Under review as a conference paper at ICLR 2023

A MORE ABLATION TABLES

Table 3: Varying number of sampled objectives per-iteration.

Task 2 tasks 2 tasks

ACL-ARC 72.115.12 73.261.32
SCIERC 82.351.76 82.98 50
SE-2016-6 72.46165 72.460.90

CHEMPROT 83.91p.32 83.690.98
H.PARTISAN 98.46¢.9 97.950.73

B DATASET DETAILS

Table 4: Specifications of datasets used to evaluate our methods.

Domain Task Label Type Train Size Dev Size Test Size Classes Metric
BIOMED CHEMPROT [Kringelum et al.|(2016) relation classification 4169 2427 3469 13 Accuracy
CS SCIERC |Luan et al.[(2018) relation classification 3219 455 974 7 Fl1
STANCE SE-2016-6 Mohammad et al.{(2016) stance detection 2497 417 1249 3 Accuracy
CS ACL-ARC|Jurgens et al.|(2018) citation intent 1688 114 139 6 F1
NEWS H.PARTISAN Kiesel et al. (2019) partisanship 515 65 65 2 Accuracy

C MORE TRAINING DETAILS

We run each hyper-parameter configuration across 3 seeds {0, 1, 2}. We use a batch size of 128
for all end-tasks tasks except H PARTISAN where we use a batch size of 64. The auxiliary task
batch-size, aux_bsz, is shared across all the n sub-sampled auxiliary objectives according to the
objective’s weight.

We use the AdamW optimizer (Loshchilov & Hutter| 2017), with weight decay of 0.01 for all
experiments.

Table 5: AANG-TD specific Hyper-parameters

Hyper-parameter ~ Values Description

aux_Ir 1.0, 0.1 Learning rate for factor vectors - { WA W% w7 w= w°}
sopt_Ir 0.1, 0.01 Learning rate for primary task weighting A

nconf_subsamp 3,6 Number of sub-sampled auxiliary tasks.

learning rate le-3, le-4 Learning rate used for further training of ROBERTapase

aux_bsz 256 Batch size of for auxiliary objectives

Table 6: AANG-TD+ED specific Hyper-parameters

Hyper-parameter ~ Values Description

aux_Ir 1.0,0.5,0.1 Learning rate for factor vectors - {WA", WZ w7 W= w°}
sopt_Ir 0.1 Learning rate for primary task weighting Ao

nconf_subsamp 6,12,24 Number of sub-sampled auxiliary tasks.

learning rate le-4 Learning rate used for further training of ROBERTapase

aux_bsz 1024 Batch size of for auxiliary objectives

META-TARTAN introduces a dev-head which is trained sporadically during training for estimating
the meta-gradients. We use the following hyper-parameters for training this dev-head : we sample 32
examples (8 examples in the case of H.PARTISAN) and perform full batch gradient descent with

14

Under review as a conference paper at ICLR 2023

Table 7: AANG Hyper-parameters for single task auxiliary tasks

Hyper-parameter ~ Values Description
sopt_Ir 1.0, 0.1, 0.01 Learning rate for primary task weighting A\
learning rate le-3, le-4, 5e-5 Learning rate used for further training of ROBERTapase

a learning rate of le-2 for 10 iterations. The dev-head is trained with the AdamW optimizer with
weight decay set to 0.1.

We copy the end-task agnostic baseline results from (Dery et al., 2021b) when available. We use the
hyper-parameters specified for TAPT in |Gururangan et al.| (2020) to train for the SE-2016-6 task.

All models were trained on one of two types of gpus: NVIDIA A100 or NVIDIA A6000. All models
fit within a single gpu. We used gradient accumulation to expand the effective batch sizes used for
our experiments.

D GENERALIZATION ERROR BOUND FOR END-TASK AWARE TRAINING

D.1 DEFINITIONS

Definition D.1. A function, f : — R is L-Lipschitz if Yu,v € dom(f):

1f(w) = F()|| < Llju—v]|
Note that L-Lipschitz implies bounded gradients.

Vi)l <L Yw
Definition D.2. A function, f : Q0 — R is S-smooth if Vu,v € Q:
IVf(u) = V@) < Bllu—wvl

Definition D.3. An update rule, G is o-bounded if :

sup,en [w—Gw)| <o
Consider the following general setting. There is an unknown distribution D, over examples from

some space Z. We receive a sample S = (21, ..., zn.) of N, examples drawn i.i.d. from D,. Our
goal is to find a model w, that parameterizes the function f., with small population risk defined as:

Definition D.4. Population Risk
Rlw] = E,wp, fe(w; 2)

Definition D.5. Empirical Risk
Since we have a finite number of samples, we can only compute the empirical risk which is :

Rsw] = Nie Zfe(U};Zi)y

Let A be a potentially randomized algorithm (such as Stochastic Gradient Descent) that is a function
of the S such that w = A(S5).

