
A Proof of Theorem

Theorem 1. Fix measurable functions g and g∗. Let I := {(i, j) : i = 1, 2, ...,M, j = 1, 2, ...,K},
and let J(X ) := {(i, j) ∈ I : R̂ij(g) < R̂ij(g

∗)− ϵ}. If the following two conditions hold:

(a) ∀(i, j), (k, l) ∈ I such that (i, j) ̸= (k, l), R̂ij(g)− R̂ij(g
∗) ⊥ R̂kl(g)

(b) R̂ij(g
∗) < Rij(g) + ϵ for all (i, j) ∈ J(X ) almost surely,

then MSE(R̂(g)) ≥ MSE(R̂wb(g)). Given the condition (a), if we have 0 < α such that α <

Rij(g)− R̂ij(g
∗) + ϵ for all (i, j) ∈ J(X ) almost surely, then

MSE(R̂(g))−MSE(R̂wb(g)) ≥ 4α2
∑

(i,j)∈I

Pr[α < R̂ij(g
∗)− R̂ij(g)− ϵ]. (9)

Proof. We first show that if (a) and (b) hold, then MSE(R̂(g)) ≥ MSE(R̂wb(g)).

MSE(R̂(g))−MSE(R̂wb(g))

= E[(R̂(g)−R(g))2]− E[(R̂wb(g)−R(g))2]

= E[(R̂(g)− R̂wb(g))(R̂(g) + R̂wb(g)− 2R(g))]

= 4

∫
X

 ∑
(i,j)∈I

1J(X )(i, j)
(
R̂ij(g)− R̂ij(g

∗) + ϵ
) ∑

(i,j)∈I

R̂ij(g)−Rij(g)

+1J(X )(i, j)
(
R̂ij(g

∗)− R̂ij(g)− ϵ
)dF (X )

= 4
∑

(i,j),(k,l)∈I
s.t.(i,j)̸=(k,l)

∫
X
1J(X )(i, j)

(
R̂ij(g)− R̂ij(g

∗) + ϵ
)(

R̂kl(g)−Rkl(g)
)
dF (X )

+ 4

∫
X

∑
(i,j)∈J(X )

(
R̂ij(g)− R̂ij(g

∗) + ϵ
)(

R̂ij(g
∗)−Rij(g)− ϵ

)
dF (X ).

(10)

From the independence between R̂ij(g)− R̂ij(g
∗) and R̂kl(g).

4
∑

(i,j),(k,l)∈I
s.t.(i,j) ̸=(k,l)

∫
X
1J(X )(i, j)

(
R̂ij(g)− R̂ij(g

∗) + ϵ
)(

R̂kl(g)−Rkl(g)
)
dF (X )

= 4
∑

(i,j),(k,l)∈I
s.t.(i,j)̸=(k,l)

∫
X
1J(X )(i, j)

(
R̂ij(g)− R̂ij(g

∗) + ϵ
)
dF (X )

∫
X
R̂kl(g)−Rkl(g)dF (X )

= 4
∑

(i,j),(k,l)∈I
s.t.(i,j)̸=(k,l)

(∫
X
1J(X )(i, j)

(
R̂ij(g)− R̂ij(g

∗) + ϵ
)
dF (X )

)
· 0

= 0.
(11)

From (b) and by the definition of J(X ), R̂ij(g)− R̂ij(g
∗) + ϵ ≤ 0 and R̂ij(g

∗)−Rij(g)− ϵ ≤ 0
for (i, j) ∈ J(X ) with probability 1. Therefore,

MSE(R̂(g))−MSE(R̂wb(g))

= 4

∫
X

∑
(i,j)∈J(X )

(
R̂ij(g)− R̂ij(g

∗) + ϵ
)(

R̂ij(g
∗)−Rij(g)− ϵ

)
dF (X )

≥ 0.

