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Diversified Semantic Distribution Matching
for Dataset Distillation

Anonymous Authors

ABSTRACT
Dataset distillation, also known as dataset condensation, offers a
possibility for compressing a large-scale dataset into a small-scale
one (i.e., distilled dataset) while achieving similar performance dur-
ing model training. This method effectively tackles the challenges
of training efficiency and storage cost posed by the large-scale
dataset. Existing dataset distillation methods can be categorized
into Optimization-Oriented (OO)-based and Distribution-Matching
(DM)-based methods. Since OO-based methods require bi-level
optimization to alternately optimize the model and the distilled
data, they face challenges due to high computational overhead
in practical applications. Thus, DM-based methods have emerged
as an alternative by aligning the prototypes of the distilled data
to those of the original data. Although efficient, these methods
overlook the diversity of the distilled data, which will limit the
performance of evaluation tasks. In this paper, we propose a novel
Diversified Semantic Distribution Matching (DSDM) approach for
dataset distillation. To accurately capture semantic features, we
first pre-train models for dataset distillation. Subsequently, we esti-
mate the distribution of each category by calculating its prototype
and covariance matrix, where the covariance matrix indicates the
direction of semantic feature transformations for each category.
Then, in addition to the prototypes, the covariance matrices are
also matched to obtain more diversity for the distilled data. How-
ever, since the distilled data are optimized by multiple pre-trained
models, the training process will fluctuate severely. Therefore, we
match the distilled data of the current pre-trained model with the
historical integrated prototypes. Experimental results demonstrate
that our DSDM achieves state-of-the-art results on both image and
speech datasets. Codes will be released soon.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Dataset Distillation, Prototype Learning, Semantic Feature

1 INTRODUCTION
In the era of big data, the volume of multimedia data grows ex-
ponentially, which brings great challenges to storage and training
efficiency [12, 33]. For instance, the multi-modal CLIP was trained
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Figure 1: An illustration of diversified semantic dataset distil-
lation. Unlike previous methods match the prototypes of the
original and distilled dataset (𝝁T ∼ 𝝁S ), our method matches
Gaussian distributions (N(𝝁T , 𝑪𝒐𝒗T ) ∼ N (𝝁S, 𝑪𝒐𝒗S)).

on an impressive 400 million data, consuming thousands of GPU
days [17, 22, 31]. This poses an interesting issue: how to summarize
the large-scale multimedia data into a compact but insightful sub-
set to facilitate the training procedure while maintaining similar
performance. To achieve this purpose, an intuitive approach is to
select representative instances from the original dataset, known
as coreset selection [4, 9, 23, 25, 32]. However, sample selection in-
volves directly discarding a significant portion of instances from the
original dataset, leading to the loss of crucial underlying informa-
tion essential for model training. Fortunately, Dataset Distillation
(DD) has been proposed as a solution to condense the original large-
scale dataset into smaller ones (i.e., distilled dataset) while ensuring
that models trained on the distilled dataset exhibit performance
comparable to those trained on the original dataset [6, 16, 30].

Existing methods for dataset distillation can generally be cate-
gorized into two main groups: Optimization-Oriented (OO)-based
methods and Distribution-Matching (DM)-based methods [36, 42].
OO-based methods employ a bi-level optimization process [2, 8,
30, 41], where the model is first updated with the original dataset,
and then, the distilled dataset is optimized by minimizing the dis-
tance between the original and distilled data. Although OO-based
methods have demonstrated good performance, they are often crit-
icized for their significant time consumption during training. In
contrast, DM-based methods are proposed to improve the training
efficiency by eliminating model updates [28, 38]. Specifically, DM
[40] optimizes the the distilled data by matching corresponding
prototypes calculated with a random initialized model on the dis-
tilled and original datasets. However, the embeddings generated
by a randomly initialized model tend to be inaccurate, which can
impact the performance of the distilled dataset. To tackle this issue,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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IDM [42] utilizes a sequence of pre-trained models to obtain accu-
rate prototypes. Although these prototypes are more accurate, they
ignore the diversity of the distilled dataset, which will reduce the
generalization of the models trained on it.