Definition D.6. Generalization Error €,.,,(A, N.)
Egen(Av Ne) = ES,A [RS [A(S)] - R[A(S)”

Definition D.7. Uniform Stability
A randomized algorithm A is e-uniformly stable if for all data sets S, 5" € Z, |S| = |S’| = N, such
that S and S’ differ in at most one example, we have

Sl;p EA[fe(A(S);2) — fe(A(S);2)] <€

Here, the expectation is taken only over the internal randomness of A. We will denote by €sta1, (A, N;)
the infimum over all € for which the above holds.

15

Under review as a conference paper at ICLR 2023

D.2 RELEVANT THEOREMS

Theorem D.1 (Uniform Stability implies Generalization in expectation). Let Algorithm A be e-
uniformly stable. Then,

Egen(Av Ne) = ES,A [RS [A(S)] - R[A(S)]] < Gstab(A7 Ne)

For full proof see Theorem 2.2 of \Hardt et al.|(2016).

Theorem D.2 (Stochastic Gradient Method is stable). Assume that f.(; z) € [0, 1] is an L-Lipschitz
and B.-smooth loss function for every z. Suppose that we run SGM for T steps with monotonically
non-increasing step sizes oy < 5. Then, SGM has uniform stability with :

1+1 1
€sgm < ﬁ (26L2) T+ o
€

where ¢ = f.c
We can simplify this to only terms involving T and N,

1——1
T eBet1

€sgm é T 2)

Proof. For the full proof, see Theorem 3.12 of Hardt et al.| (2016)

D.3 GROWTH FUNCTIONS

Lemma D.3 (Growth Recursion Under Dynamic Sampling). We consider the Stochastic Gradient
update rule G : QQ — Q :

Gi(w) =w —aV f(w)

Fix an arbitrary sequence of updates Gy, , ..., G . and another Gy ..., G'; . Let wyg = wy be a
starting point in Q2 given that f : 0 — R and define

o = Eflmff,NPA [Hwt - w;H]
where wy, w} are defined recursively through :
we =Gy (we1) wy =G (wpq) t>0

Then we have the recurrence relation :

0o =0

5 < min{(l—|—a)\161)5t—|—oz/\2(A—|—2L), (1+(1(>\161+/\2ﬁ2))5t} Gft :G/ft
tl = 0¢ + 20 Gy,, G/ff, are o-bounded

Note that Py is a distribution over the support { f*, f?} according to probabilities {1, A2 | \1 + A2 =
1}. {f1, fo} have smoothness (1, B2 respectively.

16

Under review as a conference paper at ICLR 2023

Proof. The second bound on d; is taken directly from Lemma 2.5 of |[Hardt et al.|(2016). We now
derive the first-half of the first bound

6t+1 = Ef1~~ft+1~73>\ [||wt+1 - w;&—&-l”]

—Epors [Alnc:fl () — Gy ()| + Aol G () — G)]
—Ef o, [Alnwt AV (wr) —)+ oV ()] + Aallwr — V2 (wn) —)+ avﬂ(wm@

<Epy.fonps [lwe — will] + aByy L pinp, (Allvfl(wi) =V we) || + A2V f2 (w) — VfQ(wt)ll)
(Triangle Inequality used for above step)
=0 + By, 1Py (MIIVfl(wi) =V wo) + X[V £ (w)) - Vf2(wt)ll)

(Without Loss of Generality, let 51 < [32)

<6+ aEy, fpy {x\lﬂlﬂwt —wj|| + X2V £ (w}) — sz(wt)H} (Smoothness)
=0t + aXi1010: + aXaEy fp, [HVfQ(w;) — VfQ(wt)H] (Triangle Inequality)
= (1 + a>\151)5t + ads

VA (w)) — VI (w)) + VI (w)) — V2 (w)| (add zero)

< (1+aXpr)d, +aA2<||Vf2 wy) — VfHw)| + |V (w)) — VfQ(wt)H) (Triangle Inequality)
< (T+aXpB)d + a)\g< IV f1(wy) Vfg(wt)H) Using Assumption A.1

< (T+aMBr)d +ada| A+ ||V fi(w)] + |Vf2(wt)> Triangle Inequality

< (14 aXiBi)d + aXo(A+2L) L-Lipschitz function
To obtain the second half of the first bound :

5t+1 = Ef1~-ft+1~7jx [||wt+1 - w£+1H]

—Ef, o, [Alntl(wt) G)]+ MGy awr) — G (w;>|}
—Ej o, [Alnwt AV (wr) —)+ oV ()] + Aallwr — V52 (wn) —)+ aw?(wm@

<Epr.gror [l — w)l] + 0Esy . pips (A1|Vf1<w;> SV)]+ AV) VfQ(wt)ll)

(Triangle Inequality used for above step)

<o +aEyg P, {Alﬁlﬂwt —wy|| + Ao B2 |wy — w,’s] (Smoothness)

— 5+ aMBEs, jr, [nw - wzn} T aNBeEs jps [|wt - w;n]

=0 + a(Af1 + A2f2)d;
= (1+ a(MB1+ A2B2))0:

D.4 STABILITY OF DYNAMIC SAMPLING

We repeat the description of our Auxiliary Learning with Dynamic Sampling Setting here for ease of
access.