(12)
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Assume that we have α > 0 such that α < Rij(g)−R̂ij(g
∗)+ϵ for all (i, j) ∈ J(X ) with probability

1. Let A be the event that α < Rij(g)− R̂ij(g
∗) + ϵ for all (i, j) ∈ J(X ). Then,

MSE(R̂(g))−MSE(R̂wb(g))

= 4
∑

(i,j)∈I

∫
X|A

1J(X )(i, j)
(
R̂ij(g)− R̂ij(g

∗) + ϵ
)(

R̂ij(g
∗)−Rij(g)− ϵ

)
dF (X )

= 4
∑

(i,j)∈I

Pr[α < R̂ij(g
∗)− R̂ij(g)− ϵ]

·
∫
X|A,α<R̂ij(g∗)−R̂ij(g)−ϵ

1J(X )(i, j)
(
R̂ij(g)− R̂ij(g

∗) + ϵ
)(

R̂ij(g
∗)−Rij(g)− ϵ

)
dF (X )

≥ 4α2
∑

(i,j)∈I

Pr[α < R̂ij(g
∗)− R̂ij(g)− ϵ].

(13)

B Pseudocode of WaveBound

In Section 3, we describe how wave empirical risk can be obtained in mini-batched optimization
process. In practice, WaveBound can be easily implemented by introducing an additional target
network and slightly modifying the training objective in the optimization process as shown in
Algorithm 1.

Algorithm 1 WaveBound
Input: source network gθ, target network gτ , training dataset X , hyperparameters ϵ and τ
Output: target network gτ

1: for t = 1 to T do
2: B ← {(xi, yi) ∼ X}Bi=1 ▷ Sample a batch of size B
3: for j = 1 to M do
4: for k = 1 to K do
5: for (xi, yi) ∈ B do
6: lijk ← ℓ((gθ)jk(xi), (yi)jk) ▷ Compute the loss for gθ
7: rijk ← ℓ((gτ )jk(xi), (yi)jk) ▷ Compute the loss for gτ
8: end for
9: end for

10: end for
11: δθ ← 1

MK

∑
j,k ∂θ

∣∣ 1
B

∑
i lijk −

1
B

∑
i rijk + ϵ

∣∣ ▷ Compute the loss gradient w.r.t. θ
12: θ ← optimizer(θ, δθ) ▷ update the source network parameter
13: τ ← ατ + (1− α)θ ▷ update the target network parameter
14: end for

C Detailed Experimental Settings

In the experiments, WaveBound is applied as the regularization technique in Autoformer [5],
Pyraformer [6], Informer [7], LSTNet [14], and TCN [16] for the multivariate settings. For the
univariate settings, N-BEATS [15] is additionally included. As described in Section 4, we use six
real-world benchmarks: ETT, Electricity, Exchange, Traffic, Weather, and ILI. In both the multivariate
and univariate settings, we train baselines with the batch size of 32 and Adam optimizer with β1 = 0.9
and β2 = 0.999. The learning rate is searched in {0.00001, 0.00003, 0.0001, 0.0003, 0.001} for each
model. In all experiments, we perform early stopping on the validation set. For WaveBound, the
target network gτ is updated with exponential moving average (EMA) of the source network gθ with a
decay rate α = 0.99. When applying WaveBound to each baseline, the hyperparameter ϵ is searched
in {0.01, 0.001}. We use a single TITAN RTX GPU in all experiments.
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Figure 6: Qualitative results of Autoformer with and without WaveBound on the ETTm2 dataset.
When using WaveBound, the results are relatively smoother and have less lag.

D Additional Experimental Results

Quantitative Results. The additional experimental results of our proposed WaveBound method for
full benchamrks and baselines are reported in Table 14, 15, and 16.

Qualitative Results. To illustrate the effects of WaveBound, we depict the predictions of different
models on ETTm2 dataset (96 input). For the multivariate setting, we plot the predictions for the last
feature. As shown in Figure 6, the models trained with WaveBound consistently predict accurately
regardless of forecast step.

E Effects of ϵ in WaveBound

Table 4 shows the results for different hyperparameter values of ϵ which are searched in {0.01, 0.001}.
The performance can be improved by selecting proper ϵ in each setting.

