APPENDIX: TRAINING DETAILS AND REPRODUCIBILITY

A.1 REPRODUCIBILITY

Anonymized code and demo datasets will be available on our webpage (https://
anonymousl1415510-spec.github.io). We provide details about comparison with other
algorithms to facilitate the reproducing of our results. All details about the hyperparameters, envi-
ronment specifications, and real-world experiment setup are provided in the appendix or the website.

A.2 MODEL ARCHITECTURE AND RENDERER DETAILS

We adopt the AVRMode 1l _complex FD_FregDep_PhaseCorrection model architecture with
the AVRRenderFD FregDep_PhaseCorrection_KK renderer. This setup is designed for
complex-valued frequency domain rendering and enables physically grounded learning with explicit
modeling of attenuation and phase velocity.

Key architectural components:

* Complex Frequency Field Prediction: The model learns frequency-dependent attenua-
tion fields 0(f) = o(f) + jB(f) and complex responses H (f) using MLPs operating on
hash-encoded spatial coordinates.

* Separate Signal and Attenuation Networks: Frequency-specific signal and attenuation
values are predicted using distinct encoders and MLPs.

* Directional Encodings: Transmitter and receiver directions are encoded using spherical
harmonics.

* Renderer Pipeline: Rays are sampled in spherical directions with integration over 64 az-
imuth x 32 elevation rays, each with 64 samples from near=0 to far=4 meters. Cumulative
attenuation is applied using exp(— Y 0;Au; + 7 BiAwy).

Parameter Value

Learning Rate 5 x 10™* (cosine annealing to 5 x 107°)
Optimizer Adam

Total Iterations 15,000

Batch Size 1

Rendering Samples 64 per ray

Azimuth x Elevation Rays 64 x 32

Speed of Sound 343.8 m/s

Sampling Frequency 48,000 Hz

Path Loss Exponent 1

Layers 8 fully connected layers

Hidden Units 256 neurons per layer

Activation ReLU

Positional Encoding 10 frequencies for spatial and directional input

Table 1: Training hyperparameters and network architecture for INFER.

A.3 Loss FUNCTIONS AND WEIGHTS

The total training objective is composed of multiple terms designed to supervise the model’s output
across spectral amplitude, phase, energy structure, and physical consistency. The overall loss is
expressed as:

Ltotal = /\specLspec +)\mangag +)\phaseLphase + AenvLenv + /\energyLenergy +)\KKLKK + /\STFTLMR-STFT-

(1)
In our experiments, we set Agpec = 16, Amag = 4, Aphase = 1, Aeny = 0.25, Aepergy = 2, Axkx = 0.25,
and Aster = 0.25. Beyond these global weights, we apply frequency-dependent weighting: for

https://anonymous1415510-spec.github.io
https://anonymous1415510-spec.github.io

Lphase We emphasize low and mid frequencies by setting w(f) = 1.2 up to 1.5kHz (125 bins),
w(f) = 1 until 5kHz (425 bins), and then smoothly tapering to 0.8 across the log-frequency axis;
for Lumag, weights are 1 up to 1.5 kHz, 1.25 until 5kHz, and then tapered to 0.8; and for Lgpec, we
assign 1.25 up to 5 kHz before tapering. These schedules follow psychoacoustic informed weighting
strategies, prioritizing perceptually critical bands while deemphasizing unreliable high-frequency
bins.

A.4 TRAINING PIPELINE

We use the script avr_runner_complex_FD_kk.py for training. Each step involves:

1. Ray-based spherical integration using normalized receiver and transmitter coordinates.
2. Prediction of complex signals and attenuation fields.

3. Loss computation including frequency-weighted spectrum and KK regularization.

4. Gradient backpropagation with NaN filtering and norm clipping.
5

. Mixed precision training and GPU memory optimization.

Special Considerations:

* Gradient clipping to max norm 1.
* Automatic mixed precision (AMP) to save memory.
» Complex loss handling via separate R[H (f)] and S[H (f)] paths.

* KK regularizer computed using discrete Hilbert transform with frequency masking and
tapering.

A.5 REPRODUCIBILITY CHECKLIST
Software Environment:

e Python 3.8,PyTorch 1.12.0,CUDA 11.6

* tinycudann 1.6,auraloss 0.4.0,tensorboard 2.8.0

Training Script (Single GPU):

python avr_runner_complex_FD_kk.py \
-—-config config_files/avr_buck_complex_dir FD.yml \
—--model_type AVRModel_ complex_FD_FregDep_PhaseCorrection \
-—-renderer_type AVRRenderFD_FregDep_PhaseCorrection_KK \
——-batchsize 1 \
-—-dataset_dir /path/to/dataset

A.6 HARDWARE REQUIREMENTS
Minimum:

¢ GPU: NVIDIA RTXA6000 (10GB+ VRAM)
Recommended:

* GPU: L40S

Training time is approximately 24 hours on a single L40S.

A.7 EVALUATION METRICS
» Spectral Distance (SD): 20 log, o (||[H ()| — [H(£)lI/IIIH(f)]]I)
« Phase Error (PRE): |ZH (f) — ZH(f)|2/7

* Energy Ratio, Cumulative Energy Error in frequency domain
¢ Time-Domain Metrics: PSNR, MR-STFT loss
* KK Violation Metric: |3(f) — H[o(f)][I/18(f)]]

A.8 AUDIO HARDWARE SPECIFICATION

We detail here the acoustic transducer setup used for our data collection in the BUCK testbed and
the production Tesla Model X vehicle. Both systems were equipped with a rich spatial arrange-
ment of loudspeakers and a high-fidelity microphone array to facilitate spatial audio capture and
reconstruction.