As illustrated in Figure 1, when only prototypes of the distilled
data and the original data are aligned to optimize the distilled data,
the algorithm may lazily minimize the alignment loss by distill-
ing instances near the center of each class into the distilled data.
As a result, all the distilled instances contain similar information,
which overlooks the diverse and meaningful semantic information
in the original data. Besides the prototype, the covariance matrix is
another important statistic to depict the variations of a category,
where each item in the covariance matrix reflects the transforma-
tion from one-dimensional semantic feature to another. As shown
in Figure 1, suppose the “purple, orange, blue" in the covariance
matrix represent the transformation from standing to “color trans-
formation, posture transformation, and perspective transformation",
applying these transformations to the a white, frontal and standing
horse can obtain horses of “brown, lying, and running". Therefore,
the covariance matrix carries rich semantic diversity information.
Inspired by this, we can improve the diversity of the distilled data
by aligning their covariance matrix to that of the original data to
make the distilled and original data distribute similarly.

In this paper, we propose a simple yet efficient Diversified Seman-
tic Distribution Matching (DSDM) method for dataset distillation,
aiming to obtain semantic diversified distilled data. To acquire accu-
rate semantic information from the original data, we first pre-train
a set of models on the original dataset. Then, each category in the
original dataset is modeled into a Gaussian distribution with the
semantic embedding extracted by a pre-trained model, where the
prototype represents the intrinsic feature of a category, and the
covariance matrix represents the semantic variations of instances in
this category. Subsequently, we align the prototype and covariance
matrix of the corresponding distilled data to make the distribution
of the distilled data similar to that of the original data. With the
additional alignment of the covariance matrix, our distilled data will
be distributed dispersedly in the space of the original data rather
than gathered around the class centers, ensuring the performance
of the distilled data in the evaluation tasks. In addition, since the
distilled data are optimized by multiple pre-trained models to make
them generalize well to different models, the training process will
fluctuate severely. Therefore, we introduce a memory bank to store
the integrated prototypes of distilled data optimized by previous
pre-trained models. Finally, the distilled data of the current pre-
trained model are aligned with the historical integrated prototypes
to ensure that the distilled data generalize well across various mod-
els. Empirical evaluations conducted on five image datasets and a
speech dataset demonstrate that our method not only preserves
the efficiency of DM-based approaches but also exhibits significant
performance improvements.

The contributions of this paper are summarized as follows:

• We introduce a novel approach called Diversified Semantic
DistributionMatching (DSDM) for dataset distillation. To the
best of our knowledge, this is the first work to align features
from a semantic distribution perspective, thereby enhancing
the semantic diversity of distilled dataset.

• We analyze the disparities in feature space distributions
among different models. To ensure stable optimization of
distillation, we align the prototype of the current distilled
data with the historically optimized distilled data.
• We conduct a series of experiments to thoroughly validate
the effectiveness of DSDMon both image and speech datasets.
Through rigorous experimentation, our DSDM has demon-
strated state-of-the-art performance with robust generaliza-
tion capabilities across various scenarios.

2 RELATEDWORK
2.1 Coreset Selection
The classical approach to compressing the original dataset is coreset
selection or instance selection. In addition to random sampling from
the original dataset, most existing strategies progressively select
important data points based on some heuristic selection criteria.
For example, Herding [5, 32] minimizes the distance between the
feature space’s center of the chosen subset and that of the original
dataset by greedily incorporating one instance at a time during
each iteration. K-Center [9, 25] selects data points that minimize
the maximum distance between a data point and its nearest center.
Gradient-Greedy [1] employs gradients as features to maximize
the diversity of instances in the replay. However, these heuristic
selection criteria do not guarantee that the selected subset is optimal
for training the model, particularly in the deep neural networks.

2.2 Dataset Distillation
Existing Dataset Distillation methods can be classified into two
types: Optimization-Oriented (OO)-based and Distribution Match-
ing (DM)-based methods [36, 42].

Optimization-Oriented (OO)-based methods integrate infor-
mation learned from the dataset into the synthesized dataset during
model training, necessitating iterative bi-level optimization of both
the model and distilled dataset. Wang et al. are the first to introduce
the concept of dataset distillation from an optimization perspective,
updating synthesized instances through meta-learning [30]. DC
utilizes this bi-level meta-learning optimization approach to match
gradients of the distilled dataset and the original dataset to simulate
the training process [41]. DSA further improves data efficiency by
introducing differentiable Siamese augmentation, enabling effective
training of neural networks with augmented data [39]. IDC injects
a differentiable multi-formation function into synthesized instances
within the constraint of fixed distilled dataset storage [13]. Along
these lines, various approaches have been proposed to generate
distilled instances, including matching the training trajectories [2],
using data hallucination networks to construct sample features [26],
and selecting original sample features via clustering [18]. Although
these methods have improved performance of the distilled data,
they still follow the bi-level optimization paradigm to update the
model and the distilled data alternately, which is difficult to be
optimized and time-consuming.

