
A Algorithm

Algorithm 1: Main learning algorithm
input: batch size N, constants (⌧, ns, is_noise, noise type), structure of encoder (e), decoder (d);
initialization;
for sampled minibatch {X} do

Divide minibatch X to K subsets {x1,x2,x3, ...,xK} ;
if Add noise then

Add noise to each subset in {x1,x2,x3, ...,xK}. ;
end
for Each subset xs in {x1,x2,x3, ...,xK} do

Forward pass on encoder
hs = e(xs) ;
Forward pass on projection
zs = g(hs) ;
Forward pass on decoder
X̃s = d(hs) ;
Collect hs, zs, X̃s

end
We have collected {h1,h2,h3, ...}, {z1, z2, z3, ...} and {X̃1, X̃2, X̃3, ...}
Compute reconstruction loss

Loss = 1
K

PK
k=1

✓
1
N

PN
i=1

⇣
X(i) � X̃k

(i)
⌘2

◆
, where k ⌘ kthsubset, i ⌘ ithsample;

if Apply contrastive or distance loss then
Initialize contrastive and distance losses
Lc,Ld = 0, 0
Generate all combinations of pairs of latents
{{z1, z2}, {z1, z3}, ...} ;
Compute contrastive and distance losses for all pairs
for each jth pair {za, zb} 2 S = {{z1, z2}, {z1, z3}, ...} do

if Apply contrastive loss then
Compute symmetric constrastive loss of pairs {za, zb} and update Lc ;
Lc = Lc +

1
2 [l(za, zb) + l(zb, za)], where l(., .) refers to contrastive loss ;

end
if Apply distance loss then

Compute distance loss for each pair {za, zb} and update Ld ;

Ld = Ld +
1
N

PN
i=1

⇣
z(i)
a � z̃b

(i)
⌘2

, where i is ith sample in a subset ;
end

end
end
Compute average contrastive & distance losses and update total loss
Loss = Loss+ Lc/J + Ld/J , where J is total number of pairs ;
Update network parameters

end
return encoder ;

B Data

B.1 Adult Income Dataset

Train-Validation-Test Split: Training and test sets are provided separately [24]. We split the
training set into training and validation sets using 80-20% split to search for hyper-parameters. Once
hyper-parameters was fixed, we trained the model on the whole training set.

1

Features: The dataset has 14 attributes consisting of 8 categorical and 6 continuous features. We
dropped the rows with missing values, and encoded categorical features using one-hot encoding.
Features are normalized by subtracting the mean and dividing by the standard deviation, both of
which are computed using training set.

Class imbalance: It is an imbalanced dataset, with only 25% of the samples being positive.

B.2 BlogFeedback Dataset

Train-Validation-Test Split: The original dataset includes one training set, and 60 small test sets.
We combined all the test sets into one test set. We split training set to training and validation using
80-20% split to search for hyper-parameters. We trained the final model using all of the training set.

Features: It includes 281 variables consisting of 280 features and 1 target variable indicating the
number of comments a blog post received in the next 24 hours relative to the basetime. We converted
the target (the last column in the dataset) to a binary variable, in which 0/1 indicates whether the blog
post received any comments. We used min-max scaling to normalize the features.

Class imbalance: ⇠ 36% of the samples are positive in training set while it is ⇠ 30% in the test set.

B.3 Data License

MNIST is made available under the terms of the Creative Commons Attribution-Share Alike 3.0
license. Obesity is available under MIT license while Aduld Income and BlogFeedback are under
Open Data Commons Public Domain Dedication and License (PDDL).

C Details of the experiments in the main paper

C.1 Model architectures and hyper-parameters

Table A1: Architectures & hyper-parameters for the results in Table 1. Abbreviations are; MNIST*:
MNIST with smaller latent dimension, CL: Contrastive Loss, DL: Distance Loss, MR: Mask ratio.

Dataset Encoder Decoder Projection DL CL Subsets / Overlap MR Noise Batch/Epoch
MNIST* [512, 256, 128] [128, 256, 512] [128] Yes Yes, ⌧ = 0.1 4 / 75% 0.15 Swap 32, 15
MNIST [512, 256, 512] [512, 256, 512] [512] Yes Yes, ⌧ = 0.1 4 / 75% 0.15 Swap 32, 15
TCGA [1024, 784, 784] [784, 784, 1024] [784] No Yes, ⌧ = 0.1 4 / 75% 0.2 Gaussian 512, 40
Obesity [1024, 1024] [1024, 1024] No No No 6 / 0% 0.2 Gaussian 32, 100
Income [1024, 1024] [1024, 1024] No Yes No 5 / 25% 0.2 Gaussian 256, 20

Blog [1024, 1024] [1024, 1024] No Yes No 7 / 75% 0.2 Gaussian 256, 20

Table A2: Architectures & hyper-parameters for the results of Shallow SubTab in Table 3.