Table 4: Performance comparison under difference choices of hyperparameter ϵ ∈ {0.01, 0.001}. We
evaluate the performance of Autoformer on two different datasets ETT and Electricity.

ETTm2 Electricity

96 192 336 720 96 192 336 720

ϵ = 0.01
MSE 0.206 0.268 0.323 0.414 0.185 0.205 0.217 0.260
MAE 0.290 0.327 0.361 0.412 0.300 0.317 0.327 0.359

ϵ = 0.001
MSE 0.204 0.265 0.320 0.413 0.176 0.233 0.228 0.282
MAE 0.285 0.322 0.356 0.408 0.288 0.333 0.331 0.379
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(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5
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Figure 7: Qualitative results of Informer trained with and without WaveBound on the synthetic
dataset. As the noise level σ increases, Informer (top) is highly affected by the noise and produces
the unstable predictions. In contrast, the model with WaveBound (bottom) shows the relatively stable
predictions and correctly estimate the trend of the signal regardless of the noise level in the dataset.

F Performance Analysis on Synthetic Dataset

Synthetic dataset. To analyze how WaveBound behaves in different noise levels and different dataset
sizes, we synthesize a dataset composed of sine wave with the Gaussian noise. Formally, for a
given noise level σ and a time step t, the synthetic dataset is formed as: f(t) = 2 sin(2πt/32) +
sin(2πt/48) + σz, where z follows the normal distribution.

Analysis on different noise levels and dataset sizes. In time series forecasting, the overfitting issue
becomes significant when the train data is small and the data contains a high level of noise. Using
the synthetic dataset, we examine the effectiveness of WaveBound in different levels of overfitting.
Specifically, we examine Informer [7] trained with and without WaveBound by varying the noise
level σ and the datset size |D| of the synthetic dataset. Table 5 and Table 6 shows the performance of
Informer with and without WaveBound in different noise levels and dataset sizes, respectively. As the
noise level increases and dataset size decreases, Informer struggles with the unpredictable noise and
produces noisy predictions, resulting in poor performance while WaveBound improves performance
in all noise levels and dataset sizes. Figure 7 qualitatively shows that WaveBound allows the model
to make stable predictions even in the high level of noise.

Table 5: Performance comparison under different noise levels σ ∈ {0.1, 0.3, 0.5} with the fixed
dataset size |D| = 2000. All results are averaged over 3 trials. Subscripts denote standard deviations.

σ = 0.1 σ = 0.3 σ = 0.5

Informer MSE 0.225±0.024 0.316±0.022 0.605±0.061

MAE 0.363±0.017 0.441±0.013 0.613±0.029

Informer
w/ WaveBound

MSE 0.015±0.001 0.102±0.001 0.281±0.001

MAE 0.096±0.003 0.252±0.002 0.419±0.000

Table 6: Performance comparison under different dataset sizes |D| ∈ {4000, 3000, 2000}, with the
fixed noise level σ = 0.5. All results are averaged over 3 trials. Subscripts denote standard deviations.

|D| = 4000 |D| = 3000 |D| = 2000

Informer MSE 0.311±0.004 0.399±0.003 0.605±0.061

MAE 0.443±0.003 0.505±0.002 0.613±0.029

Informer
w/ WaveBound

MSE 0.246±0.001 0.290±0.002 0.281±0.001

MAE 0.394±0.000 0.435±0.001 0.419±0.000
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G Impact of WaveBound on Individual Features and Time Steps

To properly address an overfitting issue, WaveBound estimates adequate error bounds for each feature
and time step individually. To justify the assumptions made by WaveBound, we depict the training
curve of each feature and time step of the prediction made by Autoformer on the ETTm2 dataset.
Each row and column in Figure 8 denote one feature and one time step, respectively. As we assumed,
we can observe that different features show different training dynamics, which indicates that the
difficulty of prediction varies through the features. Moreover, the magnitude of error increases as
the forecast step increases. Those observations highlight that different regularization strategies are
required for different features and time steps.

