωi is randomly generated from a uniform distribution on the interval [0, 0.8]. Clearly, µ1 = 0.5,
µ2 = µ3 = 0.45, and µi = ωi/2 + 0.045 for all i ∈ {4, . . . , 30}, thereby implying that arm 1
is the best arm. The sub-optimality gaps are given by ∆2 = ∆3 = 0.05 and ∆i > 0.05 for all
i ∈ {4, . . . , 30}; thus, arms 2 and 3 exhibit the smallest gaps. In addition, we set νi, the reward
distribution of arm i, to be the uniform distribution supported on [0, 2µi] for all i ∈ [K].

We run experiments with several choices for the budget T and the privacy parameter ε, conducting
1000 independent trials for each pair of (T, ε) and reporting the fraction of trials in which the best
arm is successfully identified.

The experimental results are shown in Figure 1 for varying T and ε values respectively. As the results
demonstrate, the DP-BAI policy significantly outperforms BASELINE and DP-OD, demonstrating
that the utility of the MAX-DET collection in exploiting the linear structure of the arm means. We
also observe that as ε→ +∞ (i.e., privacy requirement vanishes), the performances of DP-BAI and
the non-private state-of-the-art OD-LINBAI algorithm are similar.

6 CONCLUSIONS AND FUTURE WORK

This work has taken a first step towards understanding the effect of imposing a differential privacy
constraint on the task of fixed-budget BAI in bandits with linearly structured mean rewards. Our
contributions include the development and comprehensive analysis of a policy, namely DP-BAI,
which exhibits exponential decay in error probability with respect to the budget T , and demonstrates
a dependency on the dimensionality of the arm vectors d and a composite hardness parameter, which
encapsulates contributions from both the standard fixed-budget BAI task and the imposed differential
privacy stipulation. A distinguishing aspect in the design of this policy is the critical utilization of
the MAX-DET collection, instead of existing tools like the G-optimal designs (Yang and Tan, 2022)
and XY-adaptive allocations (Soare et al., 2014). Notably, we establish a minimax lower bound that
underlines the inevitability of certain terms in the exponent of the error probability of DP-BAI.

Some interesting directions for future research include extending our work to incorporate generalized
linear bandits (Azizi et al., 2022) and neural contextual bandits (Zhou et al., 2020). Additionally, we
aim to tackle the unresolved question brought forth post Theorem 4.7: does there exist an efficient
fixed-budget BAI policy respecting the ε-DP requirement, whose error probability upper bound
approximately matches a problem-dependent lower bound?
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Supplementary Material for
“Fixed-Budget Differentially Private Best Arm Identification”

A USEFUL FACTS

In this section, we collate some useful facts that will be used in the subsequent proofs.
Lemma A.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that
ai ≤ Xi ≤ bi almost surely for all i ∈ [n], for some fixed constants ai ≤ bi, i ∈ [n]. Let

Sn = X1 + · · ·+Xn.

Then, for all ϵ > 0,

P (Sn − E [Sn] ≥ ϵ) ≤ exp

(
− 2ϵ2∑n

i=1 (bi − ai)
2

)
, (25)

P (|Sn − E [Sn]| ≥ ϵ) ≤ 2 exp

(
− 2ϵ2∑n

i=1 (bi − ai)
2

)
. (26)

Definition A.2 (Sub-exponential random variable). Let τ ∈ R and b > 0. A random variable X is
said to be sub-exponential with parameters (τ2, b) if

E [exp(λX)] ≤ exp
(λ2τ2

2

)
∀λ : |λ| < 1

b
. (27)

Lemma A.3 (Linear combination of sub-exponential random variables). Let X1, . . . , Xn be in-
dependent, zero-mean sub-exponential random variables, where Xi is

(
τ2i , bi

)
-sub-exponential.

Then, for any a1, . . . , an ∈ R, the random variable
∑n

i=1 aiXi is (τ2, b)-sub-exponential, where
τ2 =

∑n
i=1 a

2
i τ

2
i and b = maxi bi |ai|.

Lemma A.4 (Tail bounds of sub-exponential random variables). Suppose that X is sub-exponential
with parameters

(
τ2, b

)
. Then,

P(X − E[X] ≥ ϵ) ≤


exp

(
− ϵ2

2τ2

)
, 0 ≤ ϵ ≤ τ2

b
,

exp
(
− ϵ

2b

)
, ϵ >

τ2

b
.

(28)

B AN EXAMPLE OF THE POLICY-SPECIFIC NOTATIONS IN SEC. 3.1

Consider d = 16, K = 10, 000. Then, we have g0 = 64, h0 = 9936, M1 = 4, M = 10 and
λ ≈ 27.65. In the following table, we display the values of sp for p = 1, . . . ,M1.

p sp (sp−1 − g0)/(sp − g0)
1 1000 N.A.
2 423 ≈ 27.65
3 77 ≈ 27.68

4 (= M1) 64 ≈ 27.62

For p = M1 + 1, . . . ,M , we simply have sp = 210−p, i.e., s5 = 32, s6 = 16, . . . , s10 = 1.

Notice that the values in the third column of the above table (apart from the first row which is
not applicable) are nearly equal to the value of λ. Based on the above table, we may bifurcate
the operations of our algorithm into two distinct stages. Roughly speaking, in the first stage (i.e.,
phases 1 to M1), the algorithm aims to reduce the number of arms to a predetermined quantity
(i.e., g0) as quickly as possible. Following this, in the second stage (i.e., phase M1 + 1 to M ), the
algorithm iteratively halves the number of arms. This process is designed to gradually concentrate
arm pulls on those arms with small sub-optimality gaps (including the best arm) as much as possible,
thereby improving the accuracy of estimating the mean of the best arm and encouraging effective
identification of the best arm.
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C EQUIVALENCE OF OUR NOTION OF DP WITH THE NOTION OF TABLE-DP
OF AZIZE AND BASU (2023)

In this section, we discuss the notion of table-DP introduced in the recent work by Azize and Basu
(2023, Section 2), and we will show that our definition of differential privacy in Definition 2.1 is
equivalent to the notion of table-DP. Firstly, to maintain notational consistency with Azize and Basu
(2023), we introduce a dual decision maker who obtains the reward XAt,t rather than the reward
XAt,NAt,t

upon pulling arm At at time step t; see Section 2 for other relevant notations. Then, for
any policy π, we write D(π) to denote its dual policy obtained by substituting its decision maker
with the dual decision maker. Clearly, in the non-private setting, any policy is equivalent to its dual
policy. We demonstrate below that the same conclusion holds under DP considerations too. To begin,
we formally define DP for the dual policy.
Definition C.1 (Column-neighbouring). We say that x,x′ ∈ X are column-neighbouring if they
differ in exactly one column, i.e., there exists t ∈ [T ] such that x·,t ̸= x′

·,t and x·,s = x′
·,s for all

s ̸= t, where x·,s := (xi,s)
K
i=1 and x′

·,s := (x′
i,s)

K
i=1 .

Definition C.2 (Table-DP). Given any ε > 0 and a randomised policyM : X → [K]T+1, we say
that the dual policy D(M) satisfies ε-table-DP if, for any pair of column-neighbouring x,x′ ∈ X ,

PD(M) (D(M) (x) ∈ S) ≤ eε PD(M) (D(M)(x′) ∈ S) ∀S ⊂ [K]T+1.

For any z = (zt)
T+1
t=1 ∈ [K]T+1, we denote [z]ji := (zt)

j
t=i ∈ [K]j−i+1. Then, we have the following

alternative characterization of table-DP.
Corollary C.3. Given any ε > 0 and a randomised policyM : X → [K]T+1, the dual policy D(M)
satisfies ε-table-DP if and only if for any t ∈ [T ] and any pair of column-neighbouring x,x′ ∈ X
with x·,t ̸= x′

·,t,

PD(M)
(
[D(M) (x)]T+1

t+1 ∈ S
)
≤ eε PD(M)

(
[D(M)(x′)]

T+1
t+1 ∈ S

)
∀S ⊂ [K]T−t+1.

In the following, we demonstrate that the notions of DP in Definition C.2 and Definition 2.1 are
equivalent after some slight modifications in notations.
Proposition C.4. Fix any policy π. If π satisfies ε-DP, then D(π) satisfies ε-table-DP.

Proof. Fix any z = (zt)
T+1
t=1 ∈ [K]T+1, and any pair of column-neighbouring xD,x′D ∈ X . For

i ∈ [K] and t ∈ [T ], we let

ni,t :=

T∑
t=1

1{zt=i}. (29)

Notice that ni,t is equal to Ni,t if Aτ = zτ for all τ ≤ t. Then, we construct x,x′ ∈ X by defining
for all t ∈ [T ]

xzt,nzt,t
:= xD

zt,t and x′
zt,nzt,t

:= x′D
zt,t, (30)

and for all (i, j) ∈ [K]× [T ] \ {(zt, nzt,t)
∣∣ t ∈ [T ]},

xi,j := 0 and x′
i,j := 0.

