
A Related Work

In this section, we briefly review few-shot learning (FSL) and two domain adaptation settings related
to the FHA problem, which include FDA, and source-data-free UDA (SFUDA).

Few-shot Learning. Existing FSL methods can be divided into three categories: (1) Augmenting
training data set by prior knowledge. Data augmentation via hand-crafted rules serves as pre-
processing in FSL methods. For instance, we can use reflection [8]; and (2) Constraining hypothesis
space by prior knowledge [32]; and (3) Altering search strategy in hypothesis space by prior knowl-
edge. For instance, we can use early-stopping [3]. Note that our method belongs to category (1).
However, the prior knowledge we have is more difficult to leverage than the prior knowledge that
FSL methods have.

Few-shot Domain Adaptation. With the development of FSL, researchers also apply ideas of FSL
into domain adaptation, called few-shot domain adaptation (FDA). FADA [33] is a representative
FDA method, which pairs data from source domain and data from target domain and then follows
the adversarial domain adaptation method. Casual mechanism transfer [46] is another novel FDA
method dealing with a meta-distributional scenario, in which the data generating mechanism is
invariant among domains. Nevertheless, FDA methods still need to access many labeled source data
for training, which may cause the private-information leakage of the source domain.

Hypothesis Transfer Learning. In the hypothesis transfer learning (HTL), we can only access a well-
trained source-domain classifier and small labeled or abundant unlabeled target data. [24] requires
small labeled target data and uses the Leave-One-Out error find the optimal transfer parameters.
Later, SHOT [26] is proposed to solve the HTL with many unlabeled target data by freezing the
source-domain classifier and learning a target-specific feature extraction module. [16] proposes an
image translation method that transfers the style of target images to that of unseen source images. As
for the universal setting, a two-stage learning process [23] has been proposed to address the HTL
problem. Compared with FHA, HTL still requires at least small target data (e.g., at least 12 samples
in binary classification problem [24], or at least two of labeling percentage [1]). In FHA, we focus on
a more challenging situation: only few data (e.g., one sample per class) are available.

B Proof of Theorem 1

We state here two known generalization bounds [5] used in our proof.
Lemma 1. Suppose that H is a set of functions from X to t0, 1u with finite V C-dimension V ě 1.
For any distribution P over X , any target function, and any ε, δ ą 0, if we draw a set of data from P
of size
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then with probability at least 1´ δ, we have |errphq ´ xerrphq| ď ε for all h P H.
Lemma 2. Suppose that H is a set of functions from X to t0, 1u with finite V C-dimension V ě 1.
For any probability distribution P over X , any target function c˚, we have
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then with probability at least 1´ δ, we have that all functions with xerrphq “ 0 satisfy

errphq ď ε.

Now we begin the proof of Theorem 1.

Proof. Let S be the set of mu unlabeled data. By standard VC-dimension bounds (e.g., Lemma 1),
the number of unlabeled data given is sufficient to ensure that with probability at least 1´ δ

2 we have
|Prx„ sSrχhpxq “ 1s ´ Prx„P rχhpxq “ 1s| ď ε for all χh P χpHq,
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(a) Fine-tuning (b) SHOT (c) S+FADA (d) T+FADA

Figure 6: Overview of benchmark solutions to the FHA problem. (a) We freeze the source encoder
gs and train the source classifier hs with the target data Dt. (b) We first train source encoder gs
and classifier hs , then we transfer them to the target domain. We generate pseudo labels for target
data, then we use them to train the target model with classifier ht freezed. (c) We generate some
source-like data under the guidance of the source classifier, then we combine them with FADA. (d)
We generate some data close to target domain, i.e. decreasing the distance between data and target
domain, then we combine them with FADA.

where sS denotes the uniform distribution over S.

Since χhpxq “ χph, xq, this implies that we have
|χph,Dq ´ χ̂ph, Sq| ď ε for all h P H.

Therefore, the set of hypotheses with χ̂ph, Sq ě 1´ t´ ε is contained in HP,χpt` 2εq.

The bound on the number of labeled data now follows directly from known concentration results
using the expected number of partitions instead of the maximum in the standard VC-dimension
bounds (e.g., Lemma 2). This bound ensures that with probability 1 ´ δ

2 , none of the functions
h P HP,χpt` 2εq with errphq ě ε have xerrphq “ 0.

The above two arguments together imply that with probability 1´ δ, all h P H with xerrphq “ 0 and
χ̂ph, Sq ě 1 ´ t ´ ε have errphq ě ε, and furthermore c˚ has χ̂pc˚, Sq ě 1 ´ t ´ ε. This in turn
implies that with probability at least 1´ δ, we have errpĥq ď ε, where

ĥ “ argmax
hPH0

χ̂ph, Sq.

C Datasets

Digits. Following the evaluation protocol of [33], we conduct experiments on 6 adaptation scenarios:
MÑS, SÑM, MÑU, UÑM, SÑU and UÑS. MNIST [25] images have been size-normalized and
centered in a fixed-size (28 ˆ 28) image. USPS [18] images are 16 ˆ 16 grayscale pixels. SVHN
[35] images are 32ˆ 32 pixels with 3 channels.

Objects. We also evaluate TOHAN and benchmark solutions on CIFAR-10 [22] and STL-10 [4],
following [39]. The CIFAR-10 dataset contains 60, 000 32ˆ 32 color images in 10 categories. The
STL-10 dataset is inspired by the CIFAR-10 dataset but with some modifications. However, these
two datasets only contain nine overlapping classes. We removed the non-overlapping classes (“frog”
and “monkey”) [39].

D Benchmark Solutions for FHA

To solve the FHA problem, this section presents 5 benchmark solutions that directly combine existing
techniques used in the deep learning and domain adaptation fields.

Without adaptation. Since we have a source-domain classifier, we can directly use it to classify
the target data, which is a frustrating solution to the FHA problem.

Fine-tuning. See Figure 6(a). Fine-tuning is a basic solution to the FHA problem. We freeze the
source encoder gs and train the source classifier hs with the target data Dt. In this way, knowledge
about target domain is filled into source hypothesis.
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(a) S+FADA

(b) TOHAN (c) Classification accuracy of two approaches
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Figure 7: A straightforward solution for FHA is a two-step approach. Namely, we can first generate
source data and then train a target-domain classifier using the generated source data and an FDA
method (e.g., few-shot adversarial domain adaptation (FADA)). A visualized comparison between
S+FADA and TOHAN (take MNISTÑUSPS as an example) is displayed in subfigures (a) and (b). On
the left side, Subfigure (a) illustrates source-domain data generated by a two-step method: S+FADA.
It is clear that the generated data are just noise and do not contain useful information about the source
domain. In subfigure (b), we illustrate the intermediate-domain data generated by our method (i.e.,
TOHAN). It is clear that the generated intermediate-domain data contain useful information about
two domains. In subfigure (c), the histogram shows classification accuracy of the two methods, and
TOHAN outperforms S+FADA clearly.

SHOT. See Figure 6(b). SHOT is a novel method for source hypothesis transfer [26]. It learns
the optimal target-specific feature learning module to fit the source hypothesis with only the source
classifier. We first train source encoder gs and classifier hs , and then we transfer them to the target
domain. SHOT is an UDA method. Thus, we generate pseudo labels for target data, and then we use
them to train the target model with classifier ht freezed. Although SHOT is suitable for our FHA
problem, it requires a lot of target data, which is an obstacle for FHA.

S+FADA. See Figure 6(c). As mentioned in Figure 7, a straightforward solution to the FHA
problem is a two-step approach. We can train a source-data generator G under the guidance of source
hypothesis, and then we use it to generate source data. First, we input Gaussian random noise z to
G, then G outputs various disordered data. Second, these data is inputted into gs˝hs, and then hs
outputs the probability of Gpzq belonging to each class. Third, if we would like to generate data
belonging to nth class, we should optimize G to push the probability of Gpzq belonging to n near
to 1. Finally, we can apply the restored source data into an adversarial DA method to train a target
domain classifier ht.

T+FADA. See Figure 6(d). Different from S+FADA, we train a generator with the help of target
data instead, and then we generate data close to target domain. We input Gaussian random noise z
to generator G and minimize the distance between Gpzq and target data. Finally, we sequentially
combine these generated data with adversarial DA method to train a target-domain classifier.

E Implementation Details

We implement all methods by PyTorch 1.7.1 and Python 3.7.6, and conduct all the experiments on
two NVIDIA RTX 2080Ti GPUs.

Network architecture. We select architecture of generators Gn (n “ 1, . . . , N ) from DCGAN
[38]. For digits tasks, the encoder g, classifier h and group discriminator D share the same architecture
in all 6 tasks, following FADA [33]. As for encoder g, we employ the backbone network of LeNet-5
with batch normalization and dropout. For classifier h, we adopt one fully connected layer with
softmax fuction. For group discriminator D, we adopt 3 connected layers with softmax function. For
objects tasks, we employ Densenet-169 [17] as encoder g.

Network hyper-parameters. We set fixed hyper-parameters in every method which is irrelevant
to dataset, based on the common protocol of domain adaptation [39]. The batch size of generator
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(a) WA. (b) FT. (c) SHOT.

(d) S+F. (e) T+F. (f) TOHAN.

Figure 8: The t-SNE visualization for a 10-way classification task (taking MNISTÑUSPS as an
example). When we use WA and FT methods, nearly all classes mix together. Although the
classification accuracy of SHOT, S+F and T+F are relatively high, there are still a little mixtures
among classes. For TOHAN, it can be seen that all classes are separated well. Namely, TOHAN
works well for solving FHA problem.

is set to 32, and the batch size of group discriminator, encoder, classifier is all 64. We pre-train the
group discriminator for 100 epochs. Meanwhile, the numbers of training steps of generator, group
discriminator, encoder, classifier are set to 500, 50, 50, 50, respectively. Adam optimizer is with
the same learning rate of 1ˆ 10´3 in generators, encoder, classifier and group discriminator. The
tradeoff parameter β in Eq. (9) is set to 2

1`expp´10 9qq ´ 1, same as [31]. And the tradeoff parameter λ
in Eq. (7) is set to 0.2 fixed. For the fair comparisons, we only resize and normalize the image and do
not use any addition data augment or transformation. Note that, for each experiment, we report the
result of the model trained in the last epoch.

F Additional Experiments about HTL

In this section, we compare TOHAN with another novel HTL method, i.e., dynamic knowledge
distillation for HTL (dkdHTL) [53]. It is worth noting that dkdHTL is a black-box HTL method.
That is, we cannot access the parameters of source model. Therefore, in distillation loss, we cannot
get the logits, which is used to compute the soften probabilities with a high temperature T ą 1. To
address this problem, they tried to solve the logits through soften probabilities approximately. For the
sake of fairness, we convert dkdHTL to white-box version. Specifically, we use the standard softmax
function in distillation loss, instead of the approximate version. Moreover, we initial the parameters
of target model by source model. Then, we show the results of dkdHTL in Table 5 and Table 6.

We find that TOHAN outperforms dkdHTL in most tasks significantly. However, in SÑM, UÑM,
and SÑU, there exists few subtasks that dkdHTL outperforms TOHAN. In these three tasks, the
complexity of source domain is high, while the complexity of target domain is low. TOHAN
cannot generate qualified intermediate data effectively when the number of target data is very few
and the source domain is highly complex simultaneously. dkdHTL is only suitable for tasks with
uncomplicated target domain. The main reason is that the training data of dkdHTL are only the few
target data. If the target domain is complex, it is very easy to overfit. Therefore, as for tasks with
complex target domains, TOHAN has the upper hand.
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Table 5: Comparison between dkdHTL and TOHAN. We report the classification accuracy˘standard
deviation (%) on 6 digits FHA tasks. Bold value represents the highest accuracy on each column.

Tasks FHA Number of Target Data per Class
Methods 1 2 3 4 5 6 7

MÑS dkdHTL 24.1˘0.7 24.1˘0.3 24.5˘0.6 24.4˘1.1 25.4˘0.8 25.7˘0.5 26.1˘1.1
TOHAN 26.7˘0.1 28.6˘1.1 29.5˘1.4 29.6˘0.4 30.5˘1.2 32.1˘0.2 33.2˘0.8

SÑM dkdHTL 71.2˘1.2 83.4˘0.4 88.5˘0.6 88.2˘0.7 89.5˘0.7 89.6˘0.4 90.3˘0.2
TOHAN 76.0˘1.9 83.3˘0.3 84.2˘0.4 86.5˘1.1 87.1˘1.3 88.0˘0.5 89.7˘0.5

MÑU dkdHTL 65.2˘0.6 70.5˘1.3 74.4˘0.6 77.8˘0.6 78.6˘0.9 78.8˘1.1 79.0˘1.3
TOHAN 87.7˘0.7 88.3˘0.5 88.5˘1.2 89.3˘0.9 89.4˘0.8 90.0˘1.0 90.4˘1.2

UÑM dkdHTL 83.2˘0.2 85.5˘0.5 85.9˘0.4 85.7˘0.8 86.2˘0.2 86.2˘0.4 86.8˘0.3
TOHAN 84.0˘0.5 85.2˘0.3 85.6˘0.7 86.5˘0.5 87.3˘0.6 88.2˘0.7 89.2˘0.5

SÑU dkdHTL 76.3˘0.3 77.6˘0.5 78.9˘0.4 79.5˘0.4 80.2˘0.5 80.7˘0.4 82.1˘0.4
TOHAN 75.8˘0.9 76.8˘1.2 79.4˘0.9 80.2˘0.6 80.5˘1.4 81.1˘1.1 82.6˘1.9

UÑS dkdHTL 20.5˘0.8 20.9˘0.4 21.7˘0.3 23.8˘0.2 24.5˘0.7 25.5˘0.6 25.7˘0.4
TOHAN 29.9˘1.2 30.5˘1.2 31.4˘1.1 32.8˘0.9 33.1˘1.0 34.0˘1.0 35.1˘1.8

Table 6: Comparison between dkdHTL and TOHAN. We report the classification accuracy˘standard
deviation (%) on 2 objects FHA tasks: CIFAR-10Ñ STL-10 and STL-10Ñ CIFAR-10. Bold value
represents the highest accuracy (%) among TOHAN and benchmark solutions.

Tasks dkdHTL TOHAN

CIFAR-10Ñ STL-10 70.8˘0.7 72.8˘0.1

STL-10Ñ CIFAR-10 52.4˘0.5 56.6˘0.3

G Additional Analysis

Visualization of Results. We use t-SNE to visualize the feature (the penultimate layer of the
classifier) extracted by TOHAN and 5 benchmark solutions on MÑU task (see Figure 8). When we
use WA and FT methods, nearly all classes mix together. Although the classification accuracy of
SHOT, S+F and T+F are relatively high, there are still a little mixtures among classes. For TOHAN,
all classes are separated well, which demonstrates that TOHAN works well for solving FHA problem.

Detailed Analysis of Ablation Study. Table 7 shows the full results of ablation study. It is clear
that TOHAN performs better than the corresponding two-step approach ST+FADA. However, when
the number of target data is too small, ST+FADA may outperform TOHAN with a small probability.
The reason for this abnormal phenomenon may be the limitation of target data. Although we use the
technique of paring data, overfitting still occurs when data are scarce.

H Limitations

The main limitation in this paper is that the run time of TOHAN is a little long. The main reason
causing the long run time is the generation part of TOHAN. Specifically, the second term of Eq. (7)
is time-consuming, as we need to calculate the distances between each intermediate data and each
target data. We will optimize the generation part to overcome the time-consuming problem.

Although the generation part of TOHAN is a little time consuming, it solves the challenge of lacking
source data in FHA efficiently. TOHAN can generate intermediate data containing the knowledge
of source domain and target domain. Therefore, we not only adapt more useful source domain
knowledge to target domain, but also prevent the privacy leakage of source domain.

I Potential Negative Societal Impacts

The main potential negative societal impact in this paper is that TOHAN has a certain randomness.
This is, TOHAN may not perform well consistently across various tasks. For example, TOHAN may
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Table 7: Ablation Study. Bold value represents the highest accuracy (%) on each column. Data
behind ’˘’ is the standard derivation.

Tasks FHA Number of target data
Methods 1 2 3 4 5 6 7

MÑS

S+FADA 25.6˘1.3 27.7˘0.5 27.8˘0.7 28.2˘1.3 28.4˘1.4 29.0˘1.0 29.6˘1.9
T+FADA 25.3˘1.0 26.3˘0.8 28.9˘1.0 29.1˘1.3 29.2˘1.3 31.9˘0.4 32.4˘1.8

ST+FADA 25.7˘0.7 28.1˘0.9 28.5˘1.2 29.2˘1.0 29.2˘0.8 31.3˘1.7 32.0˘0.8
TOHAN 26.7˘0.1 28.6˘1.1 29.5˘1.4 29.6˘0.4 30.5˘1.2 32.1˘0.23 33.2˘0.8

SÑM

S+FADA 74.4˘1.5 83.1˘0.7 83.3˘1.1 85.9˘0.5 86.0˘1.2 87.6˘2.6 89.1˘1.0
T+FADA 74.2˘1.8 81.6˘4.0 83.4˘0.8 82.0˘2.3 86.2˘0.7 87.2˘0.8 88.2˘0.6

ST+FADA 74.3˘1.2 83.7˘1.0 83.8˘0.8 85.8˘0.6 86.0˘0.9 87.7˘0.8 89.0˘0.6
TOHAN 76.0˘1.9 83.3˘0.3 84.2˘0.4 86.5˘1.1 87.1˘1.3 88.0˘0.5 89.7˘0.5

MÑU

S+FADA 83.7˘0.9 86.0˘0.4 86.1˘1.1 86.5˘0.8 86.8˘1.4 87.0˘0.6 87.2˘0.8
T+FADA 84.2˘0.1 84.2˘0.3 85.2˘0.9 85.2˘0.6 86.0˘1.5 86.8˘1.5 87.2˘0.5

ST+FADA 86.1˘1.5 87.1˘1.6 86.9˘0.7 87.9˘1.1 88.0˘1.2 88.3˘0.7 88.5˘1.3
TOHAN 87.7˘0.7 88.3˘0.5 88.5˘1.2 89.3˘0.9 89.4˘0.8 90.0˘1.0 90.4˘1.2

UÑM

S+FADA 83.2˘0.2 83.9˘0.3 84.9˘1.2 85.6˘0.5 85.7˘0.6 86.2˘0.6 87.2˘1.1
T+FADA 82.9˘0.7 83.9˘0.2 84.7˘0.8 85.4˘0.6 85.6˘0.7 86.3˘0.9 86.6˘0.7

ST+FADA 84.0˘0.7 84.2˘0.5 85.3˘1.0 85.6˘1.2 86.7˘1.0 86.5˘0.5 88.0˘1.0
TOHAN 84.0˘0.5 85.2˘0.3 85.6˘0.7 86.5˘0.5 87.3˘0.6 88.2˘0.7 89.2˘0.5

SÑU

S+FADA 72.2˘1.4 73.6˘1.4 74.7˘1.4 76.2˘1.3 77.2˘1.7 77.8˘3.0 79.7˘1.9
T+FADA 71.7˘0.6 74.3˘1.9 74.5˘0.8 75.9˘2.1 77.7˘1.5 76.8˘1.8 79.7˘1.9

ST+FADA 73.1˘0.9 75.2˘1.3 75.9˘0.8 76.3˘1.5 78.3˘1.6 79.1˘1.7 79.7˘1.6
TOHAN 75.8˘0.9 76.8˘1.2 79.4˘0.9 80.2˘0.6 80.5˘1.4 81.1˘1.1 82.6˘1.9

UÑS

S+FADA 28.1˘1.2 28.7˘1.3 29.0˘1.2 30.1˘1.1 30.3˘1.3 30.7˘1.0 30.9˘1.5
T+FADA 27.5˘1.4 27.9˘0.9 28.4˘1.3 29.4˘1.8 29.5˘0.7 30.2˘1.0 30.4˘1.7

ST+FADA 28.1˘1.3 28.9˘0.7 29.2˘1.5 29.8˘1.2 31.0˘0.9 31.2˘0.9 33.2˘1.7
TOHAN 29.9˘1.2 30.5˘1.2 31.4˘1.1 32.8˘0.9 33.1˘1.0 34.0˘1.0 35.1˘1.8

fail to adapt knowledge between two domains that have a large discrepancy. Therefore, if TOHAN
makes a mistake in a critical area, the consequences will be bad.
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