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A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we employed Large Language Models (LLMs) solely as a writing
assistance tool for limited text polishing and language refinement. LLMs were not involved in
any aspects of research ideation, conceptual development, technical analysis, algorithm design,
experimental execution, or result analyses. All scientific contributions, methodological innovations,
and intellectual content remain entirely our own.

B DISCUSSION

Limitation. The performance of the student modle is influenced by the teacher model used for
pretraining. Additionally, due to limitations in computational resource, we have only tested our
method on image datasets and downstream tasks. However, our approach is also applicable to
human-centric video understanding tasks, which will be explored in our future work.

Broader Impact. As demonstrated in Section 4, our method outperforms existing pretraining meth-
ods across various downstream tasks, highlighting the potential of DPAL as a novel distillation-based
pretraining paradigm. Moreover, DPAL serves as an efficient knowledge distillation technique that
enables the development of compact variants of large HVMs, making them suitable for deployment
on resource-constrained edge devices. Additionally, DPAL eliminates the necessity of accessing
the teacher model’s original pretraining datasets by utilizing a relatively small open-source dataset
of approximately 1 million images for pretraining. This pretraining paradigm significantly reduces
training costs and enhances the accessibility of DPAL for the research community, thereby broadening
its potential applications. Furthermore, the codebase developed in this work is publicly released to
promote reproducibility and further advancements in research.

C MORE IMPLEMENTATION DETAILS

C.1 MODEL ARCHITECTURE

Backbone. We conducted experiments on various student backbones and teacher backbones, with
the corresponding settings presented in Table 1.

Dynamic Pattern Decoder. The dynamic pattern decoder comprises a self-attention module, a
router module, three experts and a dynamic expert generator. The router is responsible for assigning
experts to different visual tokens. The experts specialize in handing specific patterns. The dynamic
expert generator produces weights for experts conditioned on the visual tokens and pattern queries.

Dynamic Expert Generator. The dynamic expert generator consists of self-attention, cross-
attention, and FFN modules. We design three learnable expert tokens Te = [T 1

e , T
2
e , T

3
e ], which pass

through self-attention, cross-attention, and FFN modules to update the parameters of the three experts.
In the cross-attention module, representations from backbone are used as the keys and values, while
the expert tokens serve as the queries. The cross-attention module ensures that the parameters of the
experts are updated based on the corresponding representations and pattern queries, enabling each
expert to selectively focus on the most relevant pattern.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Configuration of neural architectures. Both Vision Transformer (ViT-X) and Swin
Transformer (Swin-X) are used for investigation.

Arch Patch size Embed dim Heads Blocks

ViT-Ti 16 192 6 12
ViT-S 16 384 6 12
ViT-B 16 768 12 24

Arch Patch size Window
size

Embed dim Heads Blocks

Swin-Ti 4 7 96 (3,6,12,24) (2,2, 6,2)
Swin-S 4 7 96 (3,6,12,24) (2,2,18,2)
Swin-B 4 7 128 (4,8,16,32) (2,2,18,2)

Router. We designed a router that dynamically assigns experts to distanct visual patterns, thereby
decoupling the alignment learning of three visual patterns. We designed a learnable router token
Tr, using the representations extracted by the backbone as keys and values. The routing token
dynamically adjusts the weights of different experts We based on different patterns, enabling the
model to effectively capture diverse patterns and enhance its performance in complex visual tasks.

Table 2: Configurations of pretraining.

Configuration Value

Batch size 2048
Optimizer AdamW

Learning rate 2.5e–4
Learning rate decay Consine scheduler

Weight decay 0.05
Warmup epochs 10

Epochs 100
Image size 256× 128

C.2 PRETRAINING DETAILS

All lightweight HVMs are pretrained using 8
A6000 48G GPUs. We employ the AdamW opti-
mizer(Loshchilov & Hutter, 2017) with an effective
batch size of 2048 (i.e., 256 per GPU). As shown in
Table 2, each model is pretrained from scratch for 100
epochs. The learning rate is 2.5e-4 and is decayed via
Cosine Annealing scheduler(Loshchilov & Hutter,
2016). The single-person image size is 256 × 128,
while the multi-person image is 256× 256.

C.3 FINETUNING DETAILS

We utilize representative methods from downstream tasks as baselines, subsequently replacing their
backbones with our pretrained backbones for finetuning. The list of codebases used for evaluation is
presented in Table 3.

Table 3: Implementation codebases and configurations of fine-tuning on 12 datasets.