17

Under review as a conference paper at ICLR 2023

Setting : We are given an auxiliary objective f,(+; z) € [0, 1] with IV, samples S, = (#1, ..., 2n,)
from the distribution D,. At any iteration of SGD, we sample a choice of either the end-task function
fe or the auxiliary objective f, according to the probabilities A, Ay | Ae + Ay = 1. Given the
chosen objective, we sample a data-point and perform stochastic gradient descent (SGD) based on
the sampled data-point.

An equivalent way to instantiate this procedure to create S4 by drawing N’ = N, + N, total samples
from the end-task and auxiliary task according to Py. S’ is then created by replacing 1 end-task
sample in S 4. At each step, a sample is drawn from a distribution : z;, 2} ~ Ps,, PS'A and a gradient
step is taken on the function corresponding to the set the sample was drawn from.

Lemma D.4 (Stability of dynamic sampling). We denote the outputs of T steps of SGM on S 4 and
S’y with the dynamically sampled functions, as wr and wi. respectively. Then, for every z. € Z, and
every tog > 0, under both the random update rule and the random permutation rule, we have :

Yo

E|fe(wT;z) — fe(whs;)‘ < N sup fe(w; ze) + LE[d7|6, = 0]

Where N' = N, + N, and v = 258" = e

Proof. Let £ = 1[6;, = 0] denote the event that J,, = 0. We have
]E|fe(wT7 z) = fe(wy; z | = P{g}Eer wr; 2) — fe(wr; 2 H(‘:]
+ P{EYE[| fe(wrs 2) — fe(wp; 2)[|€°]
SEpr(wT, z) = fe(wr; 2 ||€] + P{E°}- supfe(w Ze)
- 3)
because f, is non-negative
< LE[|[wr — wyp[[€] + P{&°} - sup fe(w; z)
because f. is L-Lipschitz
We now proceed to bound P{£¢}. Let i, € [N'] denote the position in which Sy4, S’ differ and
consider the random variable I assuming the index of the first time step in which SGM uses the
example z.*. Note that when I > t,, then we must have that é;, = 0 since the two samples are
identical up until this point.
P{&} =P{6y #£0} < P{I <ty}
Using the selection rule specified above (sample either f., f, according to the probabilities A, A,
and then sample uniformly from the selected task data) we have that :

& = 1. At ¢
PUSI) =) PU=t} = () = el - T
t=1 t=1 e e

O

Theorem D.5 (Stability Bound on Dynamic Sampling). Assume that f.(; z.), fo(; 24) € [0, 1] are
L-Lipschitz and 3. and B,-smooth loss functions. Consider that we have N' = N, + N, total
samples where f. and f, have N, and N, samples respectively. Suppose that we run SGM for T steps
with monotonically non-increasing step sizes oy < 7 by dynamically sampling the tasks according to
Ae and \q. Then, with respect to f., SGM has uniform stability with :

1
1 2vL2%c Bl (AT THer
€stab < (1+C,3)(’7+ch> (N/

AN’

Ne
Given that 8* = min{S., B, } and * is the corresponding weighting of the function with smaller
smoothness.

Where ~ =

Depending on which one gives a tighter bound the pair (3, p) can be :

(B:p)1 = (N'B", (1= X")(A+2L))

(Ba 0)2 = ()\e/Be + XafBa, 0)

18

Under review as a conference paper at ICLR 2023

When (3, p); gives the tighter bound, we can simplify to :

17%
N ’YT CNFBFFI
< TTenT3* =
€gen =~ (A)H A8 (Ml>

As presented in Section 4]

Proof. Let Sg4, 5’ be two sample of size N’ = N + N, as described in lemma [D. [Consider the
gradient updates G'y,, ..., Gy, and G , ..., G induced by running SGM on samples S and S’

respectively. Let wr and w/. denote the correspondmg outputs of SGM. By lemma we have :

E|fe(wr; 2) = fe(wr; 2)| < % sup fe(w; ze) + LE[Or |31, = 0] @)

Let U7 = E[67|d, = 0]. We will bound ¥ as function of ¢, and then minimize for ¢y. Note the
following :

e At any step t, with probability (1 — —) the sample selected is the same in both .S4 and
S’y In this case G, = ’ . and we use the corresponding expansivity rule from lemma
This gives :

5t+1 S min { (]. + O[t)*ﬁ*)ét + Oét(]. —)*) (A + 2L), (]. + oy ()\eﬂe +)\aﬁa))ét}
Where * = min{p., 5.} and * is the corresponding weighting of the function with

smaller smoothness. To avoid deriving the bound independently for each case, we perform a
variable substituation that captures the two cases :

e41 < (1+)0y + cup

B = {)*5*, Aefe + /\aﬂa} and p = {(1 —)*)(A + 2L), 0}. We can present the final
bound in terns of these variables which can be substituted depending on the minimizer.