We also observe that existing regularization methods such as early-stopping cannot properly handle
the overfitting issue, as it considers only the aggregated value rather than considering each error
individually. Red dotted lines in Figure 8 denote the iteration of the best checkpoint found by
early-stopping. Interestingly, even before the best checkpoint is decided by the early-stopping (red
dotted lines), the model seems to be overfitted for several features; the train error (green line) is
decreasing, but the test error (black line) is increasing. We conjecture that this is because of the
property of the early-stopping, which considers only the mean value of error rather than individual
errors of each feature and time step. In contrast, WaveBound retains the test loss (red lines) at a low
level by preventing the train error (blue lines) from falling below a certain level for each feature and
time step. In practice, this results in an overall performance improvement in time series forecasting,
as shown in our extensive experiments.

H WaveBound with RevIN

Reversible instance normalization (RevIN) [41] is recently proposed to mitigate the distribution shift
problem in time series forecasting. In this section, we conduct the additional experiments by applying
both WaveBound and RevIN in training. As shown in Table 7, the performance of Autoformer [5] and
Informer [7] is improved with a significant margin when both WaveBound and RevIN are applied.

Table 7: The results of WaveBound with RevIN. All results are averaged over 3 trials. Subscripts
denote standard deviations.

Models Autoformer Informer

Origin RevIN RevIN
w/ WaveBound Origin RevIN RevIN

w/ WaveBound

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2

96 0.262
±0.037

0.326
±0.014

0.230
±0.007

0.303
±0.006

0.208
±0.002

0.282
±0.002

0.376
±0.056

0.477
±0.047

0.270
±0.041

0.326
±0.025

0.206
±0.000

0.286
±0.001

192 0.284
±0.003

0.342
±0.002

0.291
±0.005

0.338
±0.003

0.268
±0.001

0.319
±0.001

0.751
±0.020

0.672
±0.004

0.475
±0.078

0.439
±0.033

0.293
±0.011

0.341
±0.008

336 0.338
±0.007

0.374
±0.005

0.346
±0.004

0.369
±0.004

0.329
±0.000

0.357
±0.000

1.440
±0.180

0.917
±0.067

0.517
±0.089

0.467
±0.041

0.367
±0.005

0.385
±0.003

720 0.446
±0.011

0.435
±0.006

0.435
±0.010

0.419
±0.007

0.417
±0.003

0.407
±0.001

3.897
±0.562

1.498
±0.128

0.646
±0.075

0.531
±0.034

0.476
±0.015

0.442
±0.007

E
C

L

96 0.202
±0.003

0.317
±0.003

0.178
±0.001

0.285
±0.001

0.173
±0.008

0.276
±0.006

0.335
±0.008

0.417
±0.004

0.196
±0.001

0.303
±0.000

0.166
±0.001

0.269
±0.001

192 0.235
±0.011

0.340
±0.009

0.218
±0.010

0.317
±0.009

0.212
±0.017

0.308
±0.015

0.341
±0.013

0.426
±0.011

0.217
±0.004

0.322
±0.004

0.181
±0.003

0.283
±0.003

336 0.247
±0.011

0.351
±0.009

0.241
±0.016

0.335
±0.013

0.223
±0.019

0.318
±0.014

0.369
±0.011

0.448
±0.009

0.236
±0.004

0.339
±0.003

0.194
±0.002

0.297
±0.003

720 0.270
±0.006

0.371
±0.003

0.259
±0.006

0.349
±0.003

0.251
±0.021

0.342
±0.017

0.396
±0.009

0.457
±0.005

0.267
±0.001

0.363
±0.001

0.217
±0.001

0.317
±0.000

I WaveBound in Short-Term Series Forecasting

In this section, we examine WaveBound in short-term series forecasting. Specifically, we use
Autoformer [5] as the baseline and train the model to forecast 3, 6, and 12 steps on ECL, exchange
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Figure 8: Training curve for each feature and time step of Autoformer on the ETTm2 dataset. Each
row and column denote the feature and time step of the prediction, respectively. The red dotted line
denotes the iteration of best checkpoint found by early-stopping. As we hypothesized, the output
variables for different features and time steps show different trends for their training curves, which
indicates that the consideration for each value is essential to properly handle the overfitting issue in
time series forecasting.
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rate, and traffic dataset. Table 8 shows that WaveBound still achieves the performance improvements
even in short-term series forecasting.

