
We provide more discussion, details of the proposed algorithm and problem, and extra experimental
results in this appendix:

• More discussions of the proposed algorithm are provided in Section A.
• The limitations and potential future improvement for PSL are discussed in Section B.
• Potential societal impact of this work is discussed in Section C.
• Details of the set model and batch selection algorithm are provided in Section D.
• Details of the benchmark and real-world application problems are given in Section E.
• More experimental results and analyses are presented in Section F.

A More discussion

A.1 Motivation: Pareto set model over simple scalarization

Our proposed Pareto set learning method is closely related to the scalarization-based methods. But it
can overcome a major disadvantage of the current scalarization methods for expensive optimization.

The scalarization methods randomly select one (e.g., ParEGO [45]) or a batch of scalarized subprob-
lems (e.g., MOEA/D-EGO [99], TS-TCH [62], and qParEGO [15]) at each iteration. By optimizing
the acquisition function (e.g., EI, LCB, Thompson Sampling) on each scalarization, they generate a
batch of solutions for expensive evaluation.

A major limitation of all these scalarization methods is that they do not explicitly consider those
already-evaluated solutions, neither for choosing the weighted scalarization, nor for selecting the
next (batch of) solution(s) for expensive evaluation. Therefore, the selected weighted scalarization(s)
might be close to those already-evaluated solutions. In other words, even the obtained solution(s)
can maximize the EI/LCB for the selected scalarization, they could still be similar to those already-
evaluated ones, and indeed not an optimal choice for multi-objective optimization. This limitation
leads to inferior performance of these scalarization methods, as reported in [14, 53] and in our
experimental results.

To overcome this limitation, our proposed method has a two-stage approach:

• Stage 1: Using the Pareto set model, it first efficiently samples a dense set of candidate
solutions to cover the whole approximate Pareto front (of posterior mean, EI, or LCB etc).

• Stage 2: Then it selects a small batch of appropriate solutions from this dense set for
expensive evaluation. For selection, we use the HVI criteria to take both the selected and
already-evaluated solutions into consideration.

In this way, our proposed method can efficiently explore the whole approximate Pareto front, and
choose the most appropriate solutions (on the approximate Pareto front, while far from the selected
and already-evaluated ones) for expensive evaluation. The experimental results have validated the
efficiency of the proposed method.

A.2 Hypervolume improvement for batch selection

Efficiently finding a batch of solutions to optimize the EI/LCB of HVI could be very challenging.
qEHVI [14] and qNEHVI [15] are two promising approaches along this direction. From the viewpoint
of optimizing HVI, our proposed method restricts the search procedure only on the approximate Pareto
set, which is a low-dimensional (e.g., (m− 1)-dimensional) manifold in the decision space [36, 98].
Therefore, we can use a simple two-stage sample-then-select approach to find the batch of solutions
for evaluations. For the optimal situation, the set of solutions that optimize HVI should all be on the
Pareto front. However, if an efficient method exists, directly optimizing the EI/LCB of HVI on the
whole search space should be a principled approach for batch selection.

On the other hand, the scalarization-based approach could have a close relationship with the hyper-
volume [100]. It will be very interesting to study how to better leverage this relation for designing
a more efficient algorithm, such as learning the whole Pareto set while inference the location of
solutions (on the learned Pareto set) to optimize HVI at a single stage. These will be our future work.

18

In summary, the advantages of PSL can be summarized from the following two viewpoints:

• From the viewpoint of scalarization based methods, PSL proposes a novel two-stage ap-
proach to select a small batch of appropriate solutions from the approximate Pareto front,
which takes those already-evaluated solutions into consideration. As a result, it significantly
outperforms other scalarization-based methods.

• From the viewpoint of hypervolume improvement based methods, in an ideal case, the set
of solutions that optimize HVI should all be on the Pareto front. Restricting the search on
the approximate Pareto set, PSL leads to an efficient HVI algorithm.

A.3 Practicality of the approximate Pareto set

The learned approximate Pareto set could not always be accurate in real-world applications. Therefore,
it is risky to only rely on the approximate Pareto set to make a decision (see more discussion in
Section. B). With our proposed method, decision-makers can simultaneously have the evaluated
solutions and the approximate Pareto set. The approximate Pareto set can provide extra useful
information to better support their decision-making such as:

• It can help decision-makers to better understand the (approximate) trade-offs they will
make for choosing any already evaluated solution. The approximate Pareto set and the
corresponding surrogate objective values around the chosen solution can provide valuable
information to understand what we can gain or lose by adjusting the chosen solution.

• It allows decision-makers to explore the whole approximate Pareto set easily. If none of
the already evaluated solutions can satisfy the decision-maker’s preferred trade-off, the
decision-maker can rely on the approximate Pareto set/front to choose the preferred solution
for further evaluation.

• When the optimization modeler and the final decision-maker are not the same person, the
approximate Pareto set/front provides a much more efficient way for them to communicate
and discuss the whole trade-offs among different objectives during or after the optimization
process. This demand is common and essential for many applications [56].

• Finally, an important application for MOBO is to help domain experts efficiently conduct
experiments. The approximate Pareto set might contain useful patterns and structures which
can help the domain expert obtain more information from the experiment. It also provides
a way for domain experts to incorporate their knowledge into the optimization process
(e.g., choose the most concerned region, and eliminate some uninteresting locations). The
proposed Pareto set learning method could be a novel approach to support the "bringing
decision-makers back into the loop" approach for Bayesian optimization [30].

Therefore, the learned approximate Pareto set could be a useful tool to support flexible decision-
making for expensive multi-objective optimization.