Distribution-Matching (DM)-based methods directly align
the distribution of distilled dataset with that of the real dataset
in the feature space [28, 40]. They avoid the bi-level optimization
by leaving out the updating of the model. DM [40] is proposed to
match the average feature representations of the original dataset
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Figure 2: The illustration of our proposed DSDM. First, DSDM instantiates a feature extractor 𝜽 (𝑡 )
𝐹

by randomly selecting amodel
from the pre-trained models. Then, DSDM utilizes three key components to optimize the distilled data: prototype alignment
(L𝑝𝑟𝑜𝑡𝑜 ), semantic diversity alignment (L𝑆𝐷 ), and historical model alignment (Lℎ). After the 𝑡-th iteration of optimization,
DSDM updates and stores the historically optimized prototypes 𝒉(𝑡 ) in the memory bank.

with those of the distilled dataset. However, this approach ignores
the discriminative nature of the classes. To address this limitation,
CAFE [28] employs a discriminative loss that utilizes the prototypes
of the distilled instances as classifiers for the real instances. How-
ever, the embeddings to calculate the prototypes are extracted with
a randomly initialized model, which are usually inaccurate and will
affect the performance of distillation. To address this issue, IDM
[42] introduces a queue of pre-trained models to find more accurate
class centers. In addition, M3D [36] embeds the class centers into
the Reproducing Kernel Hilbert space, which aligns the distribu-
tions more efficiently. We recognize that only aligning class centers
while overlooking the semantic diversity in the original dataset will
produce oversimplified distilled data, which are similar to the class
centers. Therefore, our method considers semantic information to
enhance the diversity of distilled data.

3 PRELIMINARY
Dataset distillation is to condense a large-scale training dataset T =

{(𝒙𝑖 , 𝑦𝑖 )} | T |𝑖=1 into a small-scale distilled dataset S =
{
(𝒔 𝑗 , 𝑦 𝑗 )

} |S |
𝑗=1,

where models trained on S resemble those trained on T . Typically,
the distilled dataset S is initialized with randomly selected original
instances from T or random noise. Then, S is optimized by mini-
mizing the information loss between the distilled and the original
examples, which can be formulated as:

S = argmin
S
𝐷 (𝜙 (T ), 𝜙 (S)), (1)

where 𝐷 represents a distance metric such as Mean Square Error
(MSE), and 𝜙 denotes the matching objective. As mentioned above,
based on whether to perform a costly bi-level optimization, existing
methods can be mainly divided into Optimization-Oriented (OO)-
based and Distribution-Matching (DM)-based methods [35, 36].

In OO-based methods, 𝜙 typically represents the gradients. In
each iteration, to simulate different backbones, the parameters of
a model are initialized to 𝜽 (0) . Then, in the outer loop, 𝜽 (0) is up-
dated for �̂� steps using T to generate gradients through a training
procedure. Next, in the inner loop, S is optimized by minimizing
the gradient matching losses between the original and distilled data.
The loss function can be defined as follows:

S = argmin
S
E𝜽 (0)∼𝑃𝜽


�̂�∑︁
𝑖=0

𝐷

(
∇𝑙

(
S;𝜽 (𝑖 )

)
,∇𝑙

(
T ;𝜽 (𝑖 )

)) ,
with 𝜽 (𝑖 ) = 𝜽 (𝑖−1) − 𝜂∇𝑙

(
T ;𝜽 (𝑖−1)

)
, 𝑖 ≥ 1,

(2)

where 𝑃𝜽 is the distribution for the initialization of network param-
eters, 𝑙 is the empirical cross-entropy loss and 𝜂 is the learning rate
for updating the network.

Although OO-based methods achieve superior performance,
these methods incur significant time overhead due to their bi-level
loops. To mitigate this challenge, DM-based methods aim to gen-
erate distilled data to approximate the original data by directly
matching the class centers of the distilled dataset with those of the
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original dataset [40]. This objective can be formulated as:

S = argmin
S
𝐸𝜽∼𝑃𝜽 [𝐷 (𝑔(𝜽𝐹 ;S), 𝑔(𝜽𝐹 ;T))] , (3)

where 𝜽𝐹 denotes the feature sub-network parameterized by 𝜽 ,
instantiated by the model without the output layer and the function
𝑔 represents the embedding function parameterized with 𝜽𝐹 .