Table 8: Short-term forecasting results of WaveBound in the multivariate setting. We use ECL,
exchange rate and traffic dataset with three prediction lengths L ∈ {3, 6, 12}. All results are averaged
over 3 trials. Subscripts denote standard deviations.

Models Autoformer
Origin w/ Ours

Metric MSE MAE MSE MAE

E
C

L 3 0.148±0.001 0.274±0.001 0.133±0.002 0.256±0.002

6 0.152±0.001 0.277±0.000 0.140±0.001 0.263±0.001

12 0.157±0.001 0.282±0.002 0.144±0.001 0.265±0.001

E
xc

ha
ng

e 3 0.034±0.003 0.132±0.005 0.029±0.009 0.121±0.020

6 0.030±0.003 0.126±0.007 0.030±0.007 0.124±0.016

12 0.039±0.004 0.143±0.007 0.032±0.005 0.129±0.008

Tr
af

fic 3 0.555±0.005 0.385±0.007 0.520±0.002 0.352±0.002

6 0.555±0.001 0.377±0.003 0.531±0.001 0.351±0.003

12 0.557±0.004 0.375±0.004 0.530±0.006 0.343±0.004

J WaveBound in Spatial-Temporal Time Series Forecasting

To examine the applicability of our WaveBound method in spatial-temporal time series forecasting,
we examine Graph WaveNet [42] trained with and without WaveBound on a widely used traffic
dataset, METR-LA [1]. As in Wu et al. [42], Graph WaveNet is trained with the mean absolute error
and attempt to predict a future traffic speed of 1 hour given a historical data of 1 hour along with
a graph structure. Table 9 shows that WaveBound improves the performance of Graph WaveNet
in terms of all metrics, mean absolute error (MAE), root mean squared error (RMSE), and mean
absolute precentage error (MAPE).

Table 9: Spatial-temporal forecasting results of WaveBound adopted to Graph WaveNet. All results
are averaged over 3 trials.

Models
15min 30min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Graph WaveNet [42] 2.70 5.17 6.93% 3.10 6.24 8.37% 3.58 7.44 10.10%
+ WaveBound 2.67 5.11 6.91% 3.03 6.10 8.32% 3.45 7.15 9.90%

K Ablation Study on EMA Methods

Ablation study on the effect of EMA methods is shown in the Table 10. In the experiments, models
only with EMA update (Without Bound) shows the slight performance improvements compared to
the original model. However, EMA with dynamic error bound (WaveBound (Indiv.)) outperforms
other baselines with a large margin, which concretely shows the effectiveness of individual error
bounding in WaveBound.

L WaveBound with Small-Scale Model

We also evaluate the performance of WaveBound with the small-scale model. Specifically, we train a
multi layer perceptron (MLP) model consisting of three linear layers with and without WaveBound in
the univariate setting. Table 11 shows that WaveBound improves the performance of this MLP model.
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Table 10: Results of EMA methods on the ECL dataset. All results are averaged over 3 trials.
Subscripts denote standard deviations.