B Limitation and potential future work

B.1 The approximate Pareto set could be inaccurate

It could be very risky, especially in those safety-critical applications, to only rely on an approximate
Pareto set to make the final decision. The quality of the approximate Pareto set heavily depends on
the quality of the surrogate models. We cannot obtain a good approximate Pareto set if the evaluation
budget is insufficient to build a good set of surrogate models. This is also a general challenge for
(multi-objective) Bayesian optimization [30].

One possible method to address this challenge is to leverage the user preference information into the
expensive optimization process [3, 4, 62]. In this way, the general MOBO method can spend the
limited evaluation budget mainly on the user-preferred region rather than the whole decision space.
Similarly, our proposed method can only build a partial approximate Pareto set with the user-preferred
trade-offs. However, the preference-based approach could be affected by the following limitation.

19

B.2 Defining the user preference is challenging for black-box optimization

Although some scalarization methods (e.g., Chebyshev scalarization) have good theoretical properties
to connect the scalars to their corresponding Pareto solutions [13], it could still be hard to define user
preferences in terms of scalars, especially in the black-box expensive optimization setting.

In many applications, the decision-makers might not even know their actual preferences before
making their decision. Suppose the approximate Pareto set can be learned appropriately, instead of
asking users to provide their preferences, our proposed approach can let them interactively explore
the whole approximate Pareto set/front to select their most preferred solutions. In this interactive way,
it could be much easier for the decision-makers to accurately express and assign their preferences.
However, it could be difficult to precisely obtain user preference if a good approximate Pareto set is
unavailable (e.g., in the early stage of optimization, or without enough budget).

The algorithm proposed in Abdolshah et al. [3] is an elegant and promising way to incorporate
preference into the MOBO process via the preference-order constraints, which does not require
any prior knowledge on the (approximate) Pareto front. The preference-order constraint also has a
close relationship with the lexicographic approach for multi-objective optimization [72], which is a
non-scalarizing method with good theoretical property (e.g., connection to weakly Pareto optimal
solution). Incorporating this information into our proposed Pareto set learning model for more flexible
preference incorporation could be interesting for future work.

B.3 Scalability

The scalability of the search space dimension is a major challenge for general MOBO algorithms.
It is also very difficult for our proposed PSL method to learn a good enough Pareto set for such
large-scale problems. The PSL’s performance depends on a set of good surrogate models, which
requires a large number of evaluated solutions for the problem with a high-dimensional search space.

Recently, some efficient search region decomposition/management methods have been proposed to
better allocate the limited computational budget for problems with high-dimensional search space [27,
89]. These ideas can be naturally generalized to solve expensive multi-objective optimization
problems, such as MORBO [17] and LaMOO [101]. Since the search region management methods
are algorithm-agnostic (e.g., a meta-algorithm), they can be combined with different (multi-objective)
optimization algorithms. Studying how to efficiently combine the MORBO/LaMOO approach with
our proposed PSL method will be an important future work to tackle this limitation.

C Potential societal impact

Our proposed Pareto set learning method mainly has two strengths: (1) it is good for better multi-
objective Bayesian optimization in terms of speed and sample efficiency, and (2) it can help decision-
makers to navigate the estimated Pareto set for better decision-making. These strengths could lead
to many positive potential societal impacts. For example, as an efficient MOBO algorithm, it can
reduce the cost of obtaining a set of diverse Pareto solutions in many applications, such as materials
science, engineering design, and recommender systems. The learned approximate Pareto set provides
a novel way for decision-makers to easily explore different trade-offs, which could be an important
component for a more user-friendly multi-criteria decision system.

On the negative side, as discussed in the limitation section, there is no guarantee that the learned
approximate Pareto set could be accurate. Solely relying on the approximate Pareto set to make a
decision could be risky. The decision-makers should leverage all the information they have to make
the final decision. In addition, the leakage of the learned Pareto set model might unintentionally reveal
the problem information and user preference, which should be avoided in real-world applications.

20

D Model and algorithm details

D.1 Pareto set model

Model Structure. In this work, we use a multi-layered perceptron (MLP) as the Pareto set model
x(λ) = hθ(λ). For all experiments, the Pareto set model has 2 hidden layers each with 256 hidden
units, and the activation is ReLU. The input and output dimension of the set model is the number of
objectives m and the dimension of decision variables n, respectively. Therefore, the set model hθ(λ)
has the following structure:

hθ(λ) :Input λ→ Linear(m, 256)→ ReLU→ Linear(256, 256)

→ ReLU→ Linear(256, 256)→ ReLU (15)
→ Linear(256, n)→ Output x(λ),

where the input is an m-dimensional preference λ ∈ Λ = {λ ∈ Rm+ |
∑
λi = 1}, the output is

a n-dimensional decision variables x ∈ Rn, and θ ∈ Rd represents all learnable parameters for
the Pareto set model. We build independent Gaussian process models with Matérn 5/2 kernel for
each objective as the surrogate models. The objective to optimize is the augmented Tchebycheff
scalarization on the surrogate value with respect to all valid preferences.

Model Training. In the proposed Pareto set learning method, we have the following model structure:
λ→ Pareto Set Model → x(λ) = hθ(λ) (16)

→ GP Model→ f̂(x)→ TCH Scalarization→ ĝtch_aug(x(λ)), (17)
where the preference λ goes through the Pareto set model hθ(λ) and Gaussian process model, then
gets the augmented Tchebycheff scalarized value ĝtch_aug(x(λ)) at the end (a detailed version can be
found in Figure 4 in the main paper). To train the Pareto set model, we use a gradient-based method
to optimize the model parameter θ with respect to the scalarized value ĝtch_aug(x(λ)). With the chain
rule, we have:

∇θĝtch_aug(x = hθ(λ)|λ) =
∂ĝtch_aug

∂θ
=
∂ĝtch_aug

∂f̂

∂f̂

∂x

∂x

∂θ
, (18)

where we can calculate each term respectively.