4 METHOD
4.1 Overview
We illustrate the framework of our proposed Diversified Seman-
tic Distribution Matching (DSDM) in Figure 2. To obtain accurate
instance embeddings, we train multiple models using the original
dataset. For the 𝑡-th iteration, we initialize a feature sub-network
𝜽 (𝑡 )
𝐹

instantiated by randomly selecting one of these pre-trained
models. Then, we derive instance embeddings from both T and
S. The extracted features are then used to compute prototypes 𝝁S
and 𝝁T , as well as covariance matries 𝑪𝒐𝒗S and 𝑪𝒐𝒗T for each
category in both T and S. The prototypes encapsulate inherent
features, while the covariance matrices capture the semantic di-
versity of all features within each category. We then match the
prototypes and covariance matries for each category. However, the
feature distributions of S from different pre-trained models can
exhibit significant discrepancies during the iteration process, as
elaborated in Section 4.3. To mitigate the instability stemming from
these differences, we align the historical prototypes of distilled data
𝒉(𝑡−1) with the current distilled data 𝝁S . To preserve the historical
prototypes for each pre-trained model, we establish a memory bank
to memory historical integrated prototypes. Finally, we summarize
the total loss to optimize distilled instances.

4.2 Diversified Semantic Distribution Matching
In the deep neural networks, disparate instances belonging to the
same category often undergo nuanced semantic transformations
within their deeper feature representations [3, 27, 37]. Given that
covariance matrices encapsulate both the interrelationships and
variances among features, they provide a rich understanding of se-
mantic characteristics. We argue that leveraging category-specific
covariance matrices enables the representation of features with dis-
tinctive semantic transformations. Thus, we derive semantic direc-
tions from estimated covariancematrices, assuming a class-centered
normal distribution. Our objective simplifies to matching covari-
ance matrices of features generated for each category S to closely
approximate those of T (i.e., N(𝝁S, 𝑪𝒐𝒗S) ∼ N (𝝁T , 𝑪𝒐𝒗T )).

Previous DM [40] utilizes initialized neural networks to mea-
sure the Maximum Mean Discrepancy (MMD) between the original
dataset T and the distilled dataset S. However, aligning the em-
beddings with randomly initialized neural networks will lead to
inaccurate embeddings, as neural networks are ignorant to the cur-
rent task. Only accurate embeddings can capture effective semantic
features. To mitigate this issue, we adopt a strategy of pre-training
several models using T . At each iteration 𝑡 , we randomly select
one of these pre-trained models and utilize its last layer (excluding
the output layer) as the feature extractor 𝜽 (𝑡 )

𝐹
.

For a large-scale original dataset T = {𝑥𝑖 , 𝑦𝑖 } | T |𝑖=1 , where𝑦𝑖 ∈ 𝐿 =

{𝑙1, 𝑙2, ..., 𝑙𝐶 } and 𝐶 represents the number of categories, we com-
press IPC (Instances Per Class) instances for each category 𝑙𝑐 (i.e., for
the distilled synthetic datasetS =

{
(𝒔 𝑗 , 𝑦 𝑗 )

} |S |
𝑗=1 , |S| = 𝐼𝑃𝐶×𝐶).S is

usually initialized with instances randomly selected instances from
the original dataset. To effectively capture the semantic features
of the original dataset T , we use 𝜽 (𝑡 )

𝐹
to get instance embeddings.

We employ the embedding function 𝑔 to generate embeddings for
each instance in both the distilled and original datasets, denoted by
𝒇𝑖 = 𝑔(𝜽 (𝑡 )𝐹

;𝑥𝑖 ) and 𝒇𝑗 = 𝑔(𝜽 (𝑡 )𝐹
; 𝒔 𝑗 ), where 𝒇𝑖 ,𝒇𝑗 ∈ 𝑅𝑑 .

Given the inherent differences in the direction of semantic fea-
tures across classes, we should first align the inherent semantic
features of each class between T and S. Thus, we utilize the eu-
clidean distance to align the prototype of T , denoted as 𝝁T,𝑐 , with
the prototype of S, denoted as 𝝁S,𝑐 . The loss function for this
prototype alignment is defined as follows:

L𝑝𝑟𝑜𝑡𝑜 =

𝐶∑︁
𝑐=1
∥𝝁T,𝑐 − 𝝁S,𝑐 ∥2

s.t. 𝝁T,𝑐 =
1
|𝐵T𝑐 |

|𝐵T𝑐 |∑︁
𝑖=1

𝒇𝑖 , 𝝁S,𝑐 =
1
|𝐵S𝑐 |

|𝐵S𝑐 |∑︁
𝑗=1

𝒇𝑗 ,

(4)

where 𝐵T𝑐 , 𝐵S𝑐 represent a batch of data sampled from the same
category 𝑙𝑐 in T and S.