Hence, the fact that xD,x′D ∈ X are column-neighbouring, implies that either x and x′ are
neighbouring or x = x′. That is, by the assumption that π satisfies ε-DP, we have

Pπ
(
π(x) = z

)
≤ eεPπ

(
π(x′) = z

)
. (31)

In addition, by (29) and (30) we obtain that

Pπ
(
π(x) = z

)
= PD(π)

(
D(π)(xD) = z

)
and

Pπ
(
π(x′) = z

)
= PD(π)

(
D(π)(x′D) = z

)
. (32)

Finally, combining (31) and (32), we have

PD(π)
(
D(π)(xD) = z

)
≤ eεPD(π)

(
D(π)(x′D) = z

)
,

which completes the desired proof.
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Proposition C.5. Fix any policy π. If D(π) satisfies ε-table-DP, then π satisfies ε-DP.

Proof. Fix any z = (zi)
T+1
i=1 ∈ [K]T+1, and any pair of neighbouring x,x′ ∈ X . Again, for i ∈ [K]

and t ∈ [T ] we let

ni,t :=

T∑
t=1

1{zt=i}. (33)

Then, we construct xD,x′D ∈ X by defining for all t ∈ [T ]

xD
zt,t

:= xzt,nzt,t
and x′D

zt,t
:= x′

zt,nzt,t
, (34)

and for all (i, j) ∈ [K]× [T ] \ {(zt, t)
∣∣ t ∈ [T ]},

xD
i,j := 0 and x′D

i,j := 0.

Hence, the fact that x,x′ ∈ X are neighbouring, implies that either xD and x′D are column-
neighbouring or xD = x′D. That is, by the assumption that D(π) satisfies ε-table-DP, we have

PD(π)
(
D(π)(xD) = z

)
≤ eεPD(π)

(
D(π)(x′D) = z

)
. (35)

In addition, by (33) and (34) we obtain

Pπ
(
π(x) = z

)
= PD(π)

(
D(π)(xD) = z

)
and

Pπ
(
π(x′) = z

)
= PD(π)

(
D(π)(x′D) = z

)
. (36)

Finally, combining (35) and (36), we have

Pπ
(
π(x) = z

)
≤ eεPπ

(
π(x′) = z

)
,

which completes the proof.

Combining Propositions C.4 and C.5, we obtain the following corollary.
Corollary C.6. A policy π satisfies ε-DP if and only if D(π) satisfies ε-table-DP.

This proves the equivalence betweeen our notion of DP in Definition 2.1 and the notion of table-DP
appearing in the work of Azize and Basu (2023).

D EXTENSION OF OUR RESULTS TO (ε, δ)-DIFFERENTIAL PRIVACY

Below, we first define the (ε, δ)-differential privacy constraint formally.
Definition D.1 ((ε, δ)-differential privacy). Given any ε > 0 and δ > 0, a randomised policy
M : X → [K]T+1 satisfies (ε, δ)-differential privacy if, for any pair of neighbouring x,x′ ∈ X ,

PM(M(x) ∈ S) ≤ eε PM(M(x′) ∈ S) + δ ∀ S ⊂ [K]T+1.

The above definition particularises to that of ε-differential privacy when δ = 0. Therefore, it is clear
that any policy that satisfies the ε-DP constraint automatically satisfies (ε, δ)-DP constraint for all
δ > 0. In particular, our proposed DP-BAI policy satisfies the (ε, δ)-DP constraint for all δ > 0.

However, DP-BAI has been specifically designed for (ε, 0)-DP, and does not adjust the agent’s
strategy for varying values of δ. Therefore, exclusively for the (ε, δ)-differential privacy constraint
with δ > 0, we provide a variant of our proposed algorithm called DP-BAI-GAUSS that utilises the
Gaussian mechanism (Dwork et al., 2014) and operates with additive Gaussian noise (in contrast to
Laplacian noise under DP-BAI). The pseudo-code of DP-BAI-GAUSS is shown in Algorithm 2,
where the differences from DP-BAI are highlighted in red.
Proposition D.2. The DP-BAI-GAUSS policy with privacy and budget parameters (ε, δ, T ) satisfies
the (ε, δ)-DP constraint, i.e., for any pair of neighbouring x,x′ ∈ X and ∀S ⊆ [K]T+1,

PΠDP-BAI-GAUSS(ΠDP-BAI-GAUSS(x) ∈ S) ≤ eε PΠDP-BAI-GAUSS(ΠDP-BAI-GAUSS(x
′) ∈ S) + δ. (37)

14
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Algorithm 2 DP-BAI-GAUSS

Input:
ε, δ: differential privacy parameters; T : budget; {ai : i ∈ [K]}: d-dimensional feature vectors.

Output: ÎT : best arm.
1: Initialise T0 = 0, A1 = [K], a(0)i = ai for all i ∈ [K]. Set M and T ′ as in (8).
2: for p ∈ {1, 2, . . . ,M} do
3: Set dp = dim(span{a(p−1)

i : i ∈ Ap}).
4: Obtain the new vector set {a(p)i : i ∈ Ap} from the set {a(p−1)

i : i ∈ Ap} via (9).
5: Compute sp using (7).
6: if dp <

√
sp then

7: Construct a MAX-DET collection Bp ⊂ Ap.
8: Pull each arm in Bp for ⌈ T ′

Mdp
⌉ many times. Update Tp ← Tp−1 + dp⌈ T ′

Mdp
⌉.

9: Obtain the empirical means {µ̂i(p) : i ∈ Bp} via (10).

10: Generate ξ̃
(p)
i ∼ Gaussian

(
0, 2 log(1.25/δ)

(ε⌈ T ′
Mdp

⌉)2

)
for i ∈ Bp.

11: Set µ̃(p)
i ← µ̂

(p)
i + ξ̃

(p)
i for all i ∈ Bp.

12: For arm i ∈ Ap \ Bp, compute µ̃
(p)
i via (12).

13: else
14: Pull each arm in Ap for ⌈ T ′

Msp
⌉ many times. Update Tp ← Tp−1 + sp⌈ T ′

Msp
⌉

15: Obtain the empirical means {µ̂(p)
i : i ∈ Ap} via (10).

16: Generate ξ̃
(p)
i ∼ Gaussian

(
0, 2 log(1.25/δ)

(ε⌈ T ′
Msp

⌉)2

)
for i ∈ Ap.

17: Set µ̃(p)
i ← µ̂

(p)
i + ξ̃

(p)
i for all i ∈ Ap.

18: end if
19: Compute sp+1 using (7).
20: Ap+1 ← the set of sp+1 arms with largest private empirical means among {µ̃(p)

i : i ∈ Ap}.
21: end for
22: ÎT ← the only arm remaining in AM+1

23: return Best arm ÎT .

The proof of Proposition D.2 is deferred until Section I. Below, we present an upper bound on the
error probability of DP-BAI-GAUSS.
Proposition D.3. For any problem instance v ∈ P ,

PΠDP-BAI-GAUSS
v (ÎT ̸= i∗(v)) ≤ exp

−Ω
 T

HBAI log d
∧

 T√
log( 1.25δ ) Hpri log d

2

 ,

where HBAI and Hpri are as defined in (15).

The proof of Proposition D.3 follows along the lines of the proof of Theorem 4.2, by using sub-
Gaussian concentration bounds in place of sub-exponential concentration bounds. The proof is
deferred until Section J.
Remark 4. It is pertinent to highlight that the contribution of our algorithms do not lie in the
introduction of a novel privacy mechanism such as Laplace and Gaussian mechanisms. Instead,
we propose a new sampling strategy based on the MAX-DET principle for fixed budget BAI. This
strategy can be seamlessly integrated into any differential privacy mechanism, including the Laplace
and the Gaussian mechanisms.

Table 1 shows a comparison of the upper bounds for DP-BAI-GAUSS and DP-BAI (from Theo-
rem 4.2). Because DP-BAI is (ε, δ)-differentially private for all δ > 0 as alluded to earlier, the
preceding comparison is valid.

We observe that DP-BAI-GAUSS outperforms DP-BAI for large values of δ and T . In the small δ
regime, however, DP-BAI performs better than DP-BAI-GAUSS. In particular, when δ = 0, the
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Condition on T and δ DP-BAI-GAUSS DP-BAI(
T√

log( 5
4δ

)Hpri log d

)2

≥ T
HBAI log d

exp
(
−Ω

(
T

HBAI log d

))
✓ exp

(
−Ω

(
T

H log d

))
T

H log d
≤
(

T√
log( 5

4δ
)Hpri log d

)2

< T
HBAI log d

exp

(
−Ω

(
T√

log( 5
4δ

)Hpri log d

)2
)

✓ exp
(
−Ω

(
T

H log d

))
(

T√
log( 5

4δ
)Hpri log d

)2

< T
H log d

exp

(
−Ω

(
T√

log( 5
4δ

)Hpri log d

)2
)

exp
(
−Ω

(
T

H log d

))
✓

δ = 0, T > 0 exp(−Ω(1)) (vacuous) exp
(
−Ω

(
T

H log d

))
✓

Table 1: Comparison between the upper bounds of DP-BAI and DP-BAI-GAUSS. The ticks indicate
the tighter of the two bounds under the given condition.

additive noise in the Gaussian mechanism is infinite and thus vacuous. That is, DP-BAI-GAUSS is
not applicable when δ = 0. The above trends are not surprising, given that DP-BAI is designed for
δ = 0 and is hence expected to work well for small values of δ. Finally, in order to keep the analysis
simple and bring out the main ideas clearly, we hence only discuss ε-DP criterion in our main text,
and the discussion regarding of (ε, δ)-DP is presented in this section of the appendix.

