
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Narrowing the Gap between Vision and Action in Navigation
Anonymous Authors

ABSTRACT
The existing methods for Vision and Language Navigation in the
Continuous Environment (VLN-CE) commonly incorporate a way-
point predictor to discretize the environment. This simplifies the
navigation actions into a view selection task and improves naviga-
tion performance significantly compared to direct training using
low-level actions. However, the VLN-CE agents are still far from the
real robots since there are gaps between their visual perception and
executed actions. First, VLN-CE agents that discretize the visual
environment are primarily trained with high-level view selection,
which causes them to ignore crucial spatial reasoning within the
low-level action movements. Second, in these models, the existing
waypoint predictors neglect object semantics and their attributes
related to passibility, which can be informative in indicating the
feasibility of actions. To address these two issues, we introduce
a low-level action decoder jointly trained with high-level action
prediction, enabling the current VLN agent to learn and ground
the selected visual view to the low-level controls. Moreover, we
enhance the current waypoint predictor by utilizing visual rep-
resentations containing rich semantic information and explicitly
masking obstacles based on humans’ prior knowledge about the
feasibility of actions. Empirically, our agent can improve naviga-
tion performance metrics compared to the strong baselines on both
high-level and low-level actions.

CCS CONCEPTS
• Computing methodologies→ Intelligent agents.

KEYWORDS
Vision and Language Navigation (VLN-CE) in the Continuous En-
vironment, Vision and Language, Embodied Agent.

1 INTRODUCTION
Vision and Language Navigation (VLN) is a problem setting that
requires the agent to navigate in a photo-realistic environment
following natural language instructions. Most VLN-related works
model the navigation action space as high-level viewpoint selec-
tion by discretizing the visual environment into images based on
an underlying navigability graph, named VLN-DE [5, 11]. Subse-
quently, the navigation task is extended to the continuous envi-
ronment (VLN-CE) [23] where the agent navigates with low-level
controls (LEFT/RIGHT/FORWARD/STOP). The VLN-CE agents are

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Instruction:
Walk towards the pool
table.

Waypoint Predictor

Initial
heading

High
Action Low Action

(right,
forward,
forward,...)

Navigator

Obstacle
Mask

(a) (b) (c)
Figure 1: (a) In the VLN-CE task, instruction and panoramic
views of the current navigation step are provided to the agent.
(b) We have explored the waypoint predictor considering
object semantic and their attributes related to possibility.
The green circle is the navigable viewpoints, and the red
circle is the obstacle. (c) We equip the navigator with the
dual-action module containing both high-level and low-level
actions. The black circles are the low-level action sequence.

closer to the challenges encountered by real-world robots, although
their performance is inferior to the VLN-DE agents.

To improve the navigation performance, existing VLN-CE agents
employ an offline-trainedwaypoint predictor, which takes panoramic
RGB and depth images as input and generates a local navigability
graph centered around the agent at each navigation step [4, 15, 20].
The generated graphs have similar functionality to the connectivity
graph in the VLN-DE setting, providing navigable viewpoints. In
this case, VLN-CE agents can also use high-level actions (view-
point selection) to enhance navigation performance. Nevertheless,
despite the waypoint predictor’s crucial role in existing VLN-CE
agents, we have observed two limitations that hinder the naviga-
tion agent’s understanding of the spatial environment. First, the
current VLN-CE navigation agents, equipped with the waypoint
predictor, are primarily trained to focus on high-level viewpoint
selection and rely on an offline controller for low-level action move-
ments within the environment. However, this approach overlooks
including low-level actions as part of the training signal. Conse-
quently, the navigation agent misses spatial information embedded
in low-level actions, thereby affecting the grounding of different
modalities of textual instructions, visual images, and physical spa-
tial motions. Second, existing waypoint predictors mainly focus
on visual information such as RGB and depth images, overlooking
a thorough exploration of object semantic attributes, which are
important for assessing the feasibility of the physical actions, such
as recognizing that walls are impassable.

To address the two above-mentioned issues in the VLN-CE agents
with a waypoint predictor, we first introduce a dual-action module
in which the agent selects high-level viewpoints while generating
low-level action sequences simultaneously. The high-level actions
serve as guidance, facilitating the agent’s understanding of the rela-
tionships between low-level actions and navigable areas indicated

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

by high-level actions. This enhances the agent’s spatial ground-
ing ability to connect action with visual perception and language
understanding. Second, to address the issue of the waypoint predic-
tor neglecting object semantic information, we incorporate visual
representations with rich object semantics and explicit obstacle
masking based on prior knowledge of object passability. As a result,
the waypoint predictor will generate more effective viewpoints by
leveraging comprehensive pre-training and prior knowledge.

Specifically, we incorporate a Transformer-based decoder into
the VLN-CE agent to generate low-level action sequences at each
navigation step. We formulate the low-level action generation as
a text sequence generation task. As shown in Fig. 1 (c), the agent
is flexible in selecting a navigable viewpoint (green circle) from
the visual environment or navigating through a low-level action
sequence (path with black circle). The low-level action decoder
and high-level action selection are jointly trained. This approach
encourages the agent to ground the selected view to action plan-
ning, bridging the learning gap between low-level and high-level
actions, eventually benefiting the navigation performance on both
levels. Moreover, to improve the waypoint predictor, we use vi-
sual representations obtained from Vision-Language Models Pre-
trained (VLPMs) [32, 33, 43] containing comprehensive object se-
mantics from different modalities. Besides, we mask obstacle areas
in images (such as “sofa”, “table”, and “fireplace”. in Fig. 1 (b)) based
on the image semantic segmentation and our pre-defined open-area
object vocabulary to further encourage the waypoint predictor to
generate navigable viewpoints from open areas.

In summary, our contributions are as follows.
1. We introduce a dual-action module for the VLN-CE agents,
grounding high-level visual perception into low-level spatial ac-
tions. This design empowers the agent with the flexibility to select
high-level viewpoints and generate low-level action sequences.
2. We enhance the waypoint predictor with visual representations
containing rich object semantics and explicit prior knowledge about
objects’ passability attributes.
3. We adapt our method on several VLN-CE agents. The experi-
mental results demonstrate the effectiveness of our approach in
both waypoint predictor, high-level as well as low-level navigation
performance.