Task Dataset Codebases Image size Learning rate Epoch

I2I ReID
Market1501 (Zheng et al., 2015)

SOLIDER (Chen et al., 2023) 256× 128 2e-4 120
MSMT17 (Wei et al., 2018)

T2I ReID
CUHK-PEDES(Li et al., 2017)

IRRA (Jiang & Ye, 2023) 384× 128 1e-4 60
ICFG-PEDES(Ding et al., 2021)

Attribute recognition
PA100(Liu et al., 2017)

SOLIDER (Chen et al., 2023) 256× 128 1e-4 25
PETAzs(Deng et al., 2014)

Pose estimation COCO keypoint(Lin et al., 2014) ViTPose (Xu et al., 2022) 256× 192 5e-4 210

Landmark detection Whole-body COCO(Jin et al., 2020) ViTPose (Xu et al., 2022) 256× 192 5e-4 210

Human parsing LIP (Liang et al., 2018) SOLIDER(Chen et al., 2023) 576× 384 7e-4 150

Pedestrian detection CrowdHuman(Shao et al., 2018) CrowdDet (Chu et al., 2020) 1400× 800 2e-4 30

Multiple human parsing CIHP(Gong et al., 2018) Cpi-parser (Wang et al., 2024) 1333× 800 2e-2 25

Part-level attribute parsing Fashionpedia(Jia et al., 2020) KE-RCNN (Wang et al., 2023) 1024× 1024 1e-4 32
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Table 4: The computational cost in pretraining stage, involving training epoch, training time (Hours)
and Memory per GPU (GB).

Setting ViTKD MaskedKD ScaleKD TinyMiM Proteus DPAL

Epochs 300 300 200 300 300 100
Time 41 26 60 15 30 22
Memory 10 22 26 24 16 26

Downstream Tasks

I2I Person ReID 90.5 79.7 81.6 91.6 93.6 95.2
Human Parsing 52.0 50.9 55.6 53.0 54.3 55.9
Pedestrian Detection 86.6 84.2 87.4 86.4 87.6 88.7

Table 5: Investigating the effect of DPAL on vision-language spatial reasoning task.

Evaluation on OmniSpatial

Method Vision Encoder Avg.
Dynamic

Reasoning

Spatial

Interaction

Complex

Logic

Perspective

Taking

LLaVA-1.5-7B
CLIP-ViT-L (304M) 34.97 54.46/31.23 35.29/36.19/33.94 29.01/24.08 55.60/34.66/35.14

DPAL-ViT-T (5M) 35.62 45.95/26.30 56.47/35.24/42.73 18.56/25.16 53.92/36.70/46.99

Evaluation on Robo2VLM

Method Vision Encoder Avg.
Spatial Reasoning

RS/OS/SR/SU/MV

Goal Reasoning

TS-G/TS-S/TS-GL

Interaction Reasoning

AU/IP/TU

LLaVA-1.5-7B
CLIP-ViT-L (304M) 21.58 35.32/23.87/16.08/17.78/17.50 31.82/23.79/19.03 20.30/21.74/22.37

DPAL-ViT-T (5M) 24.58 53.66/27.16/19.29/2.52/17.31 29.55/19.88/46.88 17.24/21.18/31.82

D ABLATION STUDY

D.1 TRAINING EFFICIENCY

From the results listed in Table 4, we observe that the proposed DPAL achieves superior downstream
performance while maintaining comparable pretraining costs. As shown in Table 1, all methods
require 15 40 hours, while the proposed DPAL requires 22 hours. Second, from the perspective
of downstream fine-tuning, we choose a fair and widely-used setting, where only the pre-trained
backbone is retained in downstream evaluation, and the alignment module is discarded. In this way,
the training costs in downstream tasks are the same for all pre-training methods. Based on this, the
DPAL does not bring significant computational burden.

D.2 ABLATION STUDY ON SCALE OF THE DATASET
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Figure 1: The impact of different scale of
datasets on I2I Reid and human parsing tasks.

To explore the optimal scale of the dataset, we con-
struct five subsets of varying scales (0.2M, 0.5M, 1M,
2M, and 4M samples) from the LUPerson dataset
for pretraining. As shown in Figure 1, we observe
that the performance on the 0.2M and 0.5M subsets
is significantly worse than on the 1M subset. More-
over, increasing the dataset size does not lead to fur-
ther performance improvement. Therefore, LUP1M,
as the subset of LUPerson, is sufficient to support
distillation-based pretraining.