E A DIFFERENTIALLY PRIVATE VERSION OF OD-LINBAI (YANG AND TAN,
2022) AND ITS ANALYSIS

E.1 DETAILS OF IMPLEMENTING DP-OD

To achieve ε-DP for DP-OD, a variant of OD-LINBAI (Yang and Tan, 2022), one of the natural
solutions is to use the idea of Shariff and Sheffet (2018), which is to add random noise in the ordinary
least square (OLS) estimator; we note that OD-LINBAI uses the OLS estimator as a subroutine,
similar to the algorithm of Shariff and Sheffet (2018). Specifically, given a dataset {(xi, yi)}ni=1,
one of the steps in the computation of the standard OLS estimator (Weisberg, 2005, Chapter 2) is to
evaluate the coefficient vector β̂ via

Gβ̂ = U ,

where G is the Gram matrix in the OLS estimator and U =
∑n

i=1 xiyi is the moment matrix.
While Shariff and Sheffet (2018) add random noise to both G and U , we do not add noise to G
as the feature vectors are determined and known to the decision maker in our setting. Instead, we
add independent Laplacian noise with parameter L

ε to each element of U of the OLS estimator,
with L = maxi∈[K]∥ai∥; we use Laplacian noise instead of Gaussian or Wishart noise, noting from
Shariff and Sheffet (2018, Section 4.2) and Sheffet (2015, Theorem 4.1) that the latter versions of
noise can potentially be infinite and hence not particularly suitable for satisfying the ε-DP constraint.
Using Shariff and Sheffet (2018, Claim 7), we may then prove that the above method satisfies the
ε-DP constraint.

E.2 A BRIEF ANALYSIS OF DP-OD

The error probability of identifying the best arm under DP-OD depends not only on the suboptimality
gaps of the arms, but also inherently a function of the arm vectors, as demonstrated below.

Proposition E.1. Let K = 2, a1 = [x, 0]⊤, a2 = [0, y]⊤ with x, y > 0, and θ∗ = [(0.5 +
∆)/x, 0.5/y]⊤ for some fixed ∆ > 0. The upper bound on the error probability of DP-OD for the
above bandit instance is

exp

(
−Ω

(
T

∆−2 + x∨y
x∧y (ϵ∆)−1

))
.

Proof. Note that there is only one round in DP-OD for the two-armed bandit instance. Let T1 and T2

be the number of arm pulls for arm 1 and arm 2, respectively. By the sampling strategy of DP-OD,
we have T1 = Θ(T ) and T2 = Θ(T ) (as T →∞). From the description in Section E.1, we note that
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the moment matrix is given by U =
∑T1

i=1 a1X1,i +
∑T2

i=1 a2X2,i. We denote Ũ to be the moment
matrix with Laplacian noise, i.e.,

Ũ = U+ [ξ̃1, ξ̃2]
⊤, (38)

where ξ̃1 and ξ̃2 are independent Laplacian noises with parameters L
ε and L = x ∨ y, respectively.

The estimates of the expected reward of arm 1 and arm 2 are

µ̃1 = ⟨G−1Ũ,a1⟩ (39)

and
µ̃2 = ⟨G−1Ũ,a2⟩, (40)

where the Gram matrix G = T1a1a
⊤
1 + T2a2a

⊤
2 . Then, the event {µ̃1 > µ̃2} implies that the

decision maker successfully identifies the best arm. In other words,

P(ÎT ̸= 1) ≤ P(µ̃1 ≤ µ̃2). (41)

By (39) and (40), we have

µ̃1 − µ̃2 =
1

T1

T1∑
i=1

X1,i −
1

T2

T2∑
i=1

X2,i +

(
ξ̃1
xT1
− ξ̃2

yT2

)
.

Hence,

P(µ̃1 − µ̃2 < 0) ≤ P
( T1∑

i=1

X1,i

T1
< µ1 −

∆

4

)
+ P

( T2∑
i=1

X2,i

T2
> µ2 +

∆

4

)

+ P
(

ξ̃1
xT1

< −∆

4

)
+ P

(
ξ̃2
yT2

>
∆

4

)
. (42)

By Lemma A.1, we have

P
( T1∑

i=1

X1,i

T1
< µ1 −

∆

4

)
≤ exp

(
− T1

8∆2

)
, (43)

and

P
( T2∑

i=1

X2,i

T2
> µ2 +

∆

4

)
≤ exp

(
− T2

8∆2

)
. (44)

For sufficiently large T1 and T2, by Lemma A.4, we have

P
(

ξ̃1
xT1

< −∆

4

)
≤ exp

(
− T1∆ε

8(x ∨ y)/x

)
, (45)

and

P
(

ξ̃2
yT2

>
∆

4

)
≤ exp

(
− T2∆ε

8(x ∨ y)/y

)
. (46)

Recall that T1 = Θ(T ) and T2 = Θ(T ) (as T → ∞), and by combining (42), (43), (44), (45)
and (46), we have

P(µ̃1 < µ̃2) ≤ exp

(
−Ω

(
T

∆−2 + x∨y
x∧y (ϵ∆)−1

))
.

Noting that x∨y
x∧y can be arbitrarily large, the above bound is inferior to the upper bound of DP-

BAI (equal to exp(−Ω( T
∆−2+(ϵ∆)−1 )) for the above bandit instance). Figure 2 shows the empirical

performances of DP-BAI and DP-OD by fixing x and varying y in this problem instance, where
∆ = 0.05, x = 1 is fixed, and y > 1 is allowed to vary, and the reward distribution is uniform
distribution in [0, 2µi] for arm i = 1, 2. The success rates are obtained by averaging across 1000
independent trials. We observe that when the ratio x∨y

x∧y increases, the performance of DP-OD
becomes worse. However, the performance of DP-BAI is essentially independent of this ratio
as the theory suggests. The numerical results presented in Section 5 of our paper as well as this
additional numerical study, showing the empirical performances of DP-BAI and DP-OD, reaffirm
the inferiority of DP-OD.
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Figure 2: Comparison of DP-BAI to DP-OD for different values of x∨y
x∧y in the two-armed bandit

instance introduced in Appendix E.2.

F PROOF OF PROPOSITION 4.1

Let N (p)
i := Ni,Tp

. Under the (random) process of DP-BAI, we introduce an auxiliary random
mechanism π̃ whose input is x ∈ X , and whose output is (N (P )

i , µ̃
(p)
i )i∈[K],p∈[M ], where we define

µ̃
(p)
i = 0 if i /∈ Ap. By Dwork et al. (2014, Proposition 2.1), to prove Proposition 4.1, it suffices to

show that π̃ is ε-differentially private, i.e., for all neighbouring x,x′ ∈ X ,

Pπ̃(π̃(x) ∈ S) ≤ eε Pπ̃(π̃(x′) ∈ S) ∀S ⊆ Ω̃, (47)

where Ω̃ is the set of all possible outputs of π̃. In the following, we write Pπ̃
x to denote the probability

measure induced under π̃ with input x ∈ X .

Fix neighbouring z, z′ ∈ X arbitrarily. There exists a unique pair (i, t) with zi,n ̸= z′i,n. In addition,

fix any n
(p)
i ∈ N and Borel set χ(p)

i ⊆ [0, 1] for i ∈ [K] and p ∈ [M ] such that

0 ≤ n
(1)
i ≤ n

(2)
i ≤ . . . ≤ n

(M)
i ≤ T ∀i ∈ [K].

Let

p =

{
M + 1, if n(M)

i < n

min{p ∈ [M ] : n
(p)
i ≥ n}, otherwise.

(48)

For any j ∈ [M ], we define the event

Dj = {∀(i, p) ∈ [K]× [j] : N
(p)
i = n

(p)
i , µ̃

(p)
i ∈ χ

(p)
i }

and
D′

j = Dj−1 ∩ {N (p)
j = n

(p)
j }.
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For j′ ∈ {j + 1, . . . ,M}

Dj,j′ = {∀(i, p) :∈ [K]× {j + 1, . . . , j′} : N
(p)
i = n

(p)
i , µ̃

(p)
i ∈ χ

(p)
i }

In particular, D0 and DM,M are events with probability 1, i.e.,

Pπ̃
x (D0 ∩DM,M ) = 1 ∀x ∈ X .

Then, if n(M)
i < n, by the definition of π̃ we can have

Pπ̃
z (DM ) = Pπ̃

z′ (DM ) . (49)

In the following, we assume n
(M)
i ≥ n and we will show

Pπ̃
z (DM ) ≤ exp(ε)Pπ̃

z′ (DM ) (50)

which then implies that π̃ is ε-differentially private.