When aligning the prototypes, we let the covariance matrices
align to capture semantic diversity. The objective of semantic di-
versity alignment can be expressed as follows:

L𝑆𝐷 =

𝐶∑︁
𝑐=1

1
𝑑



𝑪𝒐𝒗T,𝑐 − 𝑪𝒐𝒗S,𝑐

2
s.t. 𝑪𝒐𝒗T,𝑐 (𝑚,𝑛) =

∑ |𝐵T𝑐 |
𝑖=1

(
𝒇𝑚
𝑖
− 𝝁𝑚T,𝑐

) (
𝒇𝑛
𝑖
− 𝝁𝑛T,𝑐

)
|𝐵T𝑐 |

,

𝑪𝒐𝒗S,𝑐 (𝑚,𝑛) =

∑ |𝐵S𝑐 |
𝑗=1

(
ˆ𝒇𝑚
𝑗
− 𝝁𝑚S,𝑐

) (
𝒇𝑛
𝑗
− 𝝁𝑛S,𝑐

)
|𝐵S𝑐 |

,

(5)

where (𝑚,𝑛) denotes the position of the covariance matrix.

4.3 Align Historical Prototypes
To enhance model generalization of distilled data across diverse
evaluation tasks, we adopt multiple pre-trained models to capture
various semantic features. However, notable differences emerge in
the feature distributions of distilled data for the same class across
different pre-trained models. In Figure 3 (a), we visualize the feature
distributions of the distilled data from a category across six pre-
training models. It is obvious that data distilled by different pre-
trained models are distributed differently. Figure 3 (b) demonstrates
the matching loss between the distilled data and the original data
under these six pre-trained models. We can see that the distance
between the same distilled data and the same original data varies
greatly among different pre-trained models, resulting that training
loss for data distillation fluctuations severely when the model for
feature extraction changes.
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Figure 3: Illustration of feature distributions and matching
loss on the same distilled data under six pre-trained models.

To enhance the stability of distillation performance over mul-
tiple pre-trained models, we introduce a memory bank to store
the integrated prototypes of distilled data optimized by previous
pre-trained models. Then, we align the distilled data of the current
model with the corresponding integrated prototype 𝒉(𝑡−1)𝑐 . Thus,
we compute the historical prototype alignment loss as:

Lℎ =

𝐶∑︁
𝑐=1
∥𝝁S,𝑐 − 𝒉

(𝑡−1)
𝒄 ∥2 . (6)

To store and update the prototypes used for historical prototype
alignment, we first compute prototypes 𝒉(𝑡 )𝑐 for each class after the
𝑡-th optimization with the corresponding feature extractor 𝜽 (𝑡 )

𝐹
on

the optimized distilled data S̃:

𝒉(𝑡 )𝑐 =
1
|S̃𝑐 |

∑︁
˜𝑠𝑘 ∈S̃𝑐

𝑔(𝜽 (𝑡 )
𝐹

; ˜𝑠𝑘 ), (7)

where S̃𝑐 represents the distilled data of category 𝑙𝑐 after the 𝑡-
th optimization. Next, we update the integrated prototypes in the
memory bank:

𝒉(𝑡 )𝑐 =

{
𝛼𝒉(𝑡−1)𝑐 + (1 − 𝛼)𝒉(𝑡 )𝑐 , 𝑡 > 1
0, 𝑡 = 1,

(8)

where 𝛼 is a smoothing factor, typically set to be 0.99.

4.4 Overall Loss and Training Algorithm
In a nutshell, weminimize the sum of the above losses, including the
prototype alignment loss L𝑝𝑟𝑜𝑡𝑜 , semantic diversity alignment loss
L𝑆𝐷 , and the historical prototype alignment loss Lℎ . Combining
these loss terms together, our diversified semantic distribution
matching loss can be formulated as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑝𝑟𝑜𝑡𝑜 + 𝜆1L𝑆𝐷 + 𝜆2Lℎ, (9)

where 𝜆1 and 𝜆2 are hyperparameters for balancing these terms.
The pseudocode for DSDM is provided in Algorithm 1. In addi-

tion, we adopt partitioning and expansion augmentation for the
initialization of S, as proposed in IDM [42], aims to increase the
number of representations extracted from S without incurring ad-
ditional storage costs. Specifically, employing a factor parameter 𝑙 ,
each distilled instance is factorized into 𝑙 × 𝑙 mini-examples, which
are then up-sampled to their original size during training. This

Algorithm 1: DSDM
Input: T : original training dataset; S: distilled synthetic

dataset; 𝑇 : number of training iterations; 𝐶: number
of class; 𝜂𝐷𝑆𝐷𝑀 : learning rate of optimizing distilled
data;𝑀 : number of pre-trained networks.