• For the first term ∂ĝtch_aug

∂f̂
, the augmented Tchebycheff scalarization ĝtch_aug(x|λ) =

max1≤i≤m{λi(f̂i(x)− (z∗i − ε))}+ ρ
∑m
i=1 λif̂i(x) has a max operator which is techni-

cally only subdifferentiable, but it is known to have good subgradients [94] for surrogate
model based optimization. We simply take the subgradients for this term.

• The second term ∂f̂
∂x is the gradient of surrogate values to the input x. In this work, we

build independent Gaussian process models for each objective with Matérn 5/2 kernel.
The gradients of the kernel ∂ki

∂x , predictive mean ∂µ̂i

∂x and standard deviation ∂σ̂i

∂x for each
objective can be easily calculated. With these terms, the calculation for the surrogate value
(e.g., predictive mean, UCB and EI) for each objective ∂f̂i

∂x is also straightforward.

• The third term ∂x
∂θ = ∂hθ(x)

∂θ is the gradient of the Pareto set model to the parameter θ. In
this work, we use a simple MLP as the Pareto set model, and its gradient be easily obtained
by auto-differentiation such as in PyTorch [64].

For Algorithm 1 in the main paper, we randomly sample K = 10 different preferences {λk}K=10
k=1 ∼

Λ in batch at each step. Without any prior information (e.g., user’s preference), we uniformly sample
preference λ from [0, 1]m and then normalize it such that

∑m
i=1 λi = 1. The total update step is

T = 1000 for training the Pareto set model at each iteration. The model optimizer is Adam with
learning rate η = 1e − 3 and no weight decay. The learning process typically only requires less
than 10 seconds to finish, which is enough to obtain a good Pareto set approximation. Detailed
experimental results on the runtime can be found in Table 3.

We use the same model and training procedure for all experiments, and the only problem-dependent
setting is the input/output dimension m and n. The proposed Pareto set model and its learning
approach have robust and promising performances for different expensive multi-objective optimization
benchmarks and real-world problems.

21

D.2 Batch selection with Pareto set learning

Algorithm 4 Sampling-based Greedy Batch Selection

1: Input: Evaluated Solutions {Xt−1,yt−1}, Candidate SolutionsXC = X , Surrogate Models
2: Initialize the selected solution setXB = ∅ with predicted values ŷB = ∅
3: for t = 1 to B do
4: Calculate predicted HVIs for each individual solution inXC with respective to yt−1 ∪ ŷB
5: Choose the single solution xs with the best predicted HVI
6: XB ←XB ∪ {xs}, ŷB ← ŷB ∪ {f̂(xs)},XC ←XC \ {xs}
7: end for
8: Output: The Selected SolutionsXB .

The MOBO with Pareto Set Learning framework (e.g., Algorithm 2) is similar to other MOBO
methods, and the main difference is on the batch selection with the learned Pareto set (Algorithm 3).
At each iteration, we first randomly sample P = 1000 preferences {λ(p)}P=1000

p=1 ∼ Λ and directly
obtain their corresponding solutionsX = {x(λ(p))}P=1000

p=1 on the current learned Pareto setMpsl.
We then use the predicted hypervolume improvement (HVI) with respect to the already evaluated
solutions {Xt−1,yt−1} to select a subsetXB ⊂X for expensive evaluation. The surrogate values
for the candidate solutions are directly used for the predicted HVI calculation if they are the predicted
mean µ̂ or the lower confidence bound µ̂−βσ. When the surrogate values are expected improvement,
although the approximate Pareto set is learned with EI for each scalarization, we let f̂(xs) = µ̂− σ
for the predicted HVI calculation. The main reasons for this choice are: 1) we want to avoid the
(repeatedly) time-consuming Monte Carlo integration for calculating the expected hypervolume
improvement; 2) the LCB (or the posterior mean only) is on the same scale as the value of those
already-evaluated solutions, which make the calculation of HVI meaningful.

Since it is computationally intensive to find B solutions to exactly optimize HVI, we select the
solution batchXB in a sequentially greedy manner fromX . Similar approaches have also been used
in the current MOBO methods [53, 17]. The greedy selection approach is presented in Algorithm 4.
We sequentially sample solutions from the candidate setXC , and add the single solution xs with the
best HVI value into the selected setXB . For all problems, the acquisition search procedure (solution
sampling + individual search + batch selection) with batch size B = 5 typically costs less than 3
seconds. The detailed results can be found in Table 3.

22

E Problem details

Table 2: Problem information and reference point for both synthetic benchmarks and real-world
engineering design problems.

Problem n m Reference Point(r)

F1 6 2 (1.1,1.1)
F2 6 2 (1.1,1.1)
F3 6 2 (1.1,1.1)
F4 6 2 (1.1,1.1)
F5 6 2 (1.1,1.1)
F6 6 2 (1.1,1.1)
VLMOP1 1 2 (4.4,4.4)
VLMOP2 6 2 (1.1,1.1)
VLMOP3 2 3 (11,66,1.1)
DTLZ2 6 3 (1.1,1.1,1.1)
Four Bar Truss Design 4 2 (3175.0065, 0.0400)
Pressure Vessel Design 4 2 (6437.2649, 1417536.7586)
Disk Brake Design 4 3 (5.8374, 3.4412, 27.5)
Gear Train Design 4 3 (6.5241, 61.6, 0.3913)
Rocket Injector Design 4 3 (1.0884, 1.0522, 1.0863)

E.1 Synthetic benchmark problems

To better evaluate our proposed PSL method, we propose 6 new synthetic test problems with different
shapes of Pareto sets which can be found in next page. We also test our proposed PSL algorithm on
different widely-used synthetic multi-objective optimization benchmark problems, namely VLMOP1-
3 [88] and DTLZ2 [21]. The input and output dimensions of these problems are shown in Table 2.
These synthetic problems have known Pareto setsMps and Pareto fronts f(Mps) with the nadir
point:

znadir = (max f1(x1), . . . ,max fm(xm)), (19)
∀x1,x2, . . . ,xm ∈Mps,

where x1, . . . ,xm are solutions in the Pareto set. We set the reference point r = 1.1 × znadir for
each problem.