Models Origin Without Bound WaveBound (Avg.) WaveBound (Indiv.)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Autoformer 96 0.202±0.003 0.317±0.003 0.193±0.001 0.308±0.001 0.194±0.001 0.309±0.001 0.176±0.003 0.288±0.003
336 0.247±0.011 0.351±0.009 0.224±0.006 0.334±0.003 0.221±0.009 0.331±0.006 0.217±0.006 0.327±0.005

Pyraformer 96 0.256±0.002 0.360±0.001 0.247±0.002 0.351±0.002 0.248±0.002 0.352±0.002 0.241±0.001 0.345±0.001
336 0.278±0.007 0.383±0.006 0.287±0.009 0.388±0.010 0.288±0.011 0.388±0.010 0.269±0.005 0.371±0.005

Informer 96 0.335±0.008 0.417±0.004 0.305±0.005 0.391±0.006 0.302±0.004 0.388±0.003 0.289±0.003 0.378±0.002
336 0.369±0.011 0.448±0.009 0.326±0.017 0.411±0.013 0.322±0.010 0.407±0.008 0.305±0.008 0.394±0.008

LSTNet 96 0.268±0.004 0.366±0.003 0.201±0.002 0.311±0.003 0.208±0.010 0.314±0.010 0.185±0.003 0.291±0.003
336 0.284±0.001 0.382±0.002 0.241±0.004 0.352±0.004 0.246±0.009 0.356±0.009 0.217±0.004 0.326±0.005

Table 11: Results of the MLP model consisting of three linear layers with and without WaveBound in
the univariate setting. All results are averaged over 3 trials. Subscripts denote standard deviations.

Models Origin w/ Ours

Metric MSE MAE MSE MAE

E
T

T
m

2 96 0.071±0.001 0.195±0.002 0.068±0.000 0.191±0.001

192 0.105±0.004 0.243±0.005 0.104±0.000 0.241±0.001

336 0.141±0.009 0.289±0.010 0.136±0.001 0.284±0.001

720 0.207±0.010 0.357±0.009 0.194±0.002 0.343±0.002

E
C

L 96 0.325±0.003 0.401±0.001 0.317±0.003 0.392±0.002

192 0.334±0.001 0.408±0.001 0.330±0.004 0.401±0.001

336 0.389±0.007 0.446±0.007 0.380±0.002 0.436±0.001

720 0.441±0.005 0.486±0.002 0.438±0.002 0.481±0.001

M WaveBound with Generative Model

To show the applicability of WaveBound when training a model with a loss function other than MSE
we mainly considered in Section 3, we conduct an experiment with a generative model DeepAR [43]
which uses a negative log likelihood (NLL) as a training objective. Table 12 shows that WaveBound
improves the performance of DeepAR in the univariate setting.

Table 12: Results of DeepAR with and without WaveBound. All results are averaged over 3 trials.
Subscripts denote standard deviations.

Models DeepAR
Origin w/ Ours

Metric NLL MSE MLL MSE

E
C

L 8 1.059±0.152 0.447±0.168 0.935±0.045 0.306±0.001

16 1.168±0.101 0.500±0.208 1.148±0.052 0.371±0.036

24 1.256±0.073 0.617±0.119 1.180±0.062 0.394±0.043

N Computational Cost Analysis

WaveBound introduces additional computation and memory costs in the training phase as it employs
the EMA model during training. In this section, we analyze the computation and memory cost of
WaveBound on the ETTm2 dataset. The input and output lengths are fixed to 96 and a single TITAN
RTX GPU is used for all experiments. Table 13 shows the computation time per epoch and maximum
GPU memory occupied in the training phase. We also remark that WaveBound does not introduce
the additional computation and memory costs in the inference phase.

21



Table 13: Computation cost analysis of WaveBound.

Training time (Sec / Epoch) GPU memory (GB)

Model Origin WaveBound Origin WaveBound

Autoformer 67.722 84.075 2.13 2.20
Pyraformer 27.024 39.083 0.47 0.50
Informer 75.251 97.154 1.80 1.86
LSTNet 20.380 23.347 0.02 0.02

O Limitations

While we observe the success of WaveBound with various baselines on real-world benchmarks, our
method inevitably introduces the additional cost in the training procedure since our method utilizes
the exponential moving average network for estimating the difficulty of predictions. Note that our
method performs as the regularization technique in training and does not introduce any additional
cost during inference.

P Potential Societal Impact

Our proposed method does not introduce any foreseeable societal consequence. The real-world
benchmarks used in this work are widely used for research purposes.
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