Dataset Encoder Decoder Projection DL CL Subsets / Overlap MR Noise Batch/Epoch
MNIST* [784] [784] [784] Yes Yes, ⌧ = 0.1 4 / 75% 0.15 Swap 32, 15
MNIST [1024] [1024] [1024] Yes Yes, ⌧ = 0.1 4 / 75% 0.15 Swap 32, 15
TCGA [1024] [1024] [1024] No Yes, ⌧ = 0.1 4 / 75% 0.2 Gaussian 512, 40
Obesity [1024] [1024] No No No 6 / 0% 0.2 Gaussian 32, 100
Income [1024] [1024] No Yes No 5 / 25% 0.2 Gaussian 256, 20

Blog [1024] [1024] No Yes No 7 / 75% 0.2 Gaussian 256, 20

Few other notes:

• LeakyReLU is used as activation function for all networks.

• Last layers of Encoder, Decoder and Projection shown in Table A1 are all linear.

• Reconstruction loss is used for all experiments by default, except for one case, in which we
used only contrastive loss in the ablation study on MNIST to compare it against reconstruc-
tion loss (See second row in Table 2).

• Learning rate of 0.001 is used for all experiments since it usually performed the best. Based
on that, we optimized the batch size and total number of epochs.

2

Figure A1: Once the SubTab model is trained, the joint embeddings for both training and test sets are
obtained, and the quality of the representation is evaluated by using a linear classifier.

C.2 Evaluation

For all autoencoder baselines and self-supervised models, we evaluate the quality of the representation
by training and evaluating a linear classifier on the embeddings of training and test set respectively.
For SubTab, we use the joint embeddings as shown in Figure A1. The models are trained and tested
10 times with different random seeds to compute mean ± stdev. For the linear model, l2 regularization
parameter is selected from a range of 10 logarithmically spaced values in [10�3, 106].

C.3 Supporting visuals for experiments

Figure A2: First experiment; measuring the information content of the joint embedding. The example
in this figure shows the case for the joint embedding of three subsets.

Figure A3: Setup for second and third experiments; MNIST is divided into seven subsets.

3

Figure A4: Setup for second experiment, in which five models are trained by using different combi-
nations of seven subsets, and a sixth model that is kept untrained.

Figure A5: Second experiment; measuring the information content of individual subsets. For each
subset, we obtained its embedding from each of the six models for both training and test sets, and
evaluated the information content by using a linear classifier.

C.4 Implementation and resources

We implemented our work using PyTorch [38]. AdamW optimizer [29] with betas = (0.9, 0.999)
and eps = 1e � 07 is used for all of our experiments. We used a compute cluster consisting of
Tesla K80 GPUs throughout this work. SubTab code implemented for MNIST can be found at:
https://github.com/AstraZeneca/SubTab.

D Insights and Comments

D.1 Insights
• The best performing models are the ones with an over-complete first hidden layer represen-

tation. This is also observed in denoising autoencoders [43].
• A simple encoder architecture of [1024, 1024] works well for the most tabular datasets.

Note that the second layer is just a linear layer. We can also use a one-layer encoder with
1024 dimension (i.e. removing linear layer).

4

• It is previously observed that contrastive loss is not stable for small batch sizes [7]. However,
we observed that using reconstruction loss together with contrastive loss makes contrastive
loss more stable for small batch sizes.

D.2 Comments

Figure A6: Two of the possible applications of SubTab

Applications: Since SubTab works with subsets of features, it can be used in applications such
as transfer learning (by using common features across different datasets), few-shot generalisation,
domain adaptation, multi-task learning (some subsets might be more useful for one task, and some
other for some other tasks), continual learning (adding new features to the dataset to improve
performance) and so on in the context of tabular dataset (see Figure A6). Moreover, when there is a
distributional shift in certain features, the SubTab can accommodate such situations by relying on the
subsets with features that have not changed.

Other modalities: In addition to tabular data, SubTab can be extended to other modalities such as
images, text, time series, audio and so on by using random subspace of the data.

Additional limitations: Dividing tabular data to smaller chunks will result in representation collapse,
meaning that the representations of subsets from very different samples might start to have similar
representations. However, this is a very low risk since tabular data usually consists of heterogenous
features with different statistical properties. Also, using two knobs (the percentage of overlapping
features, and number of subsets) further reduces such a risk.

E Different configuration of SubTab

E.1 SimCLR

Removing the decoder, and training the encoder only with contrastive loss would result in the scheme
similar to SimCLR. In this case, we can choose to:

• Use two copies of the tabular data (i.e. we are not dividing the features to subsets), and add
random noise to each to train the encoder in contrastive learning setting.