2 RELATEDWORKS
2.1 Vision and Language Navigation
Following instructions to navigate in a simulated environment
has attracted significant research interest in recent years. There
are many navigation datasets introduced, such as indoor navi-
gation R2R [5], R4R [19], RXR [24], outdoor navigation Touch-
down [7], object-finding REVERIE [30], and dialogue-based naviga-
tion CVDN [40].

Early methods formulate the navigation agent using a sequence-
to-sequence framework and apply attention mechanism to improve
learning across text and vision modalities [5, 27]. Data augmen-
tation methods are proposed to strengthen the agent generaliza-
tion ability, such as image editing [25, 26] or instruction genera-
tion [11, 49]. The Transformer-based models are the recent main
trend for the VLN agent focusing on multi-modal representation

learning [16, 44]. In this framework, map representation learn-
ing [2, 8, 17], graph-based exploration [10, 42, 50], and auxiliary
pre-training [9, 13, 31, 48, 51] techniques are introduced. However,
these agents formulate the navigation in a discrete environment,
ignoring the low-level control challenges a real-world robot faces.
Our work mainly focuses on improving the agent’s performance in
the continuous setting.

2.2 VLN in Continuous Environment
Several continuous environments have been proposed in the realm
of embodied AI to simulate photo-realistic scenes, such as Gib-
son [47], House3D [46], and Habitat [36]. R2R-CE [22] dataset is
constructed by transferring discrete trajectories in R2R [5] dataset
to continuous trajectories using Habitat simulator [36]. Compared
to discrete environment navigation, VLN-CE is much closer to real-
world navigation since it relies on a limited field of view to infer
low-level controls rather than a pre-defined connectivity graph
with nodes distributed across accessible spaces within a discrete
environment.

The VLN-CE is pioneered by [22], and they introduce a seq2seq
baseline model, mapping a set of images during navigation to a
sequence of low-level actions. LAW [34] improves the baseline
using language-aligned waypoint supervisions. The methods ap-
plying semantic map [8, 12, 17] are also explored. For example,
WS-MGMap [8] proposes a multi-granularity map and introduces
a weakly-supervised auxiliary task to learn a better map represen-
tation that reveals object information. However, these methods still
demonstrate a huge performance gap compared to the navigation
agents in the discrete environments. To bridge the gap between
VLN-DE and VLN-CE, waypoint models are proposed for hierarchi-
cal visual navigation [4, 20]. Specifically, CWP [15] uses a waypoint
predictor to provide accessible directions for the agent to act, and
then they apply the efficient models in the VLN-DE to the contin-
uous environments. The recent work significantly improves the
waypoint models using better visual representations pre-trained
in a larger dataset [43, 44], graph-based modeling [1, 2] or extra
auxiliary tasks [17]. However, there are still gaps between the visual
perception and physical action within the current VLN-CE agent.
For example, with the waypoint predictor, the navigation agent is
primarily trained based on view selection. The navigation perfor-
mance drops significantly when modeling low-level actions [15]. In
addition, the waypoint predictor mainly focuses on visual features,
neglecting rich object semantics within images. Our study focuses
on enhancing the VLN-CE agent by addressing these two aspects to
narrow the gap by grounding visual perception into spatial actions.

3 BACKGROUNDS
3.1 Problem Statement
In the VLN-CE problem setting, the navigation agent is required
to reach the target location within indoor environments follow-
ing natural language instructions. Given an instruction, the agent
navigates on a 3D mesh of an environment with low-level actions,
including RIGHT (15◦), LEFT (15◦), FORWARD (0.25m), STOP. At each
navigation step, the agent observes 12 RGB images and the corre-
sponding depth images from a horizontal panoramic view with 30◦
intervals. The agent terminates navigation when it selects the STOP

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Narrowing the Gap between Vision and Action in Navigation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Semantic
Segmentation

Obstacle-aware
Waypoint Predictor

Obstacle
Mask

Depth
Image

Depth Visual
Encoder

RGB Visual
Encoder

RGB
Image

Masked
RGB Image

Figure 2: Obstacle-Aware Waypoint Predictor. Given an RGB
image, wemask obstacle objects based on semantic segmenta-
tion. Themasked RGB image and depth image are then input
to the waypoint predictor to generate navigable viewpoints.
We also enhance the RGB visual encoder with pre-trained
VL representations.

action or a pre-defined maximum number of navigation steps have
been reached.

3.2 Backbone Architecture
Our method is designed to be model-agnostic, and we experiment
with different VLN-CE agents. In this section, we utilize History
Aware Multimodal Transformer (HAMT) in Continuous Environ-
ment [9, 43] as the backbone architecture to introduce our method.
In the following sections, we first introduce the text and vision en-
coders. We then present two primary components in the backbone:
the waypoint predictor and the navigator. The waypoint predictor is
trained offline to generate navigable viewpoints, which are applied
to the navigator for view selection.

Vision Encoder. At each navigation step, the agent observes
12 RGB images and 12 depth images, which are represented as
𝐼𝑟𝑔𝑏 = {𝐼𝑟𝑔𝑏1 , 𝐼

𝑟𝑔𝑏

2 , · · · , 𝐼𝑟𝑔𝑏12 } and 𝐼𝑑 = {𝐼𝑑1 , 𝐼
𝑑
2 , · · · , 𝐼

𝑑
12}, respectively.

In the baseline, different RGB vision encoders are used for the
waypoint predictor and navigator. The waypoint predictor utilizes
ResNet-152 [14] as its vision encoder, pre-trained on the ImageNet
dataset [35], Meanwhile, the navigator uses the InternVideo [43]
as the vision encoder, pre-trained on large video-text datasets. For-
mally, the obtained visual representations of RGB images are de-
noted as 𝑣𝑟𝑔𝑏 = {𝑣𝑟𝑔𝑏1 , 𝑣

𝑟𝑔𝑏

2 , · · · , 𝑣𝑟𝑔𝑏12 }. The depth images are fed
into DD-PPO ResNet-50 [45], which is trained for point-goal navi-
gation, represented as 𝑣𝑑 = {𝑣𝑑1 , 𝑣

𝑑
2 , · · · , 𝑣

𝑑
12}.