D.3 VISION-LANGUAGE TASKS

In this section, we further investigate the effectiveness
of proposed method on two vision-language tasks: 1)

3
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Table 6: Investigating the effect of DPAL on vision-language robot control task.

Simulation
Task

ACT
(ResNet-18-11M)

Easy/Hard

RDT
(SigLip-400M)

Easy/Hard

PI0
(SigLip-400M)

Easy/Hard

H-RDT
(SigLip-400M)

Easy/Hard

Ours
(ViT-Ti-5M)
Easy/Hard

Grab Roller 66.0/6.0 74.0/43.0 96.0/80.0 95.0/52.0 83.0/57.0
Place_object_basket 0.0/0.0 42.0/14.0 62.0/10.0 62.0/19.0 32.0/4.0

spatial reasoning; and 2) embodied robot control. Specifically, we choose the InternViT-400M (Chen
et al., 2025c) as the teacher model, and use proposed DPAL to distill it into ViT-Ti by leveraging the
ImageNet-1M (Deng et al., 2009) as a medium. When testing pretrained model on spatial reasoning
task, we replace the vision part of LLavA-1.5-vicuna-7B (Liu et al., 2023) with the pretrained ViT-Ti,
and test it using OmniSpatial (Jia et al., 2025) and Robo2VLM (Chen et al., 2025a) benchmark. As
for the embodied robot control task, we replace the vision part of the H-RDT (Bi et al., 2025) and test
it using RobotWin2.0 (Chen et al., 2025b) simulation benchmark. The results reported in Table 5
and Table 6 shows that adopting pretrained lightweight ViT (5M) as the vision encoder achieves
competitive performance, which is comparable to that of large vision encoder (400M).

D.4 ABLATION STUDY ON VARIANTS OF PATTERN DECODER

Pattern decoder functions as an adapter to align the outputs of lightweight HVMs to that of large
HVMs. This section study the variants of pattern decoder: 1) MAE-Style (He et al., 2022) decoder,
which contains two transformer blocks; 2) Standard MoE, where experts in MoE block is the fixed
MLP; and 3) proposed D-PaDe, where the experts are dynamically generated via pattern queries
with input image. Comparison results reported in Table 7 show that D-PaDe is the best choice for
distillation-based pretraining by far.

Table 7: Ablation study on variants of pattern decoder (%). Aligning ViT-Ti/16 with PATH-B using
MAE-style decoder, Standard MoE or D-PaDe.

Setting I2I ReID Human Parsing Detection

w/o decoder 95.2 55.2 87.2
MAE-style 95.1 55.0 87.8

Standard MoE 94.1 55.9 88.5
D-PaDe 95.2 55.9 88.7

D.5 ABLATION STUDY ON VARIANTS OF STUDENT MODEL

We evaluate the performance of DPAL on downstream tasks with different model architectures. We
use PATH-B as the teacher model and perform distillation for 100 epochs by default. As shown in
the Table 8, we employ vision transformer (Dosovitskiy et al., 2020) for the ViT architecture and
swin transformer (Liu et al., 2021) for the hybrid architecture. The other settings are the same as in
Section 4.1 ans Section 4.2. We observe a consistent improvement in model performance concomitant
with the increasing model parameters, as exemplified by I2I ReID task where Rank1 increases by
0.6% (+16M), 1.2% (+22M), 1.7% (+44M) compared to ViT-Tiny. However, this improvement is
accompanied by a corresponding increase in training costs. Moreover, our method is model-agnostic,
demonstrating strong performance on both ViT and hybrid architectures.

D.6 ABLATION STUDY ON MODEL SIZE OF TEACHER

We investigate whether employing teacher models with larger size enhances the performance of the
student model. Specifically, we employ PATH-B and PATH-L as teacher models to distill ViT-Tiny.
The results presented in Table 9 indicate that increasing the size of the teacher model does not yield
performance gains across a wide range of downsream tasks. This may be due to the larger gap between

4
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Table 8: Impact of model architecture. We employ PATH-B as teacher model and perform distillation
with DPAL on four student architectures.

(a) Single-person discrimitive tasks (%).

Arch Type #Param
I2I ReID T2I ReID Attribute recognition

Market↑ MSMT17↑ CUHK↑ ICFG↑ PA100K↑ PETAzs↑

ViT-Ti/16 ViT 5M 95.2 84.3 64.3 56.0 82.4 74.0
ViT-S/16 ViT 21M 95.8 86.1 65.8 58.5 83.9 74.1
Swin-Ti/4 Hybrid 27M 96.4 86.2 66.9 58.5 83.1 74.9
Swin-S/4 Hybrid 49M 96.9 88.2 69.6 60.0 85.9 77.1

(b) Single-person dense prediction tasks (%).