• Or use subsets of the tabular data as usual, and train the encoder with constrastive loss. This
choice is already shown in the ablation study listed in Table 2.

E.2 Other choices

We can also choose to use separate encoders for different subsets of the data.

5

F Additional results for the experiments listed in the main paper

F.1 MNIST

(a) Using one subset out of four available

(b) Using two subsets out of four available

(c) Using three subsets out of four available

(d) Using all four subsets

Figure A7: PCA and t-SNE clustering of representation for the model trained on four subsets with
75% overlap between subsets. Starting from one subset, we keep adding more subsets to get a better
representation on the test set: a) One subset, b) Two subsets, c) Three subsets, d) Four (all) subsets.

6

(a) Using 28 subsets for MNIST

Figure A8: a) Dividing MNIST to 28 subsets, each of which corresponds to one row in a 28x28
image. The test accuracy of a subset can be used as a measure of information content in that subset
i.e. particular row in the image.

F.2 Varying the number of subsets and the percentage of overlap for other datasets

(a) Blog (b) Income (c) TCGA

Figure A9: Test accuracy on (a) Blog, (b) Income, and (c) TCGA datasets over different number of
subsets and varying levels of overlaps for the base models of each.

F.3 Sensitivity analysis for masking ratio (p) and initialization

(a) Sensitivity to p. (b) Sensitivity to the initialization.

Figure A10: a) The test accuracy for MNIST over different levels of the masking ratio, p. b)
Measuring the sensitivity of the model to the initialization by initializing an untrained model with
different random seeds and using it to measure the importance of each of the seven subsets for MNIST.
This is a repeat of the experiment in the Figure 5.

The sensitivity analysis for the two most important hyper-parameters, i.e. the number of subsets and
the overlaps between different subsets, is already shown in Figures 3 and A9. In this section, we
show two more sensitivity analysis, one on masking ratio, and one on the initialization of the model.

Masking ratio In Figure A10a, we show the sensitivity to the percentages of features corrupted
(p, or masking ratio) in each subset in our method. For this, we plot the test accuracy for MNIST
over different levels of the masking ratio. A good range for p is usually [0.1-0.3], and the model
performance is usually robust to the different values of p as shown.

Sensitivity to initialization In Figure 5, we showed that we can use untrained model to discover
informative subsets of the data. Figure A10b shows how sensitive this analysis is to the initialization

7

Table A3: Testing classification accuracy of the linear model for the test set of MNIST when using
different aggregation functions for the latent representations of subsets.

Aggregation method Test Accuracy (%)
Mean 97.86
Sum 97.77
Max 97.79
Min 97.74

Concatenation 95.92

Table A4: Summary of three synthetic datasets. Please note that the redundant features are generated
using the linear combination of informative ones.

Dataset Total features Informative features Redundant features Uninformative features
Dataset-1 1000 12 30 958
Dataset-2 100 60 30 10
Dataset-3 100 4 30 66

of the network. We initialized the model used for MNIST 10 times with different random seeds, and
re-ran the same test of discovering informative subsets. The plot shows the mean test accuracy of the
linear model evaluated on the embeddings from the untrained Subtab with 95% confidence interval.
The variation is very small, and so we can conclude that the model is not sensitive to the initialization.

F.4 Using different aggregation functions

We experimented with different aggregations functions when aggregating the latent representations
of subsets for the case of MNIST. We also tried concatenating the representations for the downstream
classification task using linear model. Table A3 summarizes the result from one such experiment
for MNIST. As shown in the table, the performance is robust to the different aggregation methods,
but it drops when we use concatenation. Please note that we used mean-aggregation throughout our
experiments reported in the paper since it generally performs better.

G Experiments using synthetic data

Tabular datasets can be very different from one another in terms of the statistics of the features. Some
of them might have many redundant, or uninformative features while some other might have more
informative features than the average. Thus, to test the SubTab under different scenarios, we ran
more experiments using 3 synthetic datasets that we generated using make_classification module
of scikit-learn library [40].

G.1 Datasets

Each dataset has 10 classes and 10k samples, 10% of which is used as the test set. We generated them
such that the clusters are not easily separable to make the problem more difficult. Specifics of the
datasets are summarized in Table A4.

G.2 SubTab set-up

• The SubTab utilized an encoder architecture of [1024, 1024], of which the first hidden layer
uses LeakyReLU, and the second one is a linear layer.

• We used 2 subsets with 25% overlap between them. Other parameters are masking ratio
p = 0.2, Gaussian noise with � = 0.1.

• We trained the model using only reconstruction loss and used mean-aggregation when
aggregating the latent representations of the subsets at test time.

Please note that this set-up seems to work well for most tabular datasets as it did in other datasets
reported in our work.

8

Table A5: Summary of the results on the test accuracy (%) for three synthetic datasets.