For x ∈ {z, z′}, we denote

µx =
1

n
(p)

i − n
(p−1)

i

n
(p)

i∑
j=n

(p−1)

i +1

xi,j

That is, µx is the value of µ̂
(p)

i in the condition of D′
p under probability measure Pπ̃

x.

Then, by the chain rule we have for both x ∈ {z, z′}

Pπ̃
x (DM ) = Pπ̃

x

(
D′

p

)
Pπ̃
x

(
µ̃
(p)

i ∈ χ
(p)

i

∣∣D′
p

)
Pπ̃
x

(
Dp,M

∣∣Dp

)
= Pπ̃

x

(
D′

p

)∫
x∈χ

(p)

i

fLap(x− µx)Pπ̃
x

(
Dp,M

∣∣D′
p ∩ {µ̃

(p)

i = x}
)
dx (51)

where fLap(·) is the probability density function of Laplace distribution with parameter 1

ε(n
(p)

i −n
(p−1)

i )
.

Note that by definition it holds
Pπ̃
z

(
D′

p

)
= Pπ̃

z′

(
D′

p

)
Pπ̃
z

(
Dp,M

∣∣D′
p ∩ {µ̃

(p)

i = x}
)
= Pπ̃

z′

(
Dp,M

∣∣D′
p ∩ {µ̃

(p)

i = x}
)
∀x ∈ χ

(p)

i

fLap(x− µz) ≤ exp(ε)fLap(x− µz′) ∀x ∈ χ
(p)

i

(52)

Hence, combining (51) and (52), we have

Pπ̃
z (DM ) ≤ exp(ε)Pπ̃

z′ (DM )

which implies π̃ is ε-differentially private.

G PROOF OF THEOREM 4.2

Lemma G.1. Fix d′ ∈ N and a finite setA ⊂ Rd′
such that span(A) = Rd′

. Let B = {b1, . . . ,bd′}
be a MAX-DET collection of A. Fix an arbitrary z ∈ A, and let β1, . . . , βd′ ∈ R be the unique set of
coefficients such that

z =

d′∑
i=1

βibi.

Then, |βi| ≤ 1 for all i ∈ [d′].
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Proof. Fix z ∈ A.Let B = [b1 b2 . . . bd′ ] be the d′ × d′ matrix consisting of vectors in B. Let
β = [β1 β2 . . . βd′ ]

⊤ to be a vector consisting of the members β1, . . . , βd′ .

Then, by the definition of βi for i ∈ [d′], we have

Bβ = z.

In addition, let B(i) be the matrix that is identical to B except the i-th column is replaced by z, i.e.,
B(i) = [b1 . . . bi−1 z bi+1 . . . bd′ ], for i ∈ [d′]. Note that by the definition of MAX-DET
collection, we have

|det(B(i))| ≤ |det(B)|. (53)

By Cramer’s Rule (Meyer, 2000, Chapter 6), we have

βi =
det(B(i))

det(B)
. (54)

Finally, combining (53) and (54), we have for all i ∈ [d′]

|βi| ≤ 1

Lemma G.2. Fix an instance v ∈ P and p ∈ [M ]. Let i∗(v) denote the unique best arm under v.
For any set Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q, let dQ = dim(span{ai : i ∈ Q}). We have

PΠDP-BAI
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ 2 exp

(
−
∆2

j

16

⌈
T ′

M(d2Q ∧ sp)

⌉)
+ 2 exp

(
−ε∆j

16

⌈
T ′

M(d2Q ∧ sp)

⌉)
(55)

for all T ′ sufficiently large and j ∈ Q \ {i∗(v)}.

Proof. Fix j ∈ Q \ {i∗(v)}. Notice that the sampling strategy of ΠDP-BAI depends on the relation
between |Q| and dQ. We consider two cases.

Case 1: dQ >
√
|Q|.

In this case, note that each arm in Q is pulled
⌈

T ′

M |Q|

⌉
many times. Let

E1 := {µ̂(p)
j − µ̂

(p)
i∗(v) +∆j ≥ ∆j/2}. (56)

Let X̄i,s = Xi,s − µi for all i ∈ [K] and s ∈ [T ]. Notice that X̄i,s ∈ [−1, 1] for all (i, s). Then,

PΠDP-BAI
v (E1

∣∣Ap = Q)

≤ PΠDP-BAI
v

Nj,Tp+
⌈

T ′
M|Q|

⌉∑
s=Nj,Tp

X̄j,s −
Ni∗(v),Tp+

⌈
T ′

M|Q|

⌉∑
s=Ni∗(v),Tp

X̄i∗(v),s ≥
∆j

2

⌈
T ′

M |Q|

⌉ ∣∣∣∣Ap = Q


(a)

≤ exp

−2
(

1
2

⌈
T ′

M |Q|

⌉
∆j

)2
2
⌈

T ′

M |Q|

⌉


= exp

(
−1

4

⌈
T ′

M |Q|

⌉
∆2

j

)
, (57)

where (a) follows Lemma A.1. Furthermore, let

E2 := {ξ(p)j − ξ
(p)
i∗(v) ≥ ∆j/2}. (58)
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We note that both ξ
(p)
j and ξ

(p)
i∗(v) are (τ2, b) sub-exponential, where τ = b = 2

⌈ T ′
M|Q|⌉ε . Lemma A.3

then yields that ξ(p)j − ξ
(p)
i∗(v) is sub-exponential with parameters

((
2
√
2

⌈ T ′
M|Q|⌉ε

)2

, 2

⌈ T ′
M|Q|⌉ε

)
. Subse-

quently, Lemma A.4 yields that for all sufficiently large T ′,

PΠDP-BAI
v

(
E2

∣∣Ap = Q
)
≤ exp

− ∆j/2
4

⌈ T ′
M|Q|⌉ε


= exp

−
⌈

T ′

M |Q|

⌉
ε∆j

8

 . (59)

We therefore have

PΠDP-BAI
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ PΠDP-BAI
v

(
E1 ∪ E2

∣∣Ap = Q
)

(a)

≤ exp

(
−1

4

⌈
T ′

M |Q|

⌉
∆2

j

)
+ exp

(
−1

8

⌈
T ′

M |Q|

⌉
ε∆j

)
= exp

(
−1

4

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

j

)
+ exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆j

)
, (60)

where (a) follows from the union bound.

Case 2: dQ ≤
√
|Q|.

In this case, each arm in Bp ⊂ Q is pulled for
⌈

T ′

MdQ

⌉
times. Recall that we have a

(p)
j =∑

i∈Bp
αj,i a

(p)
i . Using (9), this implies aj =

∑
i∈Bp

αj,i ai, which in turn implies that ⟨aj , θ∗⟩ =∑
i∈Bp

αj,i ⟨ai, θ∗⟩. Using (12), we then have

EΠDP-BAI
v

(
µ̃
(p)
j

∣∣Ap = Q
)
= µj . (61)

If j /∈ Bp, we denote
µ̂
(p)
j =

∑
ι∈Bp

αj,ιµ̂
(p)
ι (62)

and
ξ̃
(p)
j =

∑
ι∈Bp

αj,ιξ̃
(p)
ι . (63)

Note that (62) and (63) still hold in the case of j ∈ Bp. We define the event

G1 =

{
µ̂
(p)
j − µj ≥

∆j

4

}
.

Then, we have

PΠDP-BAI
v

(
G1

∣∣Ap = Q
)

= PΠDP-BAI
v

(⌈
T ′

MdQ

⌉
(µ̂

(p)
j − µj) ≥

⌈
T ′

MdQ

⌉
∆j

4

∣∣∣∣Ap = Q
)

= PΠDP-BAI
v

∑
ι∈Bp

Nι,Tp−1
+
⌈

T ′
MdQ

⌉∑
s=Nι,Tp−1

+1

αj,ι(Xι,s − µι) ≥
⌈

T ′

MdQ

⌉
∆j

4

∣∣∣∣Ap = Q


(a)

≤ exp

−2(
⌈

T ′

MdQ

⌉
∆j/4)

2

dQ

⌈
T ′

MdQ

⌉

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≤ exp

(
−1

8

⌈
T ′

Md2Q
− 1

⌉
∆2

j

)

= exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
(64)

where (a) follows Lemma G.1 and Lemma A.1. In addition, we define the event

G2 =

{
ξ̃
(p)
j ≥ ∆j

4

}
.

By Lemma A.3 and Lemma G.1, we have ξ̃
(p)
j =

∑
ι∈Bp

αj,ιξ̃
(p)
ι is a sub-exponential random

variable with parameters (
∑

ι∈Bp
α2
j,ι(

2⌈
T ′

MdQ

⌉
ε
)2,maxι∈Bp |αj,ι| 2⌈

T ′
MdQ

⌉
ε
). Then, by Lemma A.4, it

holds that for T ′ sufficiently large

PΠDP-BAI
v

(
G2

∣∣Ap = Q
)
≤ exp

− ∆j/4
4maxι∈Bp |αj,ι|⌈

T ′
MdQ

⌉
ε


≤ exp

−
⌈

T ′

MdQ

⌉
ε∆j

16


≤ exp

−
⌈

T ′

M(d2
Q∧sp)

⌉
ε∆j

16

 . (65)

Define the events

G3 =

{
µ̂
(p)
i∗(v) − µi∗(v) ≤ −

∆j

4

}
and G4 =

{
ξ̃
(p)
i∗(v) ≤ −

∆j

4

}
.