23

F1

f1(x) = (1 +
s1

|J1|
)x1, f2(x) = (1 +

s2

|J2|
)

1−
√

x1

1 + s2
|J2|


where s1 =

∑
j∈J1

(xj − (2x1 − 1)2)2 and s2 =
∑
j∈J2

(xj − (2x1 − 1)2)2,

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

F2

f1(x) = (1 +
s1

|J1|
)x1, f2(x) = (1 +

s2

|J2|
)

1−
√

x1

1 + s2
|J2|


where s1 =

∑
j∈J1

(xj − x
0.5(1.0+

3(j−2)
n−2)

1)2 and s2 =
∑
j∈J2

(xj − x
0.5(1.0+

3(j−2)
n−2)

1)2,

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

F3

f1(x) = (1 +
s1

|J1|
)x1, f2(x) = (1 +

s2

|J2|
)

1−
√

x1

1 + s2
|J2|


where s1 =

∑
j∈J1

(xj − sin(4πx1 +
jπ

n
))2 and s2 =

∑
j∈J2

(xj − sin(4πx1 +
jπ

n
))2,

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

F4

f1(x) = (1 +
s1

|J1|
)x1, f2(x) = (1 +

s2

|J2|
)

1−
√

x1

1 + s2
|J2|


where s1 =

∑
j∈J1

(xj − 0.8x1 cos(4πx1 +
jπ

n
))2 and s2 =

∑
j∈J2

(xj − 0.8x1 sin(4πx1 +
jπ

n
))2,

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

F5

f1(x) = (1 +
s1

|J1|
)x1, f2(x) = (1 +

s2

|J2|
)

1−
√

x1

1 + s2
|J2|

 ,

where s1 =
∑
j∈J1

(xj − 0.8x1 cos(
4πx1 + jπ

n

3
))2 and s2 =

∑
j∈J2

(xj − 0.8x1 sin(4πx1 +
jπ

n
))2,

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

F6

f1(x) = (1 +
s1

|J1|
)x1, f2(x) = (1 +

s2

|J2|
)

1−
√

x1

1 + s2
|J2|


where s1 =

∑
j∈J1

{xj − [0.3x2
1 cos(12πx1 +

4jπ

n
)) + 0.6x1] cos(6πx1 +

jπ

n
)}

and s2 =
∑
j∈J2

{xj − [0.3x2
1 cos(12πx1 +

4jπ

n
)) + 0.6x1] sin(6πx1 +

jπ

n
)},

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

24

E.2 Real-world application problems

We also conduct experiments on 5 real-world multi-objective engineering design problems [85] that
are initially proposed in different communities for different applications:

Four Bar Truss Design. This problem is to design a four-bar truss. The two objectives to optimize
are its structural volume and joint displacement. The decision variables are the length of the four
bars. The details of this problem can be found in Cheng and Li [12].

Pressure Vessel Design. This problem is to design a cylindrical pressure vessel. The two objectives
to minimize are the total cost (material, forming, and welding) and the violations of three different
design constraints. This problem has four decision variables, which are the shell thicknesses, the
pressure vessel head, the inner radius, and the length of the cylindrical section. The details of this
problem can be found in Kramer [46].

Disk Brake Design. This problem is to design a disc brake. The three objectives to minimize are
the mass, the minimum stopping time, and the violations of four design constraints. This problem
has four decision variables: the inner radius, the outer radius, the engaging force, and the number of
friction surfaces. The details of this problem can be found in Ray and Liew [70].

Gear Train Design. This problem is to design a gear train with four gears. The three objectives
to minimize are the difference between the realized gear ration and the required specification, the
maximum size of four gears, and the design constraint violations. The decision variables are the
numbers of teeth in each of the four gears. The details of this problem can be found in Deb and
Srinivasan [19].

Rocket Injector Design. This problem is to design a rocket injector that needs to minimize the
maximum temperature of the injector face, the distance from the inlet, and the temperature on the post
tip. It has four decision variables, namely, the hydrogen flow angle, the hydrogen area, the oxygen
area, and the oxidizer post tip thickness. The details of this problem can be found in Vaidyanathan
et al. [87].

These real-world multi-objective design problems do not have known exact Pareto fronts. We use the
approximate Pareto fronts provided by Tanabe and Ishibuchi [85] with a large number of evaluations
as our refereed Pareto fronts, which have also been used in other MOBO works. We set the reference
point r = 1.1× ẑnadir where ẑnadir is the nadir point of the approximate Pareto front. The problem
information and reference points can be found in Table 2.

E.3 Experiment settings

For all experiments, we first randomly sample and evaluate 10 valid solutions with Latin hypercube
sampling [57], and set them as the initial solutions {X0,y0}. Then we further run the MOBO
algorithm to optimize the given problem with a limited evaluation budget (100 for all problems). In
the main paper, we report the results with a batch size 5, and there are only 100/5 = 20 batched
iterations for each algorithm. In section F in this appendix, we also report experimental results with
different batch sizes.