1 Randomly train𝑀 models {𝜃𝑚}𝑀𝑚=1 with T ;
2 Initialize distilled dataset S;
3 for 𝑡 = 1← to 𝑇 do
4 Randomly load a checkpoint from the pre-trained

models to instantiate a feature extractor 𝜽 (𝑡 )
𝐹

.
5 Sample an intra-class mini-batch 𝐵T𝑐 ∼ T , 𝐵S𝑐 ∼ S for

each category 𝑐 in 𝐶;
6 Compute prototype matching loss L𝑝𝑟𝑜𝑡𝑜 with Eq.(4).
7 Compute semantic diversity matching loss L𝑆𝐷 with

Eq.(5).
8 Compute historical prototype alignment loss Lℎ with

Eq.(6).
9 Compute the total loss L𝑡𝑜𝑡𝑎𝑙 with Eq.(9).

10 Update distilled data S: S ← S − 𝜂𝐷𝑆𝐷𝑀∇SL𝑡𝑜𝑡𝑎𝑙
11 Compute and update the historical prototype of the

optimized data 𝒉(𝑡 )𝑐 for each category 𝑐 .
12 Store 𝒉(𝑡 ) = {𝒉(𝑡 )𝑐 }𝐶𝑐=1 into the memory bank.

Output: Distilled synthetic dataset S.

approach effectively maximizes the utilization of storage space in
S. We integrate the same augmentation technique into our work,
thereby further leveraging its advantages in aligning distributions
for enhanced diversity.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. To evaluate the effectiveness of our dataset distillation
method, we conduct experiments on five image datasets and one
speech dataset. The five image datasets are MNIST [15], Fashion-
MNIST (FMNIST) [34], SVHN [19], CIFAR-10 [14], and CIFAR-100
[14]. Specifically, MNIST is a black and white dataset consisting
of 60,000 training images and 10,000 test images from 10 different
classes. SVHN is a color dataset and consists of 73,257 digits and
26,032 digits for training and testing respectively. CIFAR-10/100
consists of 50,000 training images and 10,000 test images from 10
and 100 different classes respectively. For the speech dataset, we
use the Mini-Speech-Commands dataset [7], consisting of 8000
one-second audio clips representing eight command categories.

Implementation Details. We follow the configuration of DM
[40] to implement our method. Specifically, we use a 3-layer convo-
lutional network (ConvNet-3) and a 4-layer convolutional network
(ConvNet-4) [24] for the image and speech datasets, respectively.
We initialize 𝑀 = 10 pre-trained models, each trained for 𝐸 = 20
epochs. We execute 𝑇 = 10𝐾 matching optimization iterations. For
the weight parameters, we set 𝜆1 = 50 and 𝜆2 = 0.2 (see section 5.5
for further analysis). Moreover, we set the optimization learning
rate for distilled instances 𝜂𝐷𝑆𝐷𝑀 = 0.1. Following IDM [42], we
fix the factor parameter 𝑙 to 2 across all datasets. We use Top-1 test
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Table 1: Top-1 accuracy of test models trained on distilled synthetic images on multiple datasets. We evaluate our method on
five different datasets with different numbers of synthetic images per class. Ratio(%): the ratio of distilled images to the whole
training set. Whole: the accuracy of the model trained on the whole original training set. Note: DD† uses different architectures
i.e. LeNet for MNIST and AlexNet for CIFAR10. The other methods use ConvNet-3.

Datasets MNIST FashionMNIST SVHN CIFAR-10 CIFAR-100

IPC 1 10 50 1 10 50 1 10 50 1 10 50 1 10 50
Ratio (%) 0.017 0.17 0.83 0.017 0.17 0.83 0.014 0.14 0.7 0.02 0.2 1 0.2 02 10

Whole 99.6±0.0 93.5±0.1 95.4±0.1 84.8±0.1 56.2±0.3

Random 64.9±3.5 95.1±0.9 97.9±0.5 51.4±3.8 73.8±0.7 82.5±0.7 14.6±1.6 35.1±4.1 70.9±0.9 14.4±2.0 26.0±1.2 43.4±1.0 1.4±0.1 5.0±0.2 15.0±0.4
Herding 89.2±1.6 93.7±0.3 94.8±0.3 67.0±1.9 71.1±0.7 71.9±0.8 20.9±1.3 50.5±3.3 72.6±0.8 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5
K-center 89.3±1.5 84.4±1.7 97.4±0.3 66.9±1.8 54.7±1.5 68.3±0.8 21.0±1.5 14.0±1.3 20.1±1.4 21.5±1.3 14.7±0.7 27.0±1.4 8.3±0.3 7.1±0.2 30.5±0.3