Similar to (64) and (65), we have

PΠDP-BAI
v

(
G3

∣∣Ap = Q
)
≤ exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
(66)

and for sufficiently large T ′,

PΠDP-BAI
v

(
G4

∣∣Ap = Q
)
≤ exp

−
⌈

T ′

M(d2
Q∧sp)

⌉
ε∆j

16

 . (67)

Hence, in Case 2, for sufficiently large T ′ we have

PΠDP-BAI
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ PΠDP-BAI
v

(
G1 ∪G2 ∪G3 ∪G4

∣∣Ap = Q
)

≤ 2 exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
+ 2 exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆j

)
(68)

Finally, combining both Cases 1 and 2, for sufficiently large T ′, we have

PΠDP-BAI
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ 2 exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
+ 2 exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆j

)
.

≤ 2 exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

j

)
+ 2 exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆j

)
.

22



Published as a conference paper at ICLR 2024

Lemma G.3. Fix instance v ∈ P and p ∈ [M1]. Recall the definitions of λ in (4) and g0 in (8). For
any set Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q, it holds when T ′ is sufficiently large

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣Ap = Q
)

≤ 2λ

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(g0)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆(g0)ε

))
(69)

Proof. Fix v ∈ P , p ∈ [M1] and Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q. Let Qsub be the set of
sp − g0 + 1 arms in Q with largest suboptimal gap. In addition, let

N sub =
∑

j∈Qsub

1{µ̃(p)
j ≥µ̃

(p)

i∗(v)
}

be the number of arms in Qsub with private empirical mean larger than the best arm. Then, we have

EΠDP-BAI
v

(
N sub

∣∣Ap = Q
)

=
∑

j∈Qsub

EΠDP-BAI
v

(
1{µ̃(p)

j ≥µ̃
(p)

i∗(v)
}

∣∣Ap = Q
)

≤
∑

j∈Qsub

PΠDP-BAI
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

(a)

≤
∑

j∈Qsub

2

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

j

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆j

))
(b)

≤ 2|Qsub|
(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(g0)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(g0)

))

= 2(sp − g0 + 1)

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(g0)

)

+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(g0)

))
, (70)

where (a) follows Lemma G.2, and (b) follows from the fact that minj∈Qsub ∆j ≥ ∆(g0).

Then,

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣Ap = Q
)

(a)

≤ PΠDP-BAI
v

(
N sub ≥ sp+1 − g0 + 1

∣∣Ap = Q
)

(b)

≤ EΠDP-BAI
v

(
N sub

∣∣Ap = Q
)

sp+1 − g0 + 1

(c)

≤ 2(sp − g0 + 1)

sp+1 − g0 + 1

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(g0)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(g0)

))
(d)

≤ 2(hp + 1)

hp+1 + 1

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(g0)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(g0)

))
(e)

≤ 2λ

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(g0)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(g0)

))
where (a) follows from the fact that N sub ≥ sp+1− g0+1 is a necessary condition for i∗(v) /∈ Ap+1

when Ap = Q, (b) follows Markov’s inequality, (c) is obtained from (70). In addition, (d) is obtained
from the definition in (7), and (e) is obtained from the definition in (6).
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Lemma G.4. Fix instance v ∈ P and p ∈ {M1 + 1, . . . ,M}. For any set Q ⊂ [K] with |Q| = sp
and i∗(v) ∈ Q, it holds that when T ′ is sufficiently large

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣Ap = Q
)

≤ 6

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(sp+2+1)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(sp+2+1)

))
,

(71)

where we define sM+2 = 1.

Proof. Fix v ∈ P , p ∈ [M1] and Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q. Similarly, let Qsub be the
set of sp − sp+2 arms in Q with the largest suboptimality gaps. Again, let

N sub =
∑

j∈Qsub

1{µ̃(p)
j ≥µ̃

(p)

i∗(v)
}.

Then, we have
EΠDP-BAI
v

(
N sub

∣∣Ap = Q
)

=
∑

j∈Qsub

EΠDP-BAI
v

(
1{µ̃(p)

j ≥µ̃
(p)

i∗(v)
}

∣∣Ap = Q
)

≤
∑

j∈Qsub

PΠDP-BAI
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

(a)

≤
∑

j∈Qsub

2

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

j

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆j

))
(b)

≤ 2|Qsub|
(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(sp+2+1)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(sp+2+1)

))

= 2(sp − sp+2)

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(sp+2+1)

)

+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(sp+2+1)

))
, (72)

where (a) follows from Lemma G.2, and (b) follows from the fact that minj∈Qsub ∆j ≥ ∆sp+2+1.

Similarly, we can have

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣Ap = Q
)

(a)

≤ PΠDP-BAI
v

(
N sub ≥ sp+1 − sp+2 + 1

∣∣Ap = Q
)

(b)

≤ EΠDP-BAI
v

(
N sub

∣∣Ap = Q
)

sp+1 − sp+2 + 1

(c)

≤ 2(sp − sp+2)

sp+1 − sp+2 + 1

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(sp+2+1)

)

+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(sp+2+1)

))
(d)

≤ 6

(
exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

(sp+2+1)

)
+ exp

(
− 1

16

⌈
T ′

M(d2Q ∧ sp)

⌉
ε∆(sp+2+1)

))
,

where (a) follows from the fact that N sub ≥ sp+1 − sp+2 + 1 is the necessary condition of i∗(v) /∈
Ap+1 when Ap = Q, (b) follows from Markov’s inequality, (c) follows (72), and (d) is obtained
from the definition in (7).
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With the above ingredients in place, we are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Fix instance v ∈ P . Recall that in DP-BAI, the decision maker eliminates
arms in successive phases, and the decision maker can successfully identify the best arm if and only
if it is not eliminated in any of the phases. That is,

PΠDP-BAI
v

(
ÎT ̸= i∗(v)

)
≤

M∑
p=1

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣ i∗(v) ∈ Ap

)
. (73)

Then, we divide the rightmost sum of the probabilities into two parts. Let

P1 =

M1∑
p=1

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣ i∗(v) ∈ Ap

)
and

P2 =

M∑
p=M1+1

PΠDP-BAI
v

(
i∗(v) /∈ Ap+1

∣∣ i∗(v) ∈ Ap

)
.

In the case of K ≤
⌈
d2/4

⌉
, by definition we have M1 = 0, which implies that P1 = 0. In the case of

K >
⌈
d2/4

⌉
by Lemma G.3, we obtain

P1 ≤ 2M1λ

(
exp

(
− 1

16

⌈
T ′

Md2

⌉
∆2

(⌈d2/4⌉)

)
+ exp

(
− 1

16

⌈
T ′

Md2

⌉
ε∆(⌈d2/4⌉)

))
≤ 2M1λ

(
exp

(
− T ′

64MHBAI

)
+ exp

(
− T ′

64MHpri

))
≤ 4M1λ exp

(
− T ′

64MH

)
(74)

In addition, by Lemma G.4

P2 ≤
M∑

p=M1+1

6

(
exp

(
− 1

16

⌈
T ′

Msp

⌉
∆2

(sp+2+1)

)
+ exp

(
− 1

16

⌈
T ′

Msp

⌉
ε∆(sp+2+1)

))

≤
M∑

p=M1+1

6

(
exp

(
− T ′

16Msp
∆2

(sp+2+1)

)
+ exp

(
− T ′

16Msp
ε∆(sp+2+1)

))

≤
M∑

p=M1+1

6

(
exp

(
− T ′

16M(4sp+2 + 4)
∆2

(sp+2+1)

)
+ exp

(
− T ′

16M(4sp+2 + 4)
ε∆(sp+2+1)

))

=
∑

i∈{sp+2+1:p∈{M1+1,...,M}}

6

(
exp

(
− T ′

64Mi
∆2

(i)

)
+ exp

(
− T ′

64Mi
ε∆(i)

))

≤ 6(M −M1)

(
exp

(
− T ′

64MHBAI

)
+ exp

(
− T ′

64MHpri

))
≤ 12(M −M1) exp

(
− T ′

64MH

)
(75)

Finally, combining (74) and (75), for sufficiently large T ′ we have

PΠDP-BAI
v

(
ÎT ̸= i∗(v)

)
≤ P1 + P2

≤ (12M + 4M1λ) exp

(
− T ′

64MH

)
≤ exp

(
− T ′

65MH

)
. (76)
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H PROOF OF THEOREM 4.7

Let P ′ be the set of problem instances that meet the following properties: (a) the best arm is unique;
(b) the feature vectors {ai}Ki=1 ⊂ Rd are mutually orthogonal; (c) K = d > 3 and (d) ε < 1. Hence,
we have P ′ ⊆ P , and it suffices to consider the instances in P ′ to prove Theorem 4.7.