Text Encoder.The textual instructions are input to the navigator
to guide the agent to complete the task. The instruction is denoted
as 𝑤 = {𝑤1,𝑤2, · · · ,𝑤𝑙 }, where 𝑙 is the length of the instruction
tokens. We use BERT [41] to obtain initial text representation of
instruction𝑤 , denoted as 𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑙].

Waypoint Predictor. We follow the waypoint predictor de-
signed in [15], which is a multi-layer Transformer with a non-linear
classifier. All 12 RGB image representations 𝑣𝑟𝑔𝑏 and depth image
representations 𝑣𝑑 are concatenated and then input into the way-
point predictor to predict a heatmap of 120 angles-by-12 distances.

Each angle is 3 degrees, and distances range from 0.25 to 3.00 me-
ters with an interval of 0.25 meters. The heatmap is represented
as a Gaussian distribution with a variance of 1.75m and 15◦ to ex-
pand the prediction range. The waypoint predictor is pre-trained
based on the navigable connectivity graph from MP3D [6]. During
inference, non-maximum suppression (NMS) is used to sample 𝐾
neighboring waypoints, which are utilized as the candidate views
for the following navigator.

Navigator. HAMT is a multimodal Transformer-based naviga-
tor that can memorize historical information. HAMT is initially
proposed as a VLN-DE agent. With the introduction of the way-
point predictor, its application is extended to the continuous en-
vironment [43, 44]. Specifically, HAMT takes textual instruction,
panoramic visual images from the current step, and a sequence of
historical panoramic images along the navigation trajectory as in-
put. The output is a selected navigable viewpoint. Formally, at each
navigation step 𝑡 , the waypoint predictor generates 𝐾 candidate
views, and their observation representations are denoted as𝑂𝑡 . The
history representation is denoted as 𝐻𝑡 . HAMT concatenates his-
tory and observation as the vision modality and uses a cross-modal
transformer to learn the connection between text presentation 𝑋
and visual representation [𝐻𝑡 ;𝑂𝑡]. The model is trained using high-
level viewpoint selection by selecting the highest similarity score
between observation encoding 𝑂𝑡 and <CLS> token of the Trans-
former, which contains global instruction-trajectory information.
After the agent selects a viewpoint, an offline controller is applied
to guide the agent to the corresponding position.

4 PROPOSED APPROACH
Built upon the above-introduced backbone architecture, we im-
prove the current VLN-CE agent by introducing an obstacle-aware
waypoint predictor and dual-action module for the navigator. Fig. 3
shows the main architecture.

4.1 Obstacle-Aware Waypoint Predictor
Object semantics in the visual environment is expected to play an
important role in predicting navigable viewpoints, especially in
the sense of open and obstacle areas. Objects have attributes that
determine whether they should be labeled as passable or impassable.
For example, the agent is not supposed to traverse beneath a “table”
or on the “bed”. However, the current methods mainly leverage
visual information from RGB and depth images and neglect further
exploration of the object semantics and their attributes related to
passibility.

To overcome this limitation, we first enhance the current way-
point predictor with vision representation from Vision and Lan-
guage Pre-trainedModels (VLPMs) [32, 33, 43], which contain much
more comprehensive object semantics than ResNet used in the
baseline’s waypoint predictor. We employ vision representations
from different VLPMs to assess their influence on the waypoint
predictor’s performance. Our results demonstrate that CLIP [32]
visual representation can achieve the best result. Please see Table 3
for our detailed analysis. Second, we introduce an obstacle mask
mechanism based on semantic segmentation within the visual en-
vironment and our prior knowledge about impassable objects. We

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Obstacle-aw
are

W
aypoint Predictor

RGB Visual
Encoder

Depth Visual
Encoder

High-Level Action
Navigator

Low
-level Action
Decoder…

Instruction:Turn right, and
stop near the stairs.

right
right

controller

Low-Level Action

High-Level Action

Initial
heading

Low-level
Action Labels

RGB and Depth Images

Dual-action
module

Action

right
forward

forward

Hidden
States

Figure 3: Main Architecture. The waypoint predictor first provides navigable viewpoints (green circle). Then, the corresponding
RGB images, depth images, and textual instructions are input to our dual-action module, where the agent learns to select a
high-level viewpoint and generate a low-level action sequence. The freezing sign indicates that the parameters are freezing
during the training process. Please refer to Fig. 4 for a detailed architecture of the low-level action decoder.

utilize semantic segmentation provided by MP3D semantic segmen-
tation with approximately 40 object categories. To identify open
areas, we define a vocabulary and mask semantic segments that are
not within this vocabulary. For example, we select objects such as
"floor", "stairs", and "door" as open areas.

Formally, we denote the visual representation from VL pre-
trainedmodels of panoramic images as 𝑣𝑟𝑔𝑏𝑐 = {𝑣𝑟𝑔𝑏

𝑐1 , 𝑣
𝑟𝑔𝑏

𝑐2 , · · · , 𝑣
𝑟𝑔𝑏

𝑐12 }.
For each image, we obtain the corresponding obstacle mask based
on semantic segmentation. We assign a label of 1 to object areas in
the open vocabulary and 0 otherwise. The resulting obstacle masks
are represented as𝑚 = {𝑚1,𝑚2, · · · ,𝑚12}. Subsequently, we apply
obstacle masks to the RGB images and obtain the masked RGB rep-
resentation, 𝑣𝑐𝑚 = 𝑣𝑐 ∗𝑚, which is then concatenated with depth
visual representation 𝑣𝑑 . This combined representation is input to
the waypoint predictor to generate views at each navigation step.

We train the waypoint predictor with enhanced visual repre-
sentation and obstacle-masked image. Then, we employ it in the
navigator for offline usage to generate navigable views. The details
of the navigator are explained in the following section.

4.2 Dual-Action Prediction for the Navigator
There are two types of actions in the existing VLN-CE navigator
to select: high-level and low-level actions. The current techniques
typically model the prediction of these two types of actions inde-
pendently.