Speaker Configuration. While the Tesla Model X uses the default speakers, In BUCK, the active
speakers used for sound excitation include:

* Center Dash Speaker: A 3.5-inch wideband driver, such as the SLA Ram3 or Dayton
Audio DMA90-4, capable of full-range output from 85.00 Hz to 20.00 kHz. In typical
configurations, these are high-passed at approximately 100.00 Hz to avoid low-frequency
distortion.

* Rear Door Speakers: Morel Tempo Ultra Integra 402 or 602 coaxial hybrids with
wideband support (55.00 Hz to 22.00kHz), high sensitivity, and power handling up to
120.00 WRMS. These speakers internally crossover between woofer and tweeter around
2.50 kHz-3.00 kHz.

* Rear Height Speakers: Tang Band T2-2136SF full-range modules and Morel CCWR254
midrange drivers, mounted in ceiling/rear hatch positions to introduce vertical spatial
content, spanning 80.00 Hz to 20.00 kHz. Crossover filters are typically applied around
800.00 Hz-1.00 kHz depending on system design and companion driver.

This layout approximates a 7.1.4 immersive audio setup and enables extensive sampling of rever-
berant and directional field responses across both testbeds.

Microphone Array. We use the commercially available MiniDSP UMA-16 USB microphone
array, which offers 16 omnidirectional MEMS microphones in a linear array form factor. This
array supports high-resolution spatial sampling across the cabin, enabling dense reconstruction of
directional impulse responses.

A.9 BASELINE METHODS

To rigorously evaluate the effectiveness of our proposed system INFER, we compare against three
representative baselines, each reflecting a different class of acoustic modeling approach:

* AVR: A hybrid time—frequency domain neural field that learns time-domain impulse re-
sponses via a differentiable renderer. While AVR applies frequency-domain path delays
in its rendering, the model is supervised in the time domain and does not explicitly learn
frequency-dependent attenuation or dispersion.

* NAF (Neural Acoustic Field): A neural field trained directly in the time domain using
MSE and time-domain perceptual losses. NAF ignores frequency-domain supervision and
is evaluated primarily on time-domain waveform fidelity.

¢ INRAS (Impulse Response as Signal): A signal regression approach where the model
directly regresses to the complex impulse response waveform as a 1D signal. INRAS uses
STFT-based perceptual loss, but it does not exploit any spatial priors or directional condi-
tioning.

Each baseline is re-implemented in our codebase with their respective loss functions and evaluation
metrics faithfully reproduced, using the same training datasets, preprocessing pipelines, and neural
architecture backbones where applicable.

A.10 TRAINING CONFIGURATION

All baselines are trained with identical configurations to ensure fair comparisons:
* Dataset: We use the same training/validation/test splits from our real (BUCK) and syn-
thetic (Tesla) datasets for all methods.

* Resolution: The frequency bins, spatial sampling resolution, and directional integration
are matched across all methods.

* Training Epochs: All models are trained for 500 epochs with early stopping based on
validation loss.

» Batch Size: Batch size of 1 is used due to GPU memory constraints, consistent with prior
volumetric rendering works.

* Evaluation: All comparisons are evaluated on both magnitude and phase accuracy across
the frequency range of interest, in addition to perceptual STFT loss and energy-based met-
rics.

A.11 Loss FUNCTION IMPLEMENTATION

AVR. We follow the original AVR formulation and use the same set of losses described in the
paper.

NAF. The NAF baseline is trained using the standard losses introduced in its original work, without
any additional frequency-domain regularization.

INRAS. For INRAS, we adopt the exact losses specified in the original paper, without modifica-
tion.

A.12 ARCHITECTURAL MODIFICATIONS

To isolate the effects of spectral supervision and renderer formulation, all baseline models are built
upon the same backbone MLP architecture as our method:

* 8-layer fully connected network with sinusoidal positional encoding.
* Input: (pix, Nk, X, N) with appropriate frequency and spatial encodings.

* Qutput: Real-valued waveform or complex spectrum depending on method.

A.13 EVALUATION METRICS

‘We evaluate all baselines and our method using the following metrics:
e Amplitude Error: L1 distance between predicted and ground-truth magnitude spectra
across frequency.
* Phase Error: Cosine-sine angular difference between predicted and true phase.
* Envelope Error: Smoothed log-magnitude deviation (via exponential smoothing).

* MR-STFT Loss: Multi-resolution STFT loss to evaluate perceptual reconstruction in time
domain.

* Energy Accuracy: Deviation from cumulative spectral energy profiles.

A.14 NOTES ON FAIRNESS AND ROBUSTNESS

To ensure fairness in evaluation:

* All models are trained with the same GPU hardware, random seed initialization, and Py-
Torch version.

* We use the same optimizer (Adam) and learning rate schedule across all models unless
otherwise noted.

* All baselines are evaluated using our standardized renderer and metric pipeline to eliminate
post-processing inconsistencies.

* We tune loss weights and learning rates for each baseline to ensure their best performance
under our training conditions.

Overall, our comparison demonstrates that INFER substantially outperforms these baselines across
spectral and perceptual metrics due to its physics-informed supervision and frequency-aware mod-
eling.