Note that log(d) > 1, HBAI > 1 and Hpri > 1 when v ∈ P ′. That is, for any v ∈ P ′, T > 0, c > 0,

and βi, βi
∈ [0, 1] with βi ≥ β

i
for i ∈ {1, 2, 3}, we have

exp

(
− T

c(log d)β1

(
(HBAI)

β
2 + (Hpri)

β
3

)) ≤ exp

(
− T

c(log d)β1

(
(HBAI)β2 + (Hpri)β3

)).
Hence, besides we consider the instances in P ′, it still suffices to show that (23) holds in the cases of
(i) β1 ∈ [0, 1), β2 = β3 = 1, (ii) β2 ∈ [0, 1), β1 = β3 = 1, and (iii) β3 ∈ [0, 1), β1 = β2 = 1. In the
following, we will show that cases (i) and (ii) can be satisfied by following the argument of Carpentier
and Locatelli (2016), while case (iii) is satisfied by the formula of change-of-measure introduced in
Subsection 4.3.

First, we present the proof of Lemma 4.3 in the following.

Proof of Lemma 4.3. Fix a problem instance v ∈ P , policy π, n ∈ N, and ι ∈ [K], and event
E = {ÎT ∈ A} ∩ {Nι,T < n} for arbitrary A ⊆ [K].

By the definition of early stopping policy, we have

Pπ
v ({Nι,T < n}) = PES(π,n,ι)

v ({Nι,T < n}) (77)

and
Pπ
v ({ÎT ∈ A}

∣∣ {Nι,T < n}) = PES(π,n,ι)
v ({ÎT ∈ A}

∣∣ {Nι,T < n}). (78)
By the chain rule, we have

Pπ
v (E) = Pπ

v ({Nι,T < n})Pπ
v ({ÎT ∈ A}

∣∣ {Nι,T < n}) (79)

and
PES(π,n,ι)
v (E) = PES(π,n,ι)

v ({Nι,T < n})PES(π,n,ι)
v ({ÎT ∈ A}

∣∣ {Nι,T < n}). (80)
That is,

Pπ
v (E) = PES(π,n,ι)

v (E). (81)

Lemma H.1 (Adapted from Carpentier and Locatelli (2016)). Fix K̃ > 0, H̃ > 0, and a non-private
consistent policy π. For all sufficiently large T , there exists an instance v ∈ P ′ with K ≥ K̃,
HBAI > H̃ such that,

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− 401T

log(K)HBAI(v)

)
. (82)

Note that (82) still holds even with DP constraint, and the privacy parameter ε will not affect HBAI.
Hence, we can have the following corollary.

Corollary H.2. Fix K̃ > 0, H̃ > 0, ε̃ > 0 and a consistent policy π. For all sufficiently large T ,
there exists an instance v ∈ P ′ with K ≥ K̃, HBAI > H̃ and ε = ε̃ such that,

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− 401T

log(K)HBAI(v)

)
. (83)

With the above Corollary, we are now ready to discuss Case (i) in Lemma H.3.
Lemma H.3. Fix any β ∈ [0, 1), a consistent policy π, and a constant c > 0. For all sufficiently
large T , there exists an instance v ∈ P ′ such that,

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(logK)β(HBAI(v) +Hpri(v))

)
. (84)
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Proof. Fix c > 0, β ∈ [0, 1). Let ṽ(K̃, H̃, ε̃, T ) to be the instance in Corollary H.1 that meets (83).
Then, when K̃ > exp

(
401

1
1−β (2c)

β
1−β

)
, we have

log(K̃)

401
> 2c(log(K̃))β . (85)

In addition, by the definition of Hpri we have

lim
ε̃→+∞

Hpri(ṽ(K̃, H̃, ε̃, T )) = 0, (86)

which implies that there exists ε′(K̃, H̃, T ) such that when ε̃ > ε′(K̃, H̃, T ),

Hpri(ṽ(K̃, H̃, ε̃, T )) < HBAI(ṽ(K̃, H̃, ε̃, T )), (87)

since HBAI would not be affected by the privacy parameter.

Finally, combining (83), (85) and (87), we have for all sufficiently large T

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(logK)β(HBAI(v) +Hpri(v))

)
, (88)

where v = ṽ(K̃, H̃, ε̃, T ), ε̃ > ε′(K̃, H̃, T ), and K̃ > exp
(
401

1
1−β (2c)

β
1−β

)
.

Similarly, we discuss Case (ii) in Lemma H.4.

Lemma H.4. Fix any β ∈ [0, 1), a consistent policy π, and a constant c > 0. For all sufficiently
large T , there exists an instance v ∈ P ′ such that,

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(logK)(HBAI(v)β +Hpri(v))

)
. (89)

Proof. Again, fix c > 0, β ∈ [0, 1). Recall that ṽ(K̃, H̃, ε̃, T ) is the instance in Corollary H.1 that
meets (83). Similarly, when H̃ > (802c)

1
1−β , we have

H̃

401
> 2c(H̃)β . (90)

In addition, we have
lim

ε̃→+∞
Hpri(ṽ(K̃, H̃, ε̃, T )) = 0, (91)

which implies that there exists ε′(K̃, H̃, T, β) such that when ε̃ > ε′(K̃, H̃, T, β),

Hpri(ṽ(K̃, H̃, ε̃, T )) < HBAI(ṽ(K̃, H̃, ε̃, T ))β . (92)

Finally, combining 83, (90) and (92), we have for all sufficiently large T

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(logK)(HBAI(v)β +Hpri(v))

)
, (93)

where v = ṽ(K̃, H̃, ε̃, T ), ε̃ > ε′(K̃, H̃, T, β), and H̃ > (802c)
1

1−β .

Furthermore, before we discuss (iii), we introduce the following lemma.

Lemma H.5. Fix H̃ > 0, β ∈ [0, 1), a consistent policy π, and K̃ > 3. For all sufficiently large T ,
there exists an instance v ∈ P ′ with K = K̃, Hpri ≥ H̃ and Hpri ≥ (HBAI)

1
β such that,

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− 97T

log(K)Hpri(v)

)
. (94)
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Proof. Fix H̃ > 0, a consistent policy π, and K̃ > 3. Fix γ1 ∈ (0, ( 1
K̃
)K̃+2), and let γi = γi−1K̃

for i = 2, . . . , K̃. We construct K̃ + 1 problem instances v(0), v(1), . . . , v(K̃) ∈ P ′ with K = K̃
arms as follows. For instance j = 0, . . . , K̃, the reward distribution of arm i ∈ [K̃] is

ν
(j)
i =

{
Ber( 12 − γi) if i ̸= j

Ber( 12 + γi) if i = j
, (95)

where Ber is denoted to be Bernoulli distribution. In addition, the privacy parameters of these K̃ + 1
instances are set to be the same, and it is denoted by ε̃. By the fact that Hpri(v

(j))→ +∞ as ε̃→ 0

for all j = 0, . . . , K̃. Then, we choose ε̃ to be any value such that for all j = 0, . . . , K̃

Hpri(v
(j)) ≥ H̃ and Hpri(v

(j)) ≥ (HBAI(v
(j)))

1
β . (96)

By the fact that π is a consistent policy, when T is sufficiently large, we have

Pπ
v(0)(ÎT = 1) >

1

2
. (97)

Furthermore, we denote ni = 4Eπ
v(0)(Ni,T ) to be the expected number of pulls for arm i ∈ [K̃] in

instance 0 with time budget T . Then, we define event Ei = {Ni,T < ni} ∩ {ÎT = 1}. It then holds
that

Pπ
v(0)(Ei) = 1− Pπ

v(0)(¬Ei)

(a)

≥ 1− Pπ
v(0)(Ni,T ≥ 4ni)− Pπ

v(0)(ÎT ̸= 1)

(b)

≥ 1− Pπ
v(0)(Ni,T ≥ 4ni)−

1

2
(c)

≥ 1− 1

4
− 1

2

=
1

4
, (98)

where (a) follows from the union bound, (b) follows (97), and (c) is obtained from Markov’s inequality.
Then, by Lemma 4.3, we have

PES(π,ni,i)

v(0) (Ei) = Pπ
v(0)(Ei) ≥

1

4
. (99)

In addition, by Lemma 4.5, we have for i = 1, . . . , K̃

PES(π,ni,i)

v(i) (Ei) ≥ exp
(
− 6εniTV(ν

(i)
i , ν

(0)
i )
)
PES(π,ni,i)

v(0) (Ei)

(a)

≥ 1

4
exp

(
− 6εniTV(ν

(i)
i , ν

(0)
i )
)

(b)

≥ 1

4
exp(−12εniγi), (100)

where (a) follows (99), and (b) is obtained by the definition in (95).

In other words, we have
Pπ
v(i)(ÎT ̸= i∗(v(i))) ≥ Pπ

v(i)(Ei)

(a)
= PES(π,ni,i)

v(i) (Ei)

(b)

≥ 1

4
exp(−12εniγi), (101)

where (a) follows Lemma 4.3, and (b) follows (100).