High-level Action is to select a view based on the similarity
between the observation 𝑂𝑡 and the hidden states from the cross-
modal Transformer, which is represented as follows,

𝑝ℎ𝑡 = Softmax([𝐻𝑡 ;𝑂𝑡] ∗ ℎcls𝑡), (1)

where ℎcls is the <CLS> token representation from navigator at
step 𝑡 , and 𝑝ℎ𝑡 is the probability of high-level action. Once the
most similar viewpoint is selected, the agent employs an offline
controller to navigate to the corresponding position. While high-
level actions effectively boost navigation performance, the training
mechanism primarily focuses on view selection, neglecting the
spatial information in the low-level action sequence. Additionally,
it is challenging for a real-world robot to navigate to a precise angle
and distance in a realistic environment. Real-world robots typically
operate with very limited action sets, such as FORWARD 0.25m.

Low-level Action is to generate low-level action directly. The
approach is to use a non-linear classifier to predict an action class
at each navigation step. Then, a controller is applied to execute
action. Formally, the prediction for low-level actions is performed
as follows,

𝑝𝑙𝑡 = Softmax(ℎcls𝑡 𝑊𝑐), (2)

where𝑊𝑐 projects the <CLS> token representation to four low-level
actions, and 𝑝𝑙𝑡 is the probability of low-level actions. While low-
level actions are closer to real-world robotic behavior, directly mod-
eling the agent to generate such actions results in a cost-training
process. This is because the episodes for low-level actions are
around 10 times longer than high-level actions (around 56 steps for
low-level action steps, compared to 4 − 6 for high-level episodes).
Additionally, while there are methods [15, 17] attempting to train
the navigation agent with a low-level action classifier directly, the
performance drops substantially compared to the method using an
offline controller.

Dual-Actions. We enable the VLN-CE agent to navigate simul-
taneously using high-level and low-level actions. Built upon the ex-
isting VLN-CE agent that predicts high-level actions, we introduce
a decoder to generate the corresponding low-level action sequence

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Narrowing the Gap between Vision and Action in Navigation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Navigation
Agent

low actions:

Causal
Self-Attention

prompt

Text Decoder

Left Left Left Forward

Auto-regression Low-Level Action Labels

left, left, left, forward

15°
15°

15°
10°

Heading Label
[Left,Left,Left]

0.25m

Distance Label
[Forward]

0.08m

Initial
heading

Figure 4: Low-Level Action Decoder.

simultaneously. Specifically, instead of generating one low-level
action using an action classifier at each navigation step, our agent
is trained to generate a low-level action sequence. We formulate
low-level action prediction as the textual sequence generation task.
As shown in Fig. 4, we introduce a Transformer-based text decoder
to generate the low-level action sequences with the prompt of “low
actions:”. At each navigation step, the agent selects a high-level
view, and, at the same time, it is trained to generate the corre-
sponding low-level sequence of action tokens auto-repressively. We
input the text decoder with <CLS> representation from the navi-
gator and textual prompt representation. The training objective is
to maximize the likelihood of the next low-level action token. The
following equation shows the loss of generating 𝑗-th token in the
action sequence.

L𝑙𝑜𝑤 = −
∑︁
𝑗

log𝑝𝜃 (𝑎𝑙𝑗 |𝑎
𝑙
1, · · · , 𝑎

𝑖
𝑚), (3)

where𝑚 is the length of the sequence.
We jointly train low-level action decoders and high-level selec-

tion. The labels for the low-level action sequence are obtained from
the heading and distance differences between the initial view and
the selected views in the high-level action. When the agent selects
a high-level view at each navigation step, the corresponding low-
level sequence label is created. Specifically, we initially calculate
the degree difference in headings and divide it by 15 to determine
the number of rotation steps the agent takes. The direction (LEFT
or RIGHT) is determined based on the smaller rotations. A similar
process is applied to distance: we calculate the distance between the
start point and the selected view and divide it by 0.25. We ignore
the remaining if the heading or distance is not perfectly divisible.
For instance, as shown in Fig. 4, the distance between the start
point and the target view is 0.33m, and the low action is just one
FORWARD (0.25m).

5 TRAINING AND INFERENCE FOR
NAVIGATOR

For the high-level action, we train the navigator with a mixture
of Imitation Learning (IL) and Reinforcement Learning (RL) [39].
It consists of the cross-entropy loss of the predicted probability
distribution against the ground-truth action and a sampled action
from the predicted distribution to learn the designed rewards. In

summary, the navigation loss is as follows,

Lℎ𝑖𝑔ℎ = −
∑︁
𝑡

−𝛼ℎ
𝑡 𝑙𝑜𝑔 (𝑝ℎ𝑡) − 𝜆

∑︁
𝑡

𝛼𝑠
𝑡 𝑙𝑜𝑔 (𝑝ℎ𝑡), (4)

where 𝜆 is the hyper-parameter to balance the two components,
𝛼ℎ𝑡 is the teacher action for IL that is closest to the next viewpoint,
and 𝛼𝑠𝑡 is a sample action for RL. The joint training objective for
our high-level action navigator with the low-level action decoder
is as follows,

L = Lℎ𝑖𝑔ℎ + 𝐿𝑙𝑜𝑤 . (5)
During inference, in terms of navigating with high-level action,

we use greedy search to select an action with the highest probability
at each navigation step to generate a trajectory. For navigation with
low-level action, we provide the text prompts "low actions:" to the
low-level action decoder and utilize a beam search approach to gen-
erate the low action sequence. Then, we apply post-processing to
separate all actions and use a controller to execute each action. For
the next navigation step, the agent relies on the previous low-level
action results, even though it is trained based on view selection.

6 EXPERIMENTS
6.1 Dataset and Evaluation Metrics
VLN-CE uses the Habitat Simulator [29, 37, 38] to render envi-
ronment observations based on the MP3D dataset [6], including
61 environments for training, 11 for unseen validation and 18 for
testing. The scenes in the validation unseen and test unseen sets
differ from those in the training set. Three main metrics are used
to evaluate navigation performance. 1) Success Rate (SR) [5] is to
evaluate wayfinding performance to indicate whether the agent
arrives at the destination. 2) Success Rate Weighted Path Length
(SPL) [3] normalizes success rate by trajectory length. 3) normal-
ized Dynamic Time Warping (nDTW) [18] is used to measure the
fidelity between the predicted and the ground-truth trajectories.

6.2 Implementation Details
The waypoint predictor is trained on a single NVIDA RTX GPU for
20 hours, while the navigator is trained on 6 NVIDA RTX GPUs
for 2.5 days. We adopt the model architecture and implementation
from [9, 43] based on the PyTorch framework [28] and the Habitat
Simulator [36]. The RGB image size is 224 and the depth image
size is 256. CLIP ViT-B/16 is used as visual input for the waypoint
predictor. We train the waypoint predictor with 300 epochs with a
batch size of 8 and a learning rate of 1𝑒 − 6. We train the navigator
10000 iterations with the batch size of 6 and the learning rate of
3𝑒 − 5. The 𝜆 in Eq. 4 is 0.75. For the low-level action generator, we
set the maximum generated length as 30 and the beam search size
as 3. The end token is the comma.

6.3 Experimental Results
We evaluate our method on top of three VLN-CE agents: WP-VLN-
BERT [15], WP-HAMT [43], and ETPNav [2]. These VLN-CE agents
are all Transformer-based models and employ a waypoint predictor
to discretize the visual environment for navigation in the continu-
ous setting. WP-VLN-BERT uses an implicit state representation
to store historical information, whereas WP-HAMT improves this
WP-VLN-BERT by storing historical panoramic images from the

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Validation Unseen Test Unseen
Model nDTW↑ SR↑ SPL↑ SR↑ SPL ↑

1 Waypoint Models [20] - 0.36 0.34 0.32 0.30
2 CWP-CMA [15] 0.55 0.41 0.36 0.38 0.33
3 Sim2Sim [21] - 0.43 0.36 0.44 0.37
4 VLN-BERT+Ego2-Map [17] 0.60 0.52 0.46 0.47 0.41
5 WP-VLN-BERT [15] 0.54 0.44 0.39 0.42 0.36
6 WP-VLN-BERT+Ours 0.55 0.46 0.41 0.44 0.38
7 WP-HAMT [43] 0.60 0.52 0.47 0.49 0.45
8 WP-HAMT+Ours 0.62 0.54 0.49 0.52 0.47
9 ETPNav [2] - 0.57 0.49 0.55 0.48
10 ETPNav+Ours 0.62 0.58 0.49 0.56 0.48

Table 1: Experimental results on high-level action evaluated
on the R2R-CE validation unseen and test dataset.

traversed path. ETPNav is a graph-based VLN agent, which differs
slightly from the standard navigation setting. The other two agents
can only select local navigable viewpoints connected to the current
viewpoint. However, graph-based agents like ETPNav can jump
back to the previously explored viewpoints, often resulting in a
higher success rate. Please refer to the supplementary for a more de-
tailed introduction for each baseline. We integrate our dual-action
module and enhanced waypoint predictor into the three baseline
backbones introduced above and evaluate navigation performance
on both high-level and low-level actions as follows.

High-Level Action Performance. Table 1 presents the nav-
igation performance using high-level actions on the validation
unseen and test unseen sets. All VLN-CE agents in Table 1 employ
a waypoint predictor to generate navigable views and are trained
with the high-level view selection. Our method improves high-level
action performance for all baseline agents. Specifically, we can im-
prove WP-VLN-BERT almost 2% on all navigation metrics on both
validation and test unseen sets, as shown in row#6. WP-HAMT
utilizes visual representation from InternVideo [43] to strengthen
the model’s performance. We mainly compare with InternVideo
base weights because of the computation cost limitation. In terms
of this baseline, we can improve the navigation performance of the
baseline, especially 3% of the success rate on the test unseen (row#8).
In addition to enhancing the standard Transformer-based naviga-
tion agent, our method can also increase the success rate of the
graph-based agent ETPNav, as shown in row#10.

Low-Level Action performance. Table 2 shows the naviga-
tion performance with low-level movement actions. The existing
methods mainly compare the results of the validation unseen for
low-level actions. The models in row#1 to row#3 are based on LSTM
architecture to frame the navigation as a sequence-to-sequence task
and predict low-level actions directly. The models from row#4 to
row#6 are models using a waypoint predictor. They add an action
classifier to the navigator and train the model to select one low-
level action at each navigation step. Another noticeable difference
between the models from row#1 to row#3 and others is that the
agent in these methods can only observe the current view rather
than the whole panoramic view at each navigation step. As shown
in Table 2, we observe that some Transformer-based navigators
with much more powerful pre-trained visual representations and
complex model architecture, such as the approaches in row#5 and
row#6, their low-level action navigation performance could not
compete with LSTM-based models (row#1 to row#3). Specifically,

Methods nDTW↑ SR ↑ SPL ↑
1 CMA+PM+DA+Aug [23] 0.51 0.32 0.30
2 LAW [34] 0.54 0.35 0.31
3 WS-MGMap [8] - 0.39 0.34
4 CWP-CMA [15] 0.49 0.27 0.25
5 VLN-BERT+Ego2-Map [17] 0.52 0.30 0.29
6 WP-VLN-BERT [15] 0.48 0.23 0.22
7 WP-VLN-BERT+Ours 0.54 0.28 0.27
7 WP-HAMT* [43] 0.54 0.35 0.32
9 WP-HAMT+Ours 0.55 0.44 0.38
10 ETPNav+Ours 0.58 0.48 0.42

Table 2: Experimental results of low-level actions on the R2R-
CE validation unseen set. * means our implementation for
low-level action prediction, as most VLN-CE agents do not
report their low-level performance. We train the VLN agent
with a low-level action classifier for fair comparison.

Waypoint Predictor
Visual Encoder |Δ | %Open↑ 𝑑𝐶 ↓ 𝑑𝐻 ↓

1 ResNet [15] 1.40 0.80 1.07 2.00
2 InternVideo [43] 1.44 0.65 1.15 2.04
3 DenseCLIP [33] 1.41 0.81 1.05 2.01
4 CLIP [32] 1.38 0.83 1.04 2.00
5 CLIP+ Obstacle Mask 1.38 0.85 1.04 1.94

Table 3: Evaluation of different VLM RGB visual encoders.

for the baseline model WP-VLN-BERT, although our method can
significantly improve it (row#7), it is still far behind LSTM-based
models. However, we can achieve SOTA after applying our method
onWP-HAMT and ETPNav, as shown in row#9 and row#10, respec-
tively. It is worth noting that the majority of VLN-CE agents do
not report their low-level action performance. To address this, we
follow the method of low-level action prediction in WP-VLN-BERT
to add a non-linear classifier on top of WP-HAMT [43] to adapt it to
low-level action prediction. In general, our method’s performance is
aligned with the VLN-CE navigator’s performance. This correlation
is expected, as the low-level action sequence is trained using the
hidden state representation from the corresponding baseline, and
stronger representations yield better performance when training
low-level actions.

6.4 Ablation Study
In this section, we conduct an ablation analysis of the waypoint pre-
dictor and for waypoint predictor and the effectiveness of different
components in our method.

Waypoint Predictor Performance. The waypoint predictor
is trained offline to generate navigable viewpoints. We enhance
the baseline waypoint predictor from the aspects of stronger vi-
sual representations and explicit object masks, and Table 3 shows
our results on R2R-CE validation unseen set. The main metrics to
evaluate the waypoint predictor’s performance are as follows: |Δ|
measures the difference in the number of target waypoints and
predicted waypoints. %Open is the ratio of predicted waypoints in
open space. 𝑑𝑐 and 𝑑𝐻 are the Chamfer and Hausdorff distances,
respectively, to measure the distance between point clouds.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Narrowing the Gap between Vision and Action in Navigation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Method High Low
CLIP Ob-Mask Dual-Action nDTW↑ SR↑ SPL↑ nDTW↑ SR↑ SPL↑

Baseline 0.60 0.52 0.47 0.54 0.35 0.32
1 ✔ 0.60 0.52 0.47 0.55 0.43 0.36
2 ✔ 0.61 0.53 0.47 - - -
3 ✔ ✔ 0.61 0.53 0.48 - - -
4 ✔ ✔ ✔ 0.62 0.54 0.49 0.55 0.44 0.38

Table 4: Ablation study on different components of our
method. The baseline is WP-HAMT, and the Ob-mask is the
obstacle mask.

Waypoint Predictor
Ob-Mask Vocab |Δ | %Open↑ 𝑑𝐶 ↓ 𝑑𝐻 ↓

No Mask 1.38 0.83 1.04 2.00
1 Floor 1.38 0.84 1.07 2.00
2 Stairs 1.40 0.82 1.04 2.00
3 Doors 1.40 0.80 1.04 1.94
4 Floor+Stairs+Doors 1.38 0.85 1.04 1.94

Table 5: Analysis of the influence of various open-area vo-
cabularies on the waypoint predictor.

We experiment with visual representations from different Vision
and Language Pre-trained Models (VLMs) and test their influence
on the performance of the waypoint predictor. As shown in Table 3,
the waypoint predictor achieves the best performance when uti-
lizing CLIP vision representations. However, we cannot conclude
that more powerful vision representations lead to better waypoint-
predicting performance since the representations from InterVideo
seem to hurt the waypoint predictor. This result suggests that dif-
ferent pre-trained visual encoders possess varying capacities to
influence the agent’s ability to recognize open and obstacle areas.
The better result is achieved when both CLIP representation and our
designed obstacle mask are applied. Compared to ResNet (row#1),
CLIP improves the open area prediction by about 3%, demonstrat-
ing that rich semantics in visual representation in CLIP aids the
waypoint predictor in learning the open and obstacle objects. After
applying our designed obstacle mask, the accuracy of open area pre-
diction gained an additional improvement of 2%, emphasizing the
effectiveness of the prior knowledge in encouraging the waypoint
predictor to better focus on open area spaces.

Different Components. The results of the ablation study in Ta-
ble 4 demonstrate the influence of each component of our proposed
method on both high-level and low-level navigation. The compo-
nents in our method include dual-action for the navigator and the
enhanced waypoint predictor with CLIP visual representations and
the obstacle mask. The analyzed navigator is WP-HAMT, which
uses visual representation obtained from InternVideo base weights.
We report results on the R2R-CE validation unseen dataset. In row#1,
we integrate the low-level action decoder with the baseline navi-
gator and jointly train it with high-level actions, and the low-level
action navigation performance is significantly improved (about
4% on SPL). In row#2, we train the waypoint predictor with only
CLIP representations and apply it to the baseline navigator without
dual-action training. Notably, the enhanced waypoint predictor
already contributes to better high-level navigation performance,
indicating that CLIP’s rich object semantic representation boosts
overall navigation. Row#3 shows the effectiveness of the obstacle
mask in enhancing the SPL for high-level action. In row#4, we train

0 30 60 120-30-60

(1) Instruction: Turn around stairs, and walk towards the living room.

Low Action: forward, forward, forward, forward, forward.

-30 0 60 120-60-90

(2) Instruction: Turn around the table and turn left to the kitchen.

Low Action: left, left, left, left, forward, forward, forward, forward, forward, forward, forward, forward.

Figure 5: Examples of generated low-level actions. 0 denotes
the current direction, while − means LEFT turn. The number
represents the rotation degree. The yellow bounding box
indicates the target.

the waypoint predictor with both CLIP and obstacle mask, and we
apply this enhanced predictor to the navigator with the dual-action
module. We achieve the best results in this setting. Compared to
row#3, we conclude that the spatial information incorporated into
the low-level action benefits the high-level viewpoint selection. Sim-
ilarly, compared to row#1, enhanced waypoint prediction not only
enhances high-level viewpoint selection but also benefits low-level
action generation.

6.5 Qualitative Analysis
In this section, we provide a qualitative analysis from the perspec-
tives of low-level actions and obstacle masks.

Low-Level Actions Generation. In Fig. 5 (a), we show an ex-
ample of our generated low-level action sequences that lead the
agent to the destination. However, we have observed cases where
the agent generates a low-level action sequence that reaches the
destination but does not fully follow the instruction, as shown in
Fig. 5 (b). This issue also occurs in other VLN-CE agents when
modeling low-level action predictions. We assume the reason is the
inherent challenges in building the VLN-CE dataset. It transfers the
instructions and trajectories from VLN-DE. When the simulator ex-
ecutes the low-level actions, especially rotations, there is no human
evaluation process to confirm whether the low-level actions align
with the instruction. The actions are generated based on minimal
required rotations when the selected view is given to the simulator.
Training the agent to learn low-level actions in these scenarios is
challenging compared to directly training with view selection.

Open-area Vocabulary. In Table 5, we provide an analysis of
object semantics and their relation with the performance of the
waypoint predictor. We select open-area vocabularies based on our
prior knowledge. The baseline we used is the waypoint predictor
trained with CLIP visual representations. Given the semantic seg-
mentation from the simulated environment, we mask other object
areas except the semantic areas in open-area vocabularies. Then,
we input the masked image into the waypoint predictor. The exper-
imental results demonstrate that different object semantics show
varying influences on the waypoint predictor. For instance, the
%open is low when we mask objects other than “door”, indicating
the presence of closed or blocked doors (row#3). We can get the best

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(2) RGB Image with Obstacle Mask

(1) RGB Image

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 6: An example of a generated waypoint heatmap given
an RGB image with and without obstacle mask. The x and
y axes represent heading and distance. The green box high-
lights the areas where the model samples waypoints. The
green and red circles indicate waypoints within or outside
the ground-truth target areas.

results when our open-area vocabularies contain “floor”, “stairs”,
and “doors” (row#4).

Qualitative Examples for Obstacle Mask. In Fig. 6, we show
an example to demonstrate the different generatedwaypoint heatmaps
between an RGB image with obstacle mask (Fig. 6(2)) and without it
(Fig. 6(1)). The image shows the corresponding views based on the
headings of the highlighted areas in the heatmap. It is evident that
the waypoint predictor samples more viewpoints (5 viewpoints)
from image (a) and image (b) when an obstacle mask is applied, both
of which contain large open areas. In contrast, RGB images without
obstacle masks sample relatively fewer viewpoints on images (a)
and (b), but they sample viewpoints from (c) and (d), although (c) is
not included in the ground truth. This example illustrates that the
obstacle mask aids the waypoint predictor in concentrating mainly
on large open areas but falls short in narrow open areas. However,
based on the final navigation result in Table 4, the obstacle mask
ultimately contributes to navigation performance.

7 CONCLUSION
In this work, we narrow the gap between the vision and action of the
current VLN-CE agents mainly in two aspects. we introduce a dual-
action module that enables the current VLN-CE agent, equipped
with the waypoint predictor, to jointly train for both high-level and
low-level actions simultaneously. This joint optimization encour-
ages the agent to learn to ground the high-level visual perception
and view selection into physical actions and spatial motions. Sec-
ond, we enhance the existing waypoint predictor by incorporating
rich object semantic representations and knowledge about object
attributes. This helps the model to understand the feasibility of ac-
tions better. We conduct comprehensive experiments and analyses
to demonstrate the effectiveness of our proposed method.

LIMITATIONS
We mainly summarize the following limitations. First, integrating
the low-level action decoder into the current VLN-CE agent leads
to increased computational costs compared to the baseline. How-
ever, the significant improvement in low-level action performance
partially justifies this tradeoff. Second, although our designed dual-
action module improves the low-level action navigation, the perfor-
mance gap still remains compared to high-level action performance.

REFERENCES
[1] Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang Wang, Tieniu Tan, and

Jing Shao. 2023. Bevbert: Multimodal map pre-training for language-guided
navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2737–2748.

[2] Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and
Liang Wang. 2023. ETPNav: Evolving Topological Planning for Vision-Language
Navigation in Continuous Environments. arXiv preprint arXiv:2304.03047 (2023).

[3] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy,
Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi,
Manolis Savva, et al. 2018. On evaluation of embodied navigation agents. arXiv
preprint arXiv:1807.06757 (2018).

[4] Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun Majumdar, Devi
Parikh, Dhruv Batra, and Stefan Lee. 2021. Sim-to-real transfer for vision-and-
language navigation. In Conference on Robot Learning. PMLR, 671–681.

[5] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünder-
hauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded navigation instructions in
real environments. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 3674–3683.

[6] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D:
Learning from RGB-D Data in Indoor Environments. International Conference on
3D Vision (3DV) (2017).

[7] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. 2019.
Touchdown: Natural language navigation and spatial reasoning in visual street
environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 12538–12547.

[8] Peihao Chen, Dongyu Ji, Kunyang Lin, Runhao Zeng, Thomas Li, Mingkui Tan,
and Chuang Gan. 2022. Weakly-supervised multi-granularity map learning
for vision-and-language navigation. Advances in Neural Information Processing
Systems 35 (2022), 38149–38161.

[9] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. 2021. History
aware multimodal transformer for vision-and-language navigation. Advances in
neural information processing systems 34 (2021), 5834–5847.

[10] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan
Laptev. 2022. Think global, act local: Dual-scale graph transformer for vision-
and-language navigation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 16537–16547.

[11] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-
Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor
Darrell. 2018. Speaker-follower models for vision-and-language navigation.
Advances in Neural Information Processing Systems 31 (2018).

[12] Georgios Georgakis, Karl Schmeckpeper, Karan Wanchoo, Soham Dan, Eleni
Miltsakaki, Dan Roth, and Kostas Daniilidis. 2022. Cross-modal map learning
for vision and language navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 15460–15470.

[13] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. 2020.
Towards learning a generic agent for vision-and-language navigation via pre-
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 13137–13146.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould. 2022. Bridging the gap be-
tween learning in discrete and continuous environments for vision-and-language
navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15439–15449.

[16] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould.
2020. A recurrent vision-and-language bert for navigation. arXiv preprint
arXiv:2011.13922 (2020).

[17] Yicong Hong, Yang Zhou, Ruiyi Zhang, Franck Dernoncourt, Trung Bui, Stephen
Gould, and Hao Tan. 2023. Learning navigational visual representations with
semantic map supervision. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 3055–3067.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Narrowing the Gap between Vision and Action in Navigation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[18] Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie, and Jason Baldridge. 2019.
General evaluation for instruction conditioned navigation using dynamic time
warping. arXiv preprint arXiv:1907.05446 (2019).

[19] Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and
Jason Baldridge. 2019. Stay on the Path: Instruction Fidelity in Vision-and-
Language Navigation. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 1862–1872.

[20] Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan Lee, and Oleksandr
Maksymets. 2021. Waypoint models for instruction-guided navigation in contin-
uous environments. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 15162–15171.

[21] Jacob Krantz and Stefan Lee. 2022. Sim-2-Sim Transfer for Vision-and-Language
Navigation in Continuous Environments. In European Conference on Computer
Vision. Springer, 588–603.

[22] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee.
2020. Beyond the nav-graph: Vision-and-language navigation in continuous
environments. InComputer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVIII 16. Springer, 104–120.

[23] Jacob Krantz, Erik Wijmans, Arjun Majundar, Dhruv Batra, and Stefan Lee.
2020. Beyond the Nav-Graph: Vision and Language Navigation in Continuous
Environments. In European Conference on Computer Vision (ECCV).

[24] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge.
2020. Room-Across-Room: Multilingual Vision-and-Language Navigation with
Dense Spatiotemporal Grounding. In Conference on Empirical Methods for Natural
Language Processing (EMNLP).

[25] Jialu Li and Mohit Bansal. 2024. Panogen: Text-conditioned panoramic envi-
ronment generation for vision-and-language navigation. Advances in Neural
Information Processing Systems 36 (2024).

[26] Jialu Li, Hao Tan, and Mohit Bansal. 2022. Envedit: Environment editing for
vision-and-language navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 15407–15417.

[27] Chih-YaoMa, Jiasen Lu, ZuxuanWu, Ghassan AlRegib, Zsolt Kira, Richard Socher,
and Caiming Xiong. 2019. Self-monitoring navigation agent via auxiliary progress
estimation. arXiv preprint arXiv:1901.03035 (2019).

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[29] Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen
Yang, Ruslan Partsey, Ruta Desai, Alexander William Clegg, Michal Hlavac,
So Yeon Min, et al. 2023. Habitat 3.0: A co-habitat for humans, avatars and robots.
arXiv preprint arXiv:2310.13724 (2023).

[30] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua
Shen, andAnton van denHengel. 2020. Reverie: Remote embodied visual referring
expression in real indoor environments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 9982–9991.

[31] Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, PengWang, and Qi Wu. 2022.
Hop: history-and-order aware pre-training for vision-and-language navigation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
15418–15427.

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[33] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan
Huang, Jie Zhou, and Jiwen Lu. 2022. Denseclip: Language-guided dense predic-
tion with context-aware prompting. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 18082–18091.

[34] Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Unnat Jain, and Angel X Chang.
2021. Language-aligned waypoint (law) supervision for vision-and-language
navigation in continuous environments. arXiv preprint arXiv:2109.15207 (2021).

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115 (2015), 211–252.

[36] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, ErikWijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. 2019.
Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF
international conference on computer vision. 9339–9347.

[37] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, ErikWijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh,
and Dhruv Batra. 2019. Habitat: A Platform for Embodied AI Research. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

[38] Andrew Szot, Alex Clegg, Eric Undersander, ErikWijmans, Yili Zhao, John Turner,
Noah Maestre, Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets,
Aaron Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech
Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva,
and Dhruv Batra. 2021. Habitat 2.0: Training Home Assistants to Rearrange their

Habitat. In Advances in Neural Information Processing Systems (NeurIPS).
[39] Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learning to navigate unseen

environments: Back translation with environmental dropout. arXiv preprint
arXiv:1904.04195 (2019).

[40] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. 2020.
Vision-and-dialog navigation. In Conference on Robot Learning. PMLR, 394–406.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[42] Hanqing Wang, Wenguan Wang, Wei Liang, Caiming Xiong, and Jianbing Shen.
2021. Structured scene memory for vision-language navigation. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern Recognition. 8455–8464.

[43] YiWang, Kunchang Li, Yizhuo Li, YinanHe, BingkunHuang, Zhiyu Zhao, Hongjie
Zhang, Jilan Xu, Yi Liu, Zun Wang, et al. 2022. Internvideo: General video
foundation models via generative and discriminative learning. arXiv preprint
arXiv:2212.03191 (2022).

[44] Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould,
Hao Tan, and Yu Qiao. 2023. Scaling data generation in vision-and-language
navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 12009–12020.

[45] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,
Manolis Savva, and Dhruv Batra. 2019. Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357 (2019).

[46] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. 2018. Building gen-
eralizable agents with a realistic and rich 3d environment. arXiv preprint
arXiv:1801.02209 (2018).

[47] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. 2018. Gibson env: Real-world perception for embodied agents. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
9068–9079.

[48] Yue Zhang and Parisa Kordjamshidi. 2022. Lovis: Learning orientation and visual
signals for vision and language navigation. arXiv preprint arXiv:2209.12723 (2022).

[49] Yue Zhang and Parisa Kordjamshidi. 2023. Vln-trans: Translator for the vision
and language navigation agent. arXiv preprint arXiv:2302.09230 (2023).

[50] Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun Chang, and Xiaodan Liang.
2021. Soon: Scenario oriented object navigation with graph-based exploration. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12689–12699.

[51] Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang. 2020. Vision-language
navigation with self-supervised auxiliary reasoning tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10012–10022.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Vision and Language Navigation
	2.2 VLN in Continuous Environment

	3 Backgrounds
	3.1 Problem Statement
	3.2 Backbone Architecture

	4 Proposed Approach
	4.1 Obstacle-Aware Waypoint Predictor
	4.2 Dual-Action Prediction for the Navigator

	5 Training and Inference for Navigator
	6 Experiments
	6.1 Dataset and Evaluation Metrics
	6.2 Implementation Details
	6.3 Experimental Results
	6.4 Ablation Study
	6.5 Qualitative Analysis

	7 Conclusion
	References