25

F Additional experiments

F.1 Run time

Table 3: Algorithm run time per iteration (in seconds).

Problem MOEA/D-EGO TSEMO USeMO-EI DGEMO qEHVI PSL(Ours): Model + Selection

F1 55.21 4.82 6.12 61.48 36.71 5.26 + 1.33 = 6.59
F2 60.12 5.18 7.06 62.21 42.80 6.01 + 1.21 = 7.22
F3 58.66 5.63 6.84 59.88 38.28 5.82 + 1.43 = 7.25
F4 57.81 5.03 6.51 61.73 40.16 5.72 + 1.15 = 6.87
F5 63.08 5.41 7.24 57.29 38.83 5.53 + 1.38 = 6.91
F6 58.57 5.26 5.97 69.71 42.77 5.89 + 1.19 = 7.08
VLMOP1 57.13 4.19 5.23 60.33 28.37 3.88 + 1.06 = 4.94
VLMOP2 61.05 4.96 6.88 68.20 39.51 4.62 + 1.29 = 5.91
VLMOP3 68.72 8.20 9.03 79.82 71.25 5.61 + 2.49 = 8.10
DTLZ2 71.83 7.28 8.76 83.57 75.92 7.02 + 1.59 = 8.61
Four Bar Truss 63.29 3.83 5.92 62.46 42.73 6.01 + 0.78 = 6.79
Pressure Vessel 62.61 4.61 6.59 69.73 45.32 4.98 + 1.33 = 6.31
Disk Brake 72.54 7.03 8.62 75.20 88.79 5.50 + 2.28 = 7.78
Gear Train 68.48 6.92 9.31 84.52 79.55 4.24 + 2.13 = 6.37
Rocket Injector 69.43 8.72 10.03 79.31 85.30 5.09 + 2.26 = 7.35

We report the run time for each algorithm with batch size 10 per iteration in Table 3. For our proposed
PSL algorithm, we further report the detailed run time for learning the set model and for searching
the batch solutions. According to the results, PSL can efficiently learn the set model and select a
batch of solutions for evaluation at each iteration with a total time budget of less than 10 seconds.
The short PSL batch selection run time is expected, since all solutions are directly sampled from
the learned Pareto set with a few further local search steps, rather than optimizing the acquisition
function(s) from scratch as in other MOBO methods.

We want to emphasize that the run time for different MOBO algorithms strongly depends on the
implementation, which is also highlighted in the current works [14, 53]. The objective evaluations
in real-world applications are usually very expensive and involve costly real-world experiments or
simulations that take days to run. All the MOBO algorithms are efficient and have negligible run-time
overheads in these real-world application scenarios.

26

F.2 Quality of the learned Pareto set

0 25 50 75 100
Function Evaluations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

lo
g

HV
 D

iff
er

en
ce

TS-TCH
TS-TCH (Approx. PF)
PSL
PSL (Approx. PF)

(a) Four Bar Truss

0 25 50 75 100
Function Evaluations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lo
g

HV
 D

iff
er

en
ce

TS-TCH
TS-TCH (Approx. PF)
PSL
PSL (Approx. PF)

(b) Disk Brake

0 25 50 75 100
Function Evaluations

0.5

0.0

0.5

1.0

1.5

2.0

lo
g

HV
 D

iff
er

en
ce

TS-TCH
TS-TCH (Approx. PF)
PSL
PSL (Approx. PF)

(c) Gear Train

0 25 50 75 100
Function Evaluations

1.75

1.50

1.25

1.00

0.75

0.50

0.25

lo
g

HV
 D

iff
er

en
ce

TS-TCH
TS-TCH (Approx. PF)
PSL
PSL (Approx. PF)

(d) Rocket Injector

Figure 8: The log hypervolume difference w.r.t. the number of expensive evaluations for PSL and
TS-TCH. We report both results for the evaluated solutions (solid lines) and the approximate Pareto
front (dashed line).

In the main paper, we have demonstrated that the proposed PSL method can successfully approximate
the ground truth Pareto front with a limited evaluation budget as in Figure 6. In this subsection, we
further investigate the performance of the learned Pareto fronts during the optimization process. As
shown in Figure 8, the learned Pareto fronts have good quality (with 1,000 random samples) during
optimization and lead to promising evaluated solutions performance.

In addition, we also compare our Pareto set model with another modeling approach based on evaluated
solutions. Specifically, we run the TS-TCH algorithm and record the evaluated solutions with their
corresponding preferences during the optimization process. Then we build a model to approximate
the Pareto front based on the evaluated and non-dominated solutions at each iteration step. The model
we built has an identical structure (2-layer MLP) to the PSL model, but is now trained in a supervised
manner. According to the results in Figure 8, our proposed PSL model has better quality than the
model trained in a supervised manner with evaluated solutions.

F.3 Impact of the Pareto set model for scalarization-based method

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

TCH Aggregation (without NN)
PSL (with NN)

(a) F4

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

TCH Aggregation (without NN)
PSL (with NN)

(b) F5

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

TCH Aggregation (without NN)
PSL (with NN)

(c) F6

Figure 9: The log hypervolume difference w.r.t. the number of expensive evaluation for different
algorithms for F4, F5 and F6.

In this work, we choose the weighted Chebyshev scalarization with an ideal point and epsilon mainly
due to its good theoretical property. In this subsection, we conduct an ablation study on our proposed
PSL method with and without the Pareto set model. The results in Figure 9 show that simply
optimizing the acquisition function for scalarization could lead to a significant performance drop. It
confirms that the proposed Pareto set model is important for the overall promising performance.