Observe that for any {xi}K̃−1
i=1 ⊂ R and {yi}K̃−1

i=1 ⊂ R+, it holds that mini∈[K̃−1]
xi

yi
≤

∑
i∈[K̃−1] xi∑
i∈[K̃−1] yi

.

Then, by letting xi = ni+1 and yi =
1

εγi+1Hpri(v(i+1))
, we conclude that there exists i′ ∈ {2, . . . , K̃}

such that

ni′εγi′Hpri(v
(i′)) ≤

( K̃∑
i=2

ni

)
/
( K̃∑

i=2

1

εγiHpri(v(i))

)

28



Published as a conference paper at ICLR 2024

(a)

≤ 4T/
( K̃∑

i=2

1

εγiHpri(v(i))

)
(b)

≤ 4T/
( K̃∑

i=2

1

i

)
(c)

≤ 4T

log(K̃)− log(2)

(d)

≤ 8T

log(K̃)
(102)

where (a) follows from the fact that
∑K̃

i=2 Ev(0)(Ni,T ) ≤ T , and (b) is obtained from Hpri(v
(i)) ≤

i
εγi

, (c) follows from the fact that log(K̃) − log(2) =
∫ K̃

2
1
x dx <

∑K̃
i=2

1
i , and (d) is obtained by

the assumption that K̃ > 3.

Combining (101) and (102), we have

Pπ
v(i′)(ÎT ̸= i∗(v(i

′))) ≥ 1

4
exp(−12εni′γi′)

=
1

4
exp

(
− 12

Hpri(v(i
′))

εni′γiHpri(v
(i′))

)
≥ 1

4
exp

(
− 96T

log(K̃)Hpri(v(i
′))

)
. (103)

That is, when T is sufficiently large, we have

Pπ
v(i′)(ÎT ̸= i∗(v(i

′))) ≥ exp

(
− 97T

log(K̃)Hpri(v(i
′))

)
.

With Lemma H.5, we are now ready to show that Theorem 4.7 holds in Case (iii) in the following
lemma.

Lemma H.6. Fix any β ∈ [0, 1), a consistent policy π, and a constant c > 0. For all sufficiently
large T , there exists an instance v ∈ P ′ such that,

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(logK)(HBAI(v) +Hpri(v)β)

)
. (104)

Proof. Fix c > 0, β ∈ [0, 1). Similarly, let ṽ(K̃, H̃, β, T ) be the instance specified in Lemma H.5
that meets (94). Then, when H̃ > (194c)

1
1−β , we have

H̃

97
> 2c(H̃)β . (105)

Finally, combining (94), (96) and (105), we have for all sufficiently large T

Pπ
v

(
ÎT ̸= i∗(v)

)
> exp

(
− T

c(logK)(HBAI(v) +Hpri(v)β)

)
, (106)

where v = ṽ(K̃, H̃, β, T ), and H̃ > (194c)
1

1−β .

Proof of Theorem 4.7. Finally, by combining Lemmas H.3, H.4 and H.6, we see that Theorem 4.7
holds.
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I PROOF OF PROPOSITION D.2

The proof of Proposition D.2 shares some similarities as the proof of Proposition 4.1, and the
difference is using the property of Gaussian mechanism instead of Laplacian mechanism.

Let N (p)
i := Ni,Tp . Under the (random) process of DP-BAI-GAUSS, we introduce an auxiliary

random mechanism π̃ whose input is x ∈ X , and whose output is (N (P )
i , µ̃

(p)
i )i∈[K],p∈[M ], where

we define µ̃
(p)
i = 0 if i /∈ Ap. By Dwork et al. (2014, Proposition 2.1), to prove Proposition D.2, it

suffices to show that π̃ is (ε, δ)-differentially private, i.e., for all neighbouring x,x′ ∈ X ,

Pπ̃(π̃(x) ∈ S) ≤ eε Pπ̃(π̃(x′) ∈ S) + δ ∀S ⊆ Ω̃, (107)

where Ω̃ is the set of all possible outputs of π̃. In the following, we write Pπ̃
x to denote the probability

measure induced under π̃ with input x ∈ X .

Fix neighbouring z, z′ ∈ X arbitrarily. There exists a unique pair (i, n) with zi,n ̸= z′i,n. In addition,

fix any n
(p)
i ∈ N and Borel set χ(p)

i ⊆ [0, 1] for i ∈ [K] and p ∈ [M ] such that

0 ≤ n
(1)
i ≤ n

(2)
i ≤ . . . ≤ n

(M)
i ≤ T ∀i ∈ [K].

Let

p =

{
M + 1, if n(M)

i < n

min{p ∈ [M ] : n
(p)
i ≥ n}, otherwise.

(108)

For any j ∈ [M ], we define the event

Dj = {(i, p) ∈ [K]× [j] : N
(p)
i = n

(p)
i , µ̃

(p)
i ∈ χ

(p)
i }

and
D′

j = Dj−1 ∩ {N (j)
i = n

(j)
i } ∩ {i ∈ [K] \ {i} : N

(j)
i = n

(j)
i , µ̃

(j)
i ∈ χ

(j)
i }.

For j′ ∈ {j + 1, . . . ,M}

Dj,j′ = {(i, p) ∈ [K]× {j + 1, . . . , j′} : N
(p)
i = n

(p)
i , µ̃

(p)
i ∈ χ

(p)
i }

In particular, D0 and DM,M are events with probability 1, i.e.,

Pπ̃
x (D0 ∩DM,M ) = 1 ∀x ∈ X .

Then, if n(M)
i < n, by the definition of π̃, we have

Pπ̃
z (DM ) = Pπ̃

z′ (DM ) . (109)

In the following, we assume n
(M)
i ≥ n and we will show

Pπ̃
z (DM ) ≤ exp(ε)Pπ̃

z′ (DM ) (110)

which then implies that π̃ is ε-differentially private.

For x ∈ {z, z′}, we denote

µx =
1

n
(p)

i − n
(p−1)

i

n
(p)

i∑
j=n

(p−1)

i +1

xi,j

That is, µx is the value of µ̂
(p)

i in the condition of D′
p under probability measure Pπ̃

x.

Then, by the chain rule we have for both x ∈ {z, z′}

Pπ̃
x (DM ) = Pπ̃

x

(
D′

p

)
Pπ̃
x

(
µ̃
(p)

i ∈ χ
(p)

i

∣∣D′
p

)
Pπ̃
x

(
Dp,M

∣∣Dp

)
= Pπ̃

x

(
D′

p

)∫
x∈χ

(p)

i

fGauss(x− µx)Pπ̃
x

(
Dp,M

∣∣D′
p ∩ {µ̃

(p)

i = x}
)
dx (111)
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where fGauss(·) is the probability density function of Gaussian distribution with zero mean and
variance 2 log(1.25/δ)

(ε(n
(p)

i −n
(p−1)

i ))2
. Note that by definition it holdsPπ̃

z

(
D′

p

)
= Pπ̃

z′

(
D′

p

)
Pπ̃
z

(
Dp,M

∣∣D′
p ∩ {µ̃

(p)

i = x}
)
= Pπ̃

z′

(
Dp,M

∣∣D′
p ∩ {µ̃

(p)

i = x}
)
≤ 1 ∀x ∈ χ

(p)

i

(112)

By a property of Gaussian mechanism (Dwork et al., 2014, Appendix A), there exists sets γ+, γ− ⊆
χ
(p)

i with γ+ ∩ γ− = ∅ and γ+ ∪ γ− = χ
(p)

i , such that{∫
x∈γ− fGauss(x− µx) dx ≤ δ

2 ∀x ∈ {z, z′}∫
x∈γ+ fGauss(x− µz) dx ≤ exp(ε)

∫
x∈γ+ fGauss(x− µz′) dx

(113)

Hence, combining (111), (112) and (113), we have

Pπ̃
z (DM ) ≤ exp(ε)Pπ̃

z′ (DM ) + δ

which implies that π̃ is (ε, δ)-differentially private.

J PROOF OF PROPOSITION D.3

The proof of Proposition D.3 shares some similarities as the proof of Theorem 4.2, and the difference
is using the concentration bound of Gaussian random variables instead of Sub-Exponential random
variables.
Lemma J.1. Fix an instance v ∈ P and p ∈ [M ]. For any setQ ⊂ [K] with |Q| = sp and i∗(v) ∈ Q,
let dQ = dim(span{ai : i ∈ Q}). We have

PΠDP-BAI-GAUSS
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ 2 exp

(
−
∆2

j

16

⌈
T ′

M(d2Q ∧ sp)

⌉)
+ 2 exp

− ε2∆2
j

32 log(1.25/δ)

⌈
T ′

M(d2Q ∧ sp)

⌉2
 (114)

for all j ∈ Q \ {i∗(v)}.

Proof. Fix j ∈ Q \ {i∗(v)}. Notice that the sampling strategy of ΠDP-BAI-GAUSS depends on the
relation between |Q| and dQ. We consider two cases.

Case 1: dQ >
√
|Q|.