DD† [30] - 79.5±8.1 - - - - - - - - 36.8±1.2 - - - -
DC [41] 91.7±05 97.4±0.3 98.8±0.2 70.5±0.6 82.3±0.4 83.6±0.4 31.2±1.4 76.1±0.6 82.3±0.3 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 -
DSA [39] 88.7±0.6 97.8±0.1 99.2±0.1 70.6±0.6 84.6±0.3 88.7±0.2 27.5±1.4 79.2±0.5 84.4±0.4 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4

DM [40] 89.7±0.6 97.5±0.1 98.6±0.1 70.7±0.6 83.5±0.3 88.1±0.6 30.3±0.1 73.5±0.5 82.0±0.8 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4
CAFE [29] 93.1±0.3 97.2±0.2 98.6±0.2 77.1±0.9 83.0±0.4 84.8±0.4 42.6±3.3 75.9±0.6 81.3±0.3 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.3 27.8±0.3 37.9±0.3

CAFE+DSA [29] 90.8±0.5 97.5±0.1 98.9±0.2 73.7±0.7 83.0±0.3 88.2±0.3 42.9±3.0 77.9±0.6 82.3±0.4 31.6±0.8 50.9±0.5 62.3±0.4 14.0±0.3 31.5±0.2 42.9±0.2
IDM [42] - - - - - - - - - 45.6±0.7 58.6±0.1 67.5±0.1 20.1±0.3 45.1±0.1 50.0±0.2
M3D [36] 94.4±0.2 97.6±0.1 98.2±0.2 80.7±0.3 85.0±0.1 86.2±0.3 62.8±0.5 83.3±0.7 89.0±0.2 45.3±0.3 63.5±0.2 69.9±0.5 26.2±0.3 42.4±0.2 50.9±0.7

DSDM 94.8±0.2 98.5±0.2 99.2±0.1 80.8±0.4 87.3±0.3 88.9±0.3 60.2±0.2 85.4±0.3 91.3±0.2 45.0±0.4 66.5±0.3 75.8±0.3 19.5±0.2 46.2±0.3 54.0±0.2
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Figure 4: Performance comparison between DSDM and DM across varying training steps. DSDM w/o Fac. denotes the DSDM
without using the factor technique.

accuracy on the test set of the original dataset as the evaluation
metric to assess the performance of a network trained on the dis-
tilled dataset. The evaluation task is trained for 1500 epochs. We
perform 5 experiments and report the mean and standard deviation
of the results.

Compared Methods. We compare our DSDM with several
state-of-the-art baselines across three categories: Coreset Selec-
tion, Optimization-Oriented (OO)-based methods, and Distribution
Matching (DM)-based methods. For coreset selection methods, we
consider the following: Random [4, 23], Herding [32] and K-Center
[9, 25]. For OO-based methods, we include: Dataset Distillation
(DD) [30], Dataset Condensation (DC) [41] and DSA (adding dif-
ferentiable Siamese augmentation for DC) [39]. Although recent
OO-based methods [18, 20, 21] achieve better performance, we do
not compare them due to the remarkable difference in training
scheme and cost. For DM-based methods, we include: CAFE [29],
its variant CAFE+DSA [29], DM [40], IDM [42], and M3D [36].

5.2 Results on Image Datasets
The performance of our DSDM and that of our competitors on the
five image datasets is shown in Table 1. From these results we can
draw the following conclusions: Firstly, our DSDM consistently
outperforms current state-of-the-art techniques, especially when
the IPC in the synthetic dataset is set to 10 and 50. In particular,
our method shows significant improvements over the suboptimal
method, M3D, by 3.0% and 5.9% on CIFAR-10, respectively. Secondly,
using the original dataset (Whole) for training represents the upper
bound performance for dataset distillation. Encouragingly, we ob-
serve a marginal degradation of only 4.1% at a condensation ratio
of 0.7% on SVHN, and a slight decrease of 2.2% at a condensation
ratio of 10% on CIFAR-100. These results suggest that our method
has the potential to achieve lossless compression by maintaining
semantic diversity. Thirdly, the improvements of Our DSDM are
limited when IPC=1. This is because the covariance matrix of only
one distilled instance cannot be estimated. However, our DSDM
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Table 2: Top-1 accuracy of ConvNet-4 trained on distilled
spectrograms.