27

F.4 Gaussian perturbation for generating candidate set

0 25 50 75 100
Function Evaluations

2.0

1.5

1.0

0.5

0.0

lo
g

HV
 D

iff
er

en
ce

TCH Aggregation
PSL (with Gaussian Perturbation)
PSL (with NN)

(a) ZDT1

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

TCH Aggregation
PSL (with Gaussian Perturbation)
PSL (with NN)

(b) F5

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

TCH Aggregation
PSL (with Gaussian Perturbation)
PSL (with NN)

(c) F6

Figure 10: The HVI-LCB acquisition values obtained by different search methods along the PSL’s
optimization process on ZDT1, F5, and F6.

In this subsection, we conduct an ablation on small perturbing the best points v.s. Pareto set model
for generating the candidate set. Based on the results shown in Figure 10, the Gaussian perturbing
method can improve the performance of simple scalarization on problems with simple Pareto set (e.g.,
ZDT1 [102]) but not the problems with complicated Pareto set (e.g., F5 and F6). On all problems,
our proposed PSL method still achieves the best performance.

DGEMO [53] also has a local search approach to expand the candidate set around the best points
(in terms of surrogate value) with the first and second derivatives of the GP surrogate model. In our
experiments, PSL can outperform DGEMO on most problems, which confirms the importance of the
Pareto set model for generating the candidate set.

On the other hand, the local search methods might provide complementary candidate solutions to
PSL, especially at the early stage of optimization when the approximate Pareto set is inaccurate. We
will investigate how to efficiently combine PSL with the local search approaches in future work.

F.5 Comparisons with HVI-LCB

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

qEHVI
qHVI_LCB
PSL (Ours)

(a) F4

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

qEHVI
qHVI_LCB
PSL (Ours)

(b) F5

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

qEHVI
qHVI_LCB
PSL (Ours)

(c) F6

Figure 11: The log hypervolume difference w.r.t. the number of expensive evaluation for qEHVI,
qHVI-LCB, and our proposed PSL on F4, F5, and F6.

In this subsection, we conduct an ablation study on maximizing the hypervolume improvement with
LCB on the approximate Pareto set vs. searching across the whole design space. The experimental
results on three newly proposed problems (i.e., F4, F5, and F6) with complicated Pareto sets are
shown in Figure 11. We also provide the qEHVI results as reference.

Based on these results, it is clear that our proposed PSL method can outperform directly searching
the entire search space to maximize HVI with LCB. The qHVI-LCB method performs similarly to
qEHVI, which indicates that different acquisitions (for HVI) do not have a significant impact on the
optimization performance. In other words, with the learned Pareto set, our proposed PSL method
can efficiently conduct the acquisition optimization mainly on the promising low-dimensional (e.g.,
(m-1)-dimensional) manifold, and then lead to significantly better Bayesian optimization performance.

One possible reason for this performance gap could be the difficulty of directly searching the whole
design search for maximizing HVI. As shown in recent works [101, 17], the performance of qEHVI

28

can be improved using meta search region management algorithms such as LaMOO [101] and trust
region methods [17]. It implies that directly searching the whole design space is not efficient. These
meta-algorithms adaptively decompose the whole search region into different subregions along with
the optimization process, while our PSL method directly learns the whole approximate Pareto set at
each step. Studying how to efficiently combine PSL with these algorithms could be an important
future work as discussed in Appendix B.

F.6 The HVI acquisition values during optimization

0 25 50 75 100
Index of Iteraction

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

HV
I(L

CB
) A

qu
isi

tio
n

Va
lu

e

PSL-Whole Approximate PF
PSL-HVI-LCB (Ours)
HVI-LCB-Entire Space Search

(a) F4

0 25 50 75 100
Index of Iteraction

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

HV
I(L

CB
) A

qu
isi

tio
n

Va
lu

e

PSL-Whole Approximate PF
PSL-HVI-LCB (Ours)
HVI-LCB-Entire Space Search

(b) F5

0 25 50 75 100
Index of Iteraction

0.0

0.1

0.2

0.3

0.4

HV
I(L

CB
) A

qu
isi

tio
n

Va
lu

e

PSL-Whole Approximate PF
PSL-HVI-LCB (Ours)
HVI-LCB-Entire Space Search

(c) F6

Figure 12: The HVI-LCB acquisition values obtained by different search methods along the PSL’s
optimization process on F4, F5, and F6.

In this subsection, we compare the HVI-LCB acquisition values obtained by different search methods.
We run our proposed PSL as the optimization algorithm, and conduct different search methods at
each iteration. The compared search methods are: 1) searching across the entire design space, 2) our
PLS search on the approximate Pareto front, and 3) the HVI-LCB acquisition values for the whole
approximate Pareto front with 1,000 sampled solutions (which can be treated as the upper bound
for our method). Based on the results, it is clear that our proposed PSL search can produce better
HVI-LCB acquisition values than directly searching the entire design space.

It should be noticed that the reported results are obtained by running PSL, and the search methods
have the same surrogate functions and baseline HV (from the same evaluated solutions chosen by
PSL) at each iteration. By running qHVI-LCB alone, the less efficient acquisition search at each
iteration will lead to the accumulated worse overall performance as shown in Figure 11.

29

F.7 PSL with different preferences

0.0 0.2 0.4 0.6 0.8 1.0
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)
Pref 1
Pref 2
Pref 3
Pref 4
Pref 5

(a) Two Obj. Prefs.

0.0 0.2 0.4 0.6 0.8 1.0
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

Pref 1
Pref 2
Pref 3
Pref 4
Pref 5

(b) F1

0.0 0.2 0.4 0.6 0.8 1.0
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

Pref 1
Pref 2
Pref 3
Pref 4
Pref 5

(c) VLMOP2

1250 1500 1750 2000 2250 2500 2750
f1(x)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

f 2
(x

)

Pref 1
Pref 2
Pref 3
Pref 4
Pref 5

(d) Four Bar Truss

f1(x)

0.0 0.2
0.4

0.6
0.8

1.0

f 2(x
)

0.0
0.2

0.4
0.6

0.8
1.0

f 3
(x

)

0.0
0.2
0.4
0.6
0.8
1.0

(e) Three Obj. Prefs.

f1(x)

0.0 0.2 0.4
0.6

0.8
1.0

f 2(x
)

0.0
0.2

0.4
0.6

0.8
1.0

f 3
(x

)

0.0
0.2
0.4
0.6
0.8
1.0

(f) DTLZ2

f1(x)

0 1 2 3 4 5

f 2(x
)

1.25
1.50

1.75
2.00

2.25
2.50

2.75

f 3
(x

)

0
5
10
15
20
25
30

(g) Disk Brake

f1(x)

0.2
0.4

0.6
0.8

1.0

f 2(x
)

0.2
0.4

0.6
0.8

1.0
1.2

f 3
(x

)

0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.0

(h) Rocket Injector

Figure 13: Learned Pareto Set with Different Preferences: Our proposed PSL model allows the
decision-makers to flexibly explore the approximate Pareto front to obtain any trade-off solution.
Suppose the decision-makers have different sets of preferred trade-offs, our model can successfully
generate the corresponding parts of the Pareto fronts. The preference assignment is not fixed, and the
decision-makers can adjust it and obtain the corresponding approximate solutions in real time.

Our proposed PSL method enables the decision-makers to easily adjust their preference to explore
the whole approximate Pareto set for making decisions. This ability is not supported by other
MOBO methods, which is important to flexibly incorporate the decision-maker’s preference and prior
knowledge into Bayesian optimization [30].

The decision-making process for real-world applications could be subjective. We follow a similar way
with other preference-based MOBO to show our method can successfully generate different trade-off
solutions. In Figure 13, suppose the decision-makers have different sets of trade-off preferences, our
model can generate the corresponding parts of the Pareto fronts for different problems. We uniformly
sample 1, 000 and 10, 011 preferences for the two-objective and three-objective problems respectively,
and use the learned Pareto set models to generate the corresponding approximate Pareto solutions. We
further divide the preferences into 5 exclusive parts, and label them with the corresponding solutions
in different colors. As shown in Figure 13, the corresponding connection from the preferences to the
solutions is clear for all problems.

By directly exploring the approximate Pareto front in an interactive manner, the decision-makers
can observe and understand the connection between preferences and corresponding solutions in
real-time. This ability could be beneficial for the decision-makers to further adjust and assign their
most accurate preferences.

30

F.8 Standard deviation on the approximated Pareto set

(a) Std for Obj1. (b) Std for Obj2. (c) Std for Obj3.

(d) Log Std for Obj1. (e) Log Std for Obj2. (f) Log Std for Obj3.

Figure 14: Standard deviation and log standard deviation for DTLZ2: The predicted standard
deviations for different objectives on the approximated Pareto front.

In addition to the predicted mean, our PSL method also provides the uncertainty information (e.g.,
predicted standard deviation) to support decision-making. Figure 14 shows the (log) predicted
standard deviations for different objectives on the approximate Pareto front of DTLZ2. According
to the results in Figure 14(a)(b)(c), we can observe that the PSL model has low predicted standard
deviations for almost all locations on the approximate Pareto front except the top corner and the top
left boundary. From the log standard deviations in Figure 14(d)(e)(f), we find that PSL has a higher
overall uncertainty level for objective 1/2 than objective 3, where the uncertainty distributions are
quite similar for the first two objectives.

31

F.9 Performance with different acquisition functions

0 25 50 75 100
Function Evaluations

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25
lo

g
HV

 D
iff

er
en

ce
EI
Predicted Mean
LCB (= 0.1)
LCB (= 0.5)
LCB (= 1.0)
LCB (= 2.0)

(a) VLMOP1

0 25 50 75 100
Function Evaluations

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
g

HV
 D

iff
er

en
ce

EI
Predicted Mean
LCB (= 0.1)
LCB (= 0.5)
LCB (= 1.0)
LCB (= 2.0)

(b) Four Bar Truss

0 25 50 75 100
Function Evaluations

7.0

7.5

8.0

8.5

9.0

9.5

10.0

lo
g

HV
 D

iff
er

en
ce

EI
Predicted Mean
LCB (= 0.1)
LCB (= 0.5)
LCB (= 1.0)
LCB (= 2.0)

(c) Pressure Vessel

Figure 15: The log hypervolume difference w.r.t. the number of expensive evaluation for PSL with
different acquisition functions.

For the proposed PSL method, we can use different acquisition functions as the surrogate value for
the Pareto set learning approach. Here, we compare the performance with 6 different acquisition
functions/settings, namely, the Expected Improvement (EI), Predicted Mean, and the Lower Confi-
dence Bound (LCB) with β = 0.1, 0.5, 1.0 and 2.0 on four benchmark and real-world application
problems.

According to the results shown in Figure 15, PSL with all 6 acquisition functions has reasonably
good performance. Although PSL with EI performs slightly worse than the other acquisitions, it can
still outperform many other MOBO algorithms with the results shown in Figure 5 of the main paper.
These results confirm that learning the approximate Pareto set during optimization could be beneficial
for MOBO.