In this case, note that each arm in Q is pulled
⌈

T ′

M |Q|

⌉
times. Let

E1 := {µ̂(p)
j − µ̂

(p)
i∗(v) +∆j ≥ ∆j/2}. (115)

Let X̄i,s = Xi,s − µi for all i ∈ [K] and s ∈ [T ]. Notice that X̄i,s ∈ [−1, 1] for all (i, s). Then,

PΠDP-BAI-GAUSS
v (E1

∣∣Ap = Q)

≤ PΠDP-BAI-GAUSS
v

Nj,Tp+
⌈

T ′
M|Q|

⌉∑
s=Nj,Tp

X̄j,s −
Ni∗(v),Tp+

⌈
T ′

M|Q|

⌉∑
s=Ni∗(v),Tp

X̄i∗(v),s ≥
∆j

2

⌈
T ′

M |Q|

⌉ ∣∣∣∣Ap = Q


(a)

≤ exp

−2
(

1
2

⌈
T ′

M |Q|

⌉
∆j

)2
2
⌈

T ′

M |Q|

⌉


= exp

(
−1

4

⌈
T ′

M |Q|

⌉
∆2

j

)
, (116)
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where (a) follows from Lemma A.1. Furthermore, let

E2 := {ξ(p)j − ξ
(p)
i∗(v) ≥ ∆j/2}. (117)

We note that both ξ
(p)
j and ξ

(p)
i∗(v) under DP-BAI-GAUSS are Gaussian random variables with zero

mean and variance 2 log(1.25/δ)

(ε⌈ T ′
M|Q| ⌉)2

. Hence, ξ(p)j − ξ
(p)
i∗(v) is a Gaussian random variable with zero mean

and variance 4 log(1.25/δ)

(ε⌈ T ′
M|Q| ⌉)2

Subsequently,

PΠDP-BAI-GAUSS
v

(
E2

∣∣Ap = Q
)
≤ exp

(
−
(∆jε⌈ T ′

M |Q|⌉)2

32 log(1.25/δ)

)
We therefore have

PΠDP-BAI-GAUSS
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ PΠDP-BAI-GAUSS
v

(
E1 ∪ E2

∣∣Ap = Q
)

(a)

≤ exp

(
−1

4

⌈
T ′

M(d2Q ∧ sp)

⌉
∆2

j

)
+ exp

(
−
(∆jε⌈ T ′

M |Q|⌉)2

32 log(1.25/δ)

)
, (118)

where (a) follows from the union bound.

Case 2: dQ ≤
√
|Q|.

Similarly, in this case, each arm in Bp ⊂ Q is pulled for
⌈

T ′

MdQ

⌉
times. Recall that we have

a
(p)
j =

∑
i∈Bp

αj,i a
(p)
i . Using (9), this implies aj =

∑
i∈Bp

αj,i ai, which in turn implies that
⟨aj , θ∗⟩ =

∑
i∈Bp

αj,i ⟨ai, θ∗⟩. Using (12), we then have

EΠDP-BAI-GAUSS
v

(
µ̃
(p)
j

∣∣Ap = Q
)
= µj . (119)

If j /∈ Bp, we denote
µ̂
(p)
j =

∑
ι∈Bp

αj,ιµ̂
(p)
ι (120)

and
ξ̃
(p)
j =

∑
ι∈Bp

αj,ιξ̃
(p)
ι . (121)

Note that (120) and (121) still hold in the case of j ∈ Bp. We define the event

G1 =

{
µ̂
(p)
j − µj ≥

∆j

4

}
.

Then, we have

PΠDP-BAI-GAUSS
v

(
G1

∣∣Ap = Q
)

= PΠDP-BAI-GAUSS
v

(⌈
T ′

MdQ

⌉
(µ̂

(p)
j − µj) ≥

⌈
T ′

MdQ

⌉
∆j

4

∣∣∣∣Ap = Q
)

= PΠDP-BAI-GAUSS
v

∑
ι∈Bp

Nι,Tp−1
+
⌈

T ′
MdQ

⌉∑
s=Nι,Tp−1

+1

αj,ι(Xι,s − µι) ≥
⌈

T ′

MdQ

⌉
∆j

4

∣∣∣∣Ap = Q


(a)

≤ exp

−2(
⌈

T ′

MdQ

⌉
∆j/4)

2

dQ

⌈
T ′

MdQ

⌉

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≤ exp

(
−1

8

⌈
T ′

Md2Q
− 1

⌉
∆2

j

)

= exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
(122)

where (a) follows Lemma G.1 and Lemma A.1. In addition, we define the event

G2 =

{
ξ̃
(p)
j ≥ ∆j

4

}
.

By the fact that ξ̃(p)ι is a Gaussian random variable with zero mean and variance 2 log(1.25/δ)

(ε⌈ T ′
MdQ

⌉)2
,

we have ξ̃
(p)
j =

∑
ι∈Bp

αj,ιξ̃
(p)
ι is a Gaussian random variable with zero mean and variance∑

ι∈Bp
α2
j,ι

2 log(1.25/δ)

(ε⌈ T ′
MdQ

⌉)2
). Note that

∑
ι∈Bp

α2
j,ι ≤ dQ, then we can have

PΠDP-BAI-GAUSS
v

(
G2

∣∣Ap = Q
)
≤ exp

(
−

(∆jε⌈ T ′

MdQ
⌉)2

32dQ log(1.25/δ)

)

≤ exp

− (∆jε⌈ T ′

Md2
Q
⌉)2

32 log(1.25/δ)

 (123)

Define the events

G3 =

{
µ̂
(p)
i∗(v) − µi∗(v) ≤ −

∆j

4

}
and G4 =

{
ξ̃
(p)
i∗(v) ≤ −

∆j

4

}
.

Similar to (122) and (123), we have

PΠDP-BAI-GAUSS
v

(
G3

∣∣Ap = Q
)
≤ exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
and

PΠDP-BAI-GAUSS
v

(
G4

∣∣Ap = Q
)
≤ exp

 (∆jε⌈ T ′

Md2
Q
⌉)2

32 log(1.25/δ)

 .

Hence, in Case 2,we have

PΠDP-BAI-GAUSS
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ PΠDP-BAI-GAUSS
v

(
G1 ∪G2 ∪G3 ∪G4

∣∣Ap = Q
)

≤ 2 exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
+ 2 exp

 (∆jε⌈ T ′

Md2
Q
⌉)2

32 log(1.25/δ)


Finally, combining both Cases 1 and 2, for sufficiently large T ′, we have

PΠDP-BAI-GAUSS
v

(
µ̃
(p)
j ≥ µ̃

(p)
i∗(v)

∣∣Ap = Q
)

≤ 2 exp

(
−1

8

⌈
T ′

M(d2Q ∧ sp)
− 1

⌉
∆2

j

)
+ 2 exp

− (∆jε⌈ T ′

M(d2
Q∧sp)

⌉)2
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Lemma J.2. Fix instance v ∈ P and p ∈ [M1]. Recall the definitions of λ in (4) and g0 in (8). For
any set Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q, it holds
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Proof. Fix v ∈ P , p ∈ [M1] and Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q. Let Qsub be the set of
sp − g0 + 1 arms in Q with largest suboptimal gap. In addition, let

N sub =
∑

j∈Qsub

1{µ̃(p)
j ≥µ̃

(p)

i∗(v)
}

be the number of arms in Qsub with private empirical mean larger than the best arm. Then, we have
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), (124)

where (a) follows Lemma J.1, and (b) follows from the fact that minj∈Qsub ∆j ≥ ∆(g0).

Then,
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where (a) follows from the fact that N sub ≥ sp+1−g0+1 is a necessary condition for i∗(v) /∈ Ap+1

when Ap = Q, (b) follows from Markov’s inequality, and (c) follows from (124). In addition, (d) is
obtained from the definition in (7), and (e) is obtained from the definition in (6).

Lemma J.3. Fix instance v ∈ P and p ∈ {M1 + 1, . . . ,M}. For any set Q ⊂ [K] with |Q| = sp
and i∗(v) ∈ Q, it holds
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(125)

where we define sM+2 = 1.

Proof. Fix v ∈ P , p ∈ [M1] and Q ⊂ [K] with |Q| = sp and i∗(v) ∈ Q. Similarly, let Qsub be the
set of sp − sp+2 arms in Q with the largest suboptimality gaps. Again, let

N sub =
∑
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Then, we have
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), (126)

where (a) follows from Lemma J.1, and (b) follows from the fact that minj∈Qsub ∆j ≥ ∆sp+2+1.

By a similar calculation,
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(d)
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where (a) follows from the fact that N sub ≥ sp+1 − sp+2 + 1 is the necessary condition of i∗(v) /∈
Ap+1 when Ap = Q, (b) follows from Markov’s inequality, (c) follows from (126), and (d) is
obtained from the definition in (7).

With the above ingredients in place, we are now ready to prove Proposition D.3.

Proof of Proposition D.3. Fix instance v ∈ P . Recall that in DP-BAI-GAUSS, the decision maker
eliminates arms in successive phases, and the decision maker can successfully identify the best arm if
and only if it is not eliminated in any of the phases. That is,
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In addition, by Lemma J.3
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Finally, combining (127) and (128), for sufficiently large T ′ we have
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This completes the proof.
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