Arch Type #Param
Pose estimation Landmark detection Human parsing
AP ↑ AR ↑ AP ↑ AR ↑ mIoU ↑ mAcc ↑

ViT-Ti/16 ViT 5M 72.6 75.8 48.8 61.5 55.9 66.7
ViT-S/16 ViT 21M 73.3 76.3 53.1 65.5 58.1 68.7
Swin-Ti/4 Hybrid 27M 75.1 78.1 53.9 65.7 59.3 69.7
Swin-S/4 Hybrid 49M 76.3 79.4 55.6 67.2 60.7 71.5

(c) Multi-person visual understanding tasks (%).

Arch Type #Param
Pedestrian detection Multiple human parsing Part-level attribute parsing
AP ↑ MR ↓ mIoU ↑ APp ↑ AP box

IoU+F1
↑AP

segm
IoU+F1

↑

ViT-Ti/16 ViT 5M 88.7 45.5 51.9 50.3 39.8 37.0
ViT-S/16 ViT 21M 89.2 42.9 55.9 53.4 42.9 39.3
Swin-Ti/4 Hybrid 27M 90.2 42.3 55.8 53.3 42.9 39.8
Swin-S/4 Hybrid 49M 89.7 43.1 55.2 52.4 44.9 41.1

(d) Cross-domain perception tasks (%).

Arch Type #Param
Humanart Chimpact-Pose AP-10K

AP ↑ AR ↑ AP ↑ AR ↑ AP ↑ AR ↑

ViT-Ti/16 ViT 5M 69.9 73.4 21.9 25.5 67.0 70.3
ViT-S/16 ViT 21M 72.0 75.5 24.7 28.4 69.0 72.4
Swin-Ti/4 Hybrid 27M 72.9 76.1 25.2 29.4 69.4 73.0
Swin-S/4 Hybrid 49M 75.1 78.3 27.8 32.1 71.5 74.7

the larger teacher models and the student model, which is also mentioned in the TinyMIM(Ren et al.,
2023).

E VISUALIZATION RESULTS

We provide additional visualization results in Figure 2. First, we visualize the class token represen-
tation space of PATH (Tang et al., 2023), Proteus(Zhang et al., 2025), TinyMIM(Ren et al., 2023)
and DPAL for two single-person images to investigate the models’ ability to learn global identity
patterns. As shown in Figure 2 (a), DPAL and PATH distinctly separate the two instances in the
representation space, whereas the other methods do not. Second, we conduct principal component
analysis (PCA) visualization to investigate the model’s capability in capturing local shape patterns.
DPAL successfully captures local body shape patterns comparable to those of PATH, while the others
fail to capture the whole structure of a person instance. Third, we perform PCA visualization on
multi-person images. Similar to PATH, DPAL is able to distinguish different individuals that are
depicted by different colors in the visualization. This demonstrates that DAPL has successfully
enabled lightweight model to acquire multi-person interaction patterns.

5
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Table 9: Impact of teacher size. We use ViT-Tiny as the student model and perform DPAL distillation
separately with teacher models of two different sizes.

(a) Single-person discrimitive tasks (%).

Teacher
I2I ReID T2I ReID Attribute recognition

Market↑ MSMT17↑ CUHK↑ ICFG↑ PA100K↑ PETAzs↑

PATH-B 95.2 84.3 64.3 56.0 82.4 74.0
PATH-L 95.2 83.7 66.0 55.9 82.7 74.3

(b) Single-person dense prediction tasks (%).

Teacher
Pose estimation Landmark detection Human parsing

AP ↑ AR ↑ AP ↑ AR ↑ mIoU ↑ mAcc ↑

PATH-B 72.6 75.8 48.8 61.5 55.9 66.7
PATH-L 72.7 78.2 48.6 61.2 55.7 66.6
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(b) Local shape pattern

PATH Proteus    TinyMIM      DPAL

(c) Multi-person interaction pattern(a) Global identity pattern

PATH
Proteus

TinyMIM
DPAL

PATH Proteus TinyMIM DPAL

Figure 2: Visualization of learned patterns among four models. From left to right: (a) global identity
pattern, (b) local shape pattern, and (c) multi-person interaction pattern.
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