* With probability 7 the selected example is different. Note that in this case, we know that
we are evaluating the end-task function f.. We use that both Gy, and Glh are (o0, = o L)-
bounded according to lemma|D.3|since f, is L-Lipschitz.

Combining the above we have :

Wy < (1— J —) ((1 +)V, + atﬂ) + ﬁ(‘l’t + 204 L)

= (9 (-) Jwes TR -
_ (1 - N,)atﬁ)\lft a:(27L +]\Ej\f’ ~7)p)
<(ira-]3,)/3) w, o GV)))
Sexp<1_ “5)w 2vL+t§é\/f’—v))
Weuse 1+ < exp(cv
SeXp< 1_7 *5 Uy + tN’

Where p = (27[/ + (N =7)p)

19

Under review as a conference paper at ICLR 2023

We can unwind the recurrence until ¥;, = 0.

>

IN
(]~
7 N\
~
Zle
N———
@D
”
k=)
/N
=
I
2
Y
=
<)
09
—~
|4
~—
N———

t=to+1
7 P-%) L _
CpT N —cB(1—-L)—1
R D DI ©)
t=to+1

We can upper bound the sum over t with an integral + drop negative terms

- Cﬁ T 06(1*%)
B N/Cﬁ(]. - 7) to

_ p Z 05(1_%)
B(N"=~) \to

<,)<T)¢
~ BN =) \to

Plugging this bound back into Equation 4| and using the fact that f. € [0, 1]:

_ cf
’yto Lp T
Eltor) i 2042 (7) o
| (T T ‘ B(Nl _ 7) to
We let ¢* = cf3, we can minimize the R.H.S by setting :
1
/ — PEEwY *
YN =)

Plugging this in gives us :

(14 25)\ (N'Le(2yL + (N = y)p) \ P71, c5_
E|fe(wr; 2) — fe(wl; 2)| < = (; ()0) (yT) <7
N (N"=7)
) 1 s ®)
1Y [2vL% T (AT TreB

() (F55+m) " ()
Recall that :

B = {)*5*7 AefBe +)\aﬁa}

p={1—-X)(A+2L),0}
We can choose whichever of the pairs for 3, p that minimizes the bound : O

E DISCUSSION OF GENERALIZATION ERROR BOUNDS

E.1 WHAT DOES THEOREM[D.3 SAY.

We consider the setting where
B=Xp
=(1-X)(A+2L)

20

Under review as a conference paper at ICLR 2023

Assuming the p term dominates Equation [8]in this setting is :

6gen

cB

auxdyn auxdyn B " AT\ 1+eB
"<, & VTG0 3
1— 1
< % ’YT eATATHL .« . . .
~ (A)““ g N This is Equation [T] from Section [4]

©))

In going from the first line to the second we consider the setting where A > 2. This is a case where
the auxiliary task is sufficiently different from the primary task. Some observations about this setting:

1. Smaller A implies auxiliary task is similar to main task and leads to improving the bound.

. Dependence of the bound on N’ is a bit more nuanced. Note that increasing N’ increases

~ unless we reduce)\, appropriately. Remember that). is the rate at which we sample
the primary task. Thus, if we add more auxiliary data but still sample the primary task at the
original rate, then we are effectively ignoring the extra auxiliary data.

. It might be tempting to assume that we can get arbitrary improvements in this setting by

setting A = 0. However, note that whilst this might reduce the generalization error, it
means that we are seeing none of the end-task which would result in large increase in the
training error

. Note that (8 = A** < (.) always. So we get improvements on the dependence on 7'

compared to Theorem

auxdyn

. We can optimize A, A, to minimize €,

21

	Introduction
	Related Work
	Automatically Generating Auxiliary Objectives
	The Impact of Auxiliary Learning on End-task Generalization
	End-task Aware Search of Structured Objective Spaces
	Experimental Setting
	Results and Discussion
	Going a Long Way Without External Data
	Introducing External Data
	Why does AANG Work ?

	Limitations and Conclusion
	More Ablation Tables
	Dataset Details
	More Training Details
	Generalization Error Bound for End-task Aware Training
	Definitions
	Relevant Theorems
	Growth Functions
	Stability of Dynamic Sampling

	Discussion of Generalization Error Bounds
	What Does Theorem D.5 Say.