Among the other acquisition functions and settings, no single choice can achieve the best performance
for all problems. The predicted mean acquisition can be seen as LCB with β = 0, which is a pure
exploitation strategy without considering the uncertainty (e.g., predicted variance) for exploration.
It might be surprising that this greedy acquisition can still have a pretty good performance. Indeed,
this greedy and purely exploitative approach has been recently studied and shown to have promising
performance for single-objective BO [71, 18]. DGEMO [53] also uses the predicted mean as an
acquisition function for MOBO. Garnett [30] briefly discusses this pure exploitative strategy at the
end of Section 7.10 (posterior mean acquisition function and lookahead). One limitation of this
greedy approach is that it might be stuck at a non-optimal location with no well-fitted surrogate
model due to overexploitation [30]. There are many acquisition policies for Bayesian optimization,
but finding the most suitable one for a given problem is still an open question [30], which is also the
case for our PSL method.

32

F.10 Results on problems with larger decision space

0 50 100 150 200
Function Evaluations

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6
lo

g
HV

 D
iff

er
en

ce

NSGA-II
MOEA/D-EGO
TSEMO
USeMO-EI
DGEMO
Sobol

qParEGO
TS-TCH
qEVHI
qNEVHI
PSL (Ours)

(a) F1

0 50 100 150 200
Function Evaluations

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

lo
g

HV
 D

iff
er

en
ce

(b) F2

0 50 100 150 200
Function Evaluations

1.75

1.50

1.25

1.00

0.75

0.50

0.25

lo
g

HV
 D

iff
er

en
ce

(c) F3

0 50 100 150 200
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(d) F4

0 50 100 150 200
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4
lo

g
HV

 D
iff

er
en

ce

(e) F5

0 50 100 150 200
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(f) F6

Figure 16: The log hypervolume difference w.r.t. the number of expensive evaluation for different
algorithms for F1-F6 problems with 20 dimensional search space. The solid line is the mean value
averaged over 10 independent runs for each algorithm, and the shaded region is the standard deviation
around the mean value. The label of each algorithm can be found in subfig(a).

We conduct experiments on more challenging problems proposed in Appendix E.1 with a 20-
dimensional decision space to further validate our proposed PSL method. The Pareto sets of these
problems are all different complicated space curves in the search space. We set the batch size to 10,
and run all algorithms with 20 batched evaluations. In other words, the evaluation budget is 200 for
all problems. The experimental results in Figure 16 show that our proposed PSL method still has a
promising performance on these problems.

According to the experimental results, the DGEMO [53] performs the best on these problems with
larger decision space. The DGEMO algorithm has a well-designed local search strategy, which fully
leverages the first and second order derivatives of the Gaussian process surrogate model to enrich its
large candidate set for selection. In addition, it also explicitly encourages exploring diverse solutions
during the optimization process. In contrast, for problems with larger decision space, our proposed
PSL method could learn an inaccurate Pareto set, which could mislead and slow down the search
process. In this work, we focus on the main idea of learning the Pareto set for MOBO problems, and
do not aggressively include other powerful methods into our proposed algorithm. Its performance
might be further improved by considering the second-order derivatives of GPs and diversity-guided
batch selection as in DGEMO [53].

F.11 Performance with Different Batch Sizes

We conduct additional experiments with different batch size (B = 10) as well as sequential evaluation
(B = 1) for all problems. The total number of evaluations is still 10 + 100 = 110 for all experiments.
In other words, these settings have 10 and 100 batched evaluations, respectively. The experimental
results are shown in Figure 17 and Figure 18. According to the results, our proposed PSL method
has a better or comparable performance with other MOBO methods in most experiments. It also
consistently outperforms the model-free scalarization methods with a large performance gap. These
promising performances, along with the efficient run time, confirm that it is worth building the Pareto
set model for expensive multi-objective optimization problems.

33

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6
lo

g
HV

 D
iff

er
en

ce

NSGA-II
MOEA/D-EGO
TSEMO
USeMO-EI
DGEMO
Sobol

qParEGO
TS-TCH
qEVHI
qNEVHI
PSL (Ours)

(a) F1

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

lo
g

HV
 D

iff
er

en
ce

(b) F2

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

lo
g

HV
 D

iff
er

en
ce

(c) F3

0 25 50 75 100
Function Evaluations

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(d) F4

0 25 50 75 100
Function Evaluations

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(e) F5

0 25 50 75 100
Function Evaluations

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(f) F6

Figure 17: Experimental results with Batch Size 10 on the log hypervolume difference w.r.t. the
number of expensive evaluation for different algorithms. The label of each algorithm can be found
in subfig(a).

0 25 50 75 100
Function Evaluations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

lo
g

HV
 D

iff
er

en
ce

(a) F1

0 25 50 75 100
Function Evaluations

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

lo
g

HV
 D

iff
er

en
ce

(b) F2

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

lo
g

HV
 D

iff
er

en
ce

(c) F3

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(d) F4

0 25 50 75 100
Function Evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(e) F5

0 25 50 75 100
Function Evaluations

1.4

1.2

1.0

0.8

0.6

0.4

lo
g

HV
 D

iff
er

en
ce

(f) F6

Figure 18: Experimental results with Batch Size 1 on the log hypervolume difference w.r.t. the
number of expensive evaluation for different algorithms.

34

G Licenses

Table 4 lists the licenses for the codes and problem suite we used in this work.

Table 4: List of licenses for the codes and problem suite we used in this work.
Resource Type Link License

PSL-MOBO (Ours) Code https://github.com/Xi-L/PSL-MOBO MIT License
Botorch[5] Code https://botorch.org/ MIT License
DEGMO[53] Code https://github.com/yunshengtian/DGEMO MIT License
pymoo[8] Code https://pymoo.org/ Apache License 2.0
reproblems[85] Problem Suite https://ryojitanabe.github.io/reproblems/ None

35