Dataset Raw features SubTab embedding
Dataset-1 31.2 61.9
Dataset-2 83.5 90.5
Dataset-3 79.9 82.1

Table A6: Summary of datasets from OpenML-CC18. First eight datasets are used for the experiments.

Dataset Name Total Features Number of Samples Number of Classes
1 First Order Theorem Proving [3] 51 6118 6
2 Wall Robot [12, 14] 24 5456 4
3 Gesture Phase Segmentation [12, 31] 32 9873 5
4 Ozone Level 8hr [12, 47] 72 2534 2
5 Electricity [16] 8 45312 2
6 Texture [18] 40 5500 11
7 DNA [12, 35] 180 3186 3
8 Climate [12, 30] 20 540 2
9 Diabetes [33] 8 768 2

10 Blood transfusion service center [12, 44] 4 748 2
11 Phoneme [2] 5 5404 2

G.3 Evaluation

We trained and tested a logistic regression model on the raw features of the data, as well as the
embeddings obtained by using mean-aggregation of the representations of subsets from the SubTab
that is pre-trained on the training set. Table A5 summarizes the results on the test set. We can see
that the SubTab improves the results in all 3 datasets, as much as 100% for the most difficult dataset
(Dataset-1). This result gives us a little bit more insight into how the SubTab might improve the
results in the datasets with different nature.

H Experiments using OpenML-CC18 datasets

Ideally, the type of data we want for the task of representation learning would be a high-dimensional,
large dataset with multiple-classes. The most tabular datasets do not fit this criteria. Moreover,
OpenML-CC18 [2] includes 72 datasets, in which some datasets have a low number of features (<10)
and/or a low number of samples (<1000) such as the last three datasets listed in Table A6:

• Dataset 9: Diabetes

• Dataset 10: Blood transfusion service center

• Dataset 11: Phoneme

Thus, we excluded such datasets from consideration, and picked other eight datasets in Table A6 for
experiments. Please note that although Electricity dataset has only 8 features, we included it in our
analysis since it does have relatively large sample size.

H.1 Data Pre-processing

We cleaned up the datasets by removing rows with missing data if there is any, and/or by removing
the features such as user ID. We used min-max scaling to scale all datasets, and split the data as
70-10-20% training, validation and test set. We trained the final models on 80% training set by
combining training and validation set.

H.2 Models and Evaluation

We trained and compared six models: i) Logistic Regression as our baseline, ii) Autoencoder (AE) iii)
Autoencoder (AE) with dropout (p=0.04), iv) VIME-self, v) SubTab, and vi) SubTab with dropout
(p=0.04).

9

Table A7: The results for the eight datasets. Please refer to Table A6 for the name of the datasets.

Model Dataset-1 Dataset-2 Dataset-3 Dataset-4 Dataset-5 Dataset-6 Dataset-7 Dataset-8
Logistic Regression 46.96 68.46 46.93 94.01 76.09 99.71 95.12 96.3
Autoencoder (AE) 50.40±0.83 86.83±0.91 49.07±0.55 94.84±0.34 81.32±0.16 99.34±0.28 93.48±0.97 95.01±0.90

AE w/ Dropout (p=0.04) 50.52±0.71 86.87±0.44 49.43±1.17 94.69±0.14 81.54±0.36 98.75±0.18 91.48±0.43 95.04±1.06
VIME-self 44.99±0.9 74.23±1.21 46.08±0.37 94.28±0.31 73.92±1.08 95.49±0.88 89.97±0.97 95.56±0.42

SubTab 50.8±0.76 89.37±0.72 50.33±0.86 94.74±0.28 82.11±0.26 99.59±0.22 92.62±0.59 93.89±1.55
SubTab w/ Dropout (p=0.04) 51.48±0.77 89.81±0.69 49.93±0.77 94.85±0.31 82.31±0.34 99.23±0.36 91.41±1.03 93.33±0.77

All neural networks used the same four-layer encoder architecture: [256, 256, 256, 256]. For the
networks with dropout, we used the same dropout rate, p=0.04. We trained SubTab by using two
subsets with zero overlap and using only reconstruction loss. For all models using neural networks,
we trained and evaluated them with 10 different random seeds. Evaluation of these models is done by
training a logistic regression model using the embeddings of training set (i.e. 80% of the data), and
by testing it using the embeddings of the test set (20% of the data).

H.3 Results

Based on the results shown in Table A7, we can make following observations:

• If the dataset is suitable for pre-training / representation learning, the SubTab tends to
perform better than the other approaches, including VIME-self [46]. This was the case in
the datasets [1-5].

• If the dataset is trivial (i.e. logistic regression already gives a very decent performance), we
might be better off using simple models such as logistic regression as this was the case in
datasets [6, 7, and 8] (i.e. Texture, DNA, and Climate datasets respectively).

10