IPC Method
Random Herding DM DSA DSDM

10 42.6 56.2 69.1 65.0 71.1
20 57.0 72.9 77.0 74.0 78.9

.
Table 3: Cross-architecture generalization performance (%)
on CIFAR-10. The distilled synthetic images is condensed
using ConvNet-3 and evaluated using other architectures.

IPC Evalueation Method
DSA DM M3D Ours

10
ConvNet-3 52.1 48.9 63.5 66.5
ResNet-10 32.9 42.3 56.7 63.7

DenseNet-121 52.1 48.9 63.5 63.8

50
ConvNet-3 60.6 63.0 69.9 75.8
ResNet-10 49.7 58.6 66.6 70.8

DenseNet-121 49.1 57.4 66.1 68.7

still outperforms most of the other methods, because our DSDM
aligns features from multiple models to stabilize the training. To
further illustrate it, we show the performance of different training
stages on CIFAR-10 (IPC=10/50) in Figure 2. It can be observed
that our DSDM is more stable and significantly outperforms the
compared methods at different training stages.

5.3 Results on Speech Dataset
Following the setting in previous work [13], each speech data is pre-
processed to be amagnitude spectrogramwith the size of 64×64. For
the factor parameter 𝑙 , each spectrogram is factorized into 2 mini-
examples along the time axis. Table 2 shows the test accuracy for
mini-speech commands. It can be seen that our DSDM also greatly
outperforms the baseline method, confirming its effectiveness in
the speech domain. This means that our approach can be useful in
both the image and the speech domain.

5.4 Cross-Architecture Evaluation
A more important issue for distilled data is whether they can gen-
eralize well to different networks in the evaluation tasks. In Table
3 we show the performance of our distilled dataset (optimized on
ConvNet-3) on the evaluation task trained with ConvNet-3, ResNet-
10 [10] and DenseNet-121 [11]. Notably, our DSDM not only outper-
forms other methods on specific distillation model (ConvNet-3) but
also shows significant performance gains on other unseen network
architectures (ResNet-10 and DenseNet-121). This robust cross-
architecture generalization suggests that our distilled dataset with
enhanced semantic diversity and integrated information from dif-
ferent pre-models can generalize well to different backbones in the
evaluation tasks.

Table 4: Ablation study of different components in DSDM on
CIFAR10 with IPC=10/50.

L𝑝𝑟𝑜𝑡𝑜 PM L𝑆𝐷 Lℎ IPC = 10 IPC = 50

! 60.6 68.8
! ! 63.5 70.2
! ! ! 66.2 75.1
! ! ! ! 66.5 75.8

5.5 Analysis
Ablation Study. To evaluate the effectiveness of each component
in our DSDM, we conduct ablation experiments on CIFAR-10, in-
cluding the prototype alignment loss (L𝑝𝑟𝑜𝑡𝑜 ), pre-trained models
(PM), semantic diversity alignment loss (L𝑆𝐷 ), and historical pro-
totype alignment loss (Lℎ). The results are presented in Table 4,
we can draw the following conclusions: (1) Prototype alignment
utilizing pre-trained models exhibits enhancements of 2.9% and
1.4% for IPC=10 and IPC=50, respectively. This suggests that lever-
aging pre-trained models enables the acquisition of accurate in-
stance embeddings, thereby generating precise intrinsic semantic
features for each class. (2) The inclusion of our proposed semantic
diversity alignment yields improvements of 2.4% and 4.9% respec-
tively. This underscores the effectiveness of our covariance matrix
in capturing semantic diversity. Notably, with the increased IPC
(i.e., IPC=50), more diversified distilled instances are obtained, re-
sulting in a greater improvement. (3) Historical prototype align-
ment emphasizes the capacity to maintain the semantic diversity
of feature distributions across various models, it can further boost
performance. In summary, the three designed loss functions are
complementary and together improve the overall performance.

Effect of Pre-trained Epochs. The epochs 𝐸 for pre-training
directly affect the accuracy of instance embeddings (further affect
the prototypes and semantic diversity for distillation) extracted by
the pre-trained models. To show their effects, we pre-train Con-
vNets on CIFAR-10 by 𝐸 in {1, 5, 10, 15, 20, 25, 30} and utilize these
pre-trained models to perform our DSDM for IPC=50. As shown
in the left of Figure 5, there is a gradual improvement in perfor-
mance with increasing epochs until reaching optimal performance
at 𝐸 = 20. After that, increasing epochs do not significantly af-
fect the performance, indicating that our DSDM only needs a few
additional pre-training epochs to acquire better performance.

Effect of Number of Pre-trained Models.More pre-trained
models mean the distilled data generalize better for the evaluation
task. However, more pre-trained models also occupy more training
time. Therefore, we perