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1 Scene Understanding1

1.1 Object detection + OCR2

Because ViLD is a general-purpose detector, it cannot easily distinguish between objects belonging3

to the same domain (e.g., Advil versus Ibuprofen). Because of this, we use OCR with Keras OCR[1]4

to improve the quality of the object detections. While OCR has been used in prior work to aid object5

detection [2], we use text embedding combined with OCR for better performance. For each object,6

we concatenate the text observed on it and compute the text embedding using OpenAI Embeddings.7

We compute the dot product between the embeddings of the concatenated text and every class label.8

We normalize this probability vector by subtracting the minimum value and then adjusting the vector9

with some temperature. We finally multiply this by the object detection probability vector.10

Let Ci denote the class label of object Oi (e.g., “Tylenol” as opposed to the broader category “medi-11

cation”); Ii represent the general shape, size, and color-related features of Oi; and Ti be the detected12

text on Oi. Recall that all objects belong to some class Ci. We calculate13

P (Ci| Ii, Ti)

=
P (Ii, Ti|Ci) · P (Ci)

P (Ii, Ti)

=
P (Ti|Ii, Ci) · P (Ii|Ci) · P (Ci)

P (Ii, Ti)

=
P (Ti|Ci) · P (Ii|Ci) · P (Ci)

P (Ii, Ti)

=
P (Ci|Ti)P (Ti)

P (Ci)
· P (Ci|Ii)P (Ii)

P (Ci)
· P (Ci)

P (Ii, Ti)

∝ P (Ci|Ti)P (Ci|Ii)

as Ti is independent of Ii when conditioned on Ci, and P (Ci) is uniform. This illustrates that the14

multiplication of the OCR probabilities and the object detection probabilities can give us a refined15

estimate of the category probabilities.16

We test object detection performance on scenes generated through isolated perception experiments.17

We take RGB images of 100 scenes of the Pharmacy domain using a high-resolution camera and18

study the effect of having OCR.19

Results for this experiment are in Table 1. As is standard in the computer vision literature, we20

report mAP (mean Average Precision) averaged over intersection-over-union (IOU) thresholds from21

0.50 to 0.95 with a step size of 0.05, as well as top-k classification accuracy (i.e., if the ground22

truth label appears in the k labels with the highest probabilities). The results show that OCR leads23

to a significant improvement across all metrics, with mAP improving by a factor of 12 and top-124

accuracy improving by a factor of 3.25
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Table 1: Object Detection Refinement Results. We study the effect of OCR and report the mean average
precision (mAP) of the predicted bounding boxes and top-K accuracy of the predicted labels.

Method mAP (↑) Top-K Accuracy % (↑)
k=1 k=3 k=5

ViLD 2.4 14.7 32.3 41.6
ViLD + OCR 28.9 45.0 62.0 69.5

2 Creating the Semantic Distribution26

2.1 Offline Semantic Distribution Generation with Object List27

We now generate a semantic distribution based on the affinity matrix and detected objects. The se-28

mantic occupancy distribution models the probability that the target object occupies a given location,29

given the classes of observed objects in the scene, i.e. P (LT = l | L1...n = l1...n, C1...n = c1...n),30

where LT is the location of the target object, L1...n are the positions of the visible objects, and C1...n31

are the inferred classes of the visible objects. We abbreviate this quantity as P (LT = l |L,C).32

We interpret affinity values Mij to be the probability of object j being the closest to object i in33

expectation across scenes. However, given the current scene, there may be more or less space that34

is nearest to a particular object, so we interpret these affinity values as being normalized per unit35

area. Thus, formally, given N(l) representing the index of the object closest to location l = (xl, yl),36

P (LT = l |L,C) ∝ Mtarget,N(l).37

In simulation experiments for constrained environments, N(·) is computed using the 3D coordinates38

of the visible objects obtained from the depth image. We compute the 2D semantic occupancy39

distribution (in the horizontal plane of the shelf) and reduce it to 1D by summing along camera rays.40

In physical experiments, to avoid errors due to noisy depth readings we compute the distribution41

directly in 2D, using pixel distance for N(·) instead of world coordinates.42

3 Combining with Downstream Policies43

3.1 Constrained Environments44

We consider the problem of robotic mechanical search for a target object OT in a cluttered, se-45

mantically organized shelf containing the target and N other rigid objects {O1, ...,ON} of cuboidal46

shapes in stable poses. We build on the problem statement and assumptions in Huang et al. [3]. We47

model the setup as a finite-horizon Partially Observable Markov Decision Process (POMDP). States48

st ∈ S consist of the full geometries and poses of the objects in the shelf at timestep t and obser-49

vations yt ∈ Y = RH×W×4 are RGBD images from a robot-mounted depth camera at timestep t.50

Actions at ∈ A = Ap ∪ As are either pushing or suction actions, where the former are horizontal51

linear translations of an object along the shelf and the latter pick up an object with a suction gripper52

and translate it to an empty location on the shelf with no other objects in front of it. We make the53

following assumptions:54

• The dimensions of the shelf are known.55

• Each dimension of each object is between size Smin = 5 cm and size Smax = 25 cm.56

• The shelf is semantically organized.57

• The names of all objects in the shelf are a subset of a known list of object names.58

• Actions cannot inadvertently topple objects or move multiple objects simultaneously.59
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Table 2: Simulation Experiment Results.

Pharmacy Domain
12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes # Actions Successes # Actions
LAX-RAY 168/190 4.06± 0.23 160/186 5.17± 0.28 144/188 5.78± 0.44 104/177 8.24± 0.67
OWSMS-E 176/190 2.90± 0.18 159/186 3.77± 0.26 146/188 5.05± 0.42 110/177 5.69± 0.54

OWSMS-LLM 176/190 2.66± 0.14 162/186 3.26± 0.19 150/188 4.25± 0.34 118/177 5.47± 0.43

Kitchen Domain
12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes # Actions Successes # Actions
LAX-RAY 185/192 2.15± 0.14 182/194 2.97± 0.23 177/193 3.99± 0.29 159/191 4.36± 0.38
OWSMS-E 186/192 1.56± 0.08 188/194 2.15± 0.15 184/193 3.00± 0.27 167/191 3.07± 0.25

OWSMS-LLM 184/192 1.60± 0.10 184/194 2.04± 0.13 179/193 2.97± 0.26 163/191 3.17± 0.28

Office Domain
12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes # Actions Successes # Actions
LAX-RAY 172/194 2.60± 0.18 152/188 4.15± 0.38 136/190 4.64± 0.37 115/181 5.86± 0.56
OWSMS-E 173/194 3.01± 0.22 152/188 3.80± 0.31 140/190 4.78± 0.44 115/181 5.33± 0.50

OWSMS-LLM 172/194 2.33± 0.13 161/188 3.50± 0.31 142/190 3.75± 0.32 123/181 5.50± 0.49

4 Experiments60

4.1 Scene Generation61

The taxonomy defines a tree where each category is a node and each object name is a leaf node.62

To create a scene with N objects in a given domain, we begin by uniformly sampling N objects63

without replacement from the total objects available in that domain. We then generate scenes in64

a top-down recursive manner using the taxonomy tree. At the root, we start with the whole shelf65

available to us. At each node, we split the shelf in half either horizontally or vertically with 50%66

probability each and recursively continue scene generation in these sub-shelves. If a node has more67

than 8 descendants, however, we always split the scene horizontally to avoid overcrowding resulting68

from the aspect ratio of the shelf. At each level of recursion, we accumulate random noise to the69

eventual placement of each object in the current branch, uniformly sampled from -2 cm to 2 cm. At70

the last non-leaf node, we place all leaves in random positions within the current level’s sub-shelf.71

We resolve collisions by iteratively moving objects along the displacement vector between colliding72

objects and discard scenes where such a procedure takes longer than 1 second to run. We also discard73

scenes where there is no potential target object that is invisible from the camera’s perspective at the74

start of the rollout. We reiterate that the taxonomy is independent of the language models used75

to generate affinities. The LLMs are applicable beyond manual semantic categorizations like the76

Google Taxonomy, but we use this resource for evaluation purposes. The scenes for all simulation,77

physical, and object detection experiments are generated by this procedure.78

We use approximate sizes of these items to generate collision-free scenes. In simulation, we also79

scale these objects down in order to be able to run experiments on the same-sized shelf, which has80

an effect similar to running experiments in a larger shelf where more items could originally fit. The81

scaling factors for the pharmacy and kitchen domains are 0.7, but 0.4 in the office domain due to82

overall larger objects unable to easily fit and move within a small shelf.83

4.2 Simulation Object Retrieval Experiments84

We run an extensive suite of experiments using the same simulator as prior work in mechanical85

search on shelves [4] and study the benefit brought by OWSMS. We use a grid search on the average86

number of actions required in the pharmacy domain with 15 objects to tune the Gaussian smoothing87

σ to be 50 pixels and γ for PaLM to be 1 and for OpenAI Embeddings to be 0.004. We use the same88

parameters for the other two domains.89

We generate scenes with various numbers of objects: N = 12, 15, 18, and 21. We generate 20090

scenes for each value of N . We discard scenes where the target object starts out visible, resulting in91
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Figure 1: More examples of the semantic distributions generated by different methods from the static dataset.

just under 200 scenes for each value of N . Termination occurs when at least X = 1% of the target92

object becomes visible or reaching maximum action number 2N . The reason for the low threshold93

is that the DAR policy has trouble making progress on a partially revealed target object [4], which94

may dilute the comparison between different methods for generating semantic distributions.95

We report results for all numbers of objects N in Table 2, OWSMS-LLM outperforms both96

OWSMS-E, while also beating LAX-RAY across various values of N in terms of success rate (by97

an additional 30/741 scenes) and average number of actions required (by 32.4%). A point of note98

is that the action differential percentage grows as the number of objects increases. At 21 objects,99

LAX-RAY requires 8.24 actions on average, whereas OWSMS requires just 5.47. This trend agrees100

with intuition that it is unscalable to search large environments with no semantic intuition.101

4.3 Physical Object Retrieval Experiment102

Because the RealSense camera is not able to capture the fine details of the text on the objects when103

observing the entire scene at resolution 640×480 pixels, we perform a three-stage scan of the scene104

by moving the end-effector to 3 adjacent positions, all of which are closer to the shelf, where the105

text is more easily readable. At each of these poses, we take a picture of the scene, project the106

known world position of the objects to the new camera frame, identify text with OCR, and assign107
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each text detection to the object it is contained in. If there are detections on the same object from108

multiple scan locations, we use the OCR that has the lowest entropy for its distribution, a measure109

of confidence. During the physical experiments rollouts, when the action given by the policy causes110

unintentional toppling or a missed grasp due to depth sensor noise, we reset the object to undo the111

action and run the policy again.112

4.4 Experiments for Unconstrained Environments113

More examples of the semantic distribution comparison between OWSMS and CLIP based models114

are shown above.115

5 Object Lists in Constrained Environments116

Pharmacy Domain : vitamins , fish oil , omega-3 , calcium , probiotics , protein powder , COQ10117

, anthocyanin , shampoo , conditioner , toothpaste , toothbrush , dental floss , face wash , sunscreen118

, lotion , hand cream , body wash , aspirin , tylenol , ibuprofen , advil , pain relief , shaving cream ,119

eye drops , deodorant , band-aid120

Kitchen Domain : spoon , ladle , spatula , tongs , whisk , fork , peeler , grater , saucepan , frying121

pan , salt , pepper , cumin , coriander , basil , turmeric , parsley , oregano , sugar , flour , cornstarch122

, oats , quinoa , rice123

Office Domain :pen , pencil , highlighter , sticky note , binder paper , printer paper , index card124

, paper CLIP , rubber band , stapler , staples , tape dispenser , 3-hole punch , dry erase marker ,125

sharpie , label maker , notebook , eraser , white-out , calculator , thumbtack , pencil sharpener ,126

bubble wrap , styrofoam , packing tape , shipping boxes , ethernet cable , modem , router , network127

card , network bridge , headphones , speakers , aux cable , microphone , keyboard , mouse , USB128

adapter , hard drive , flash drive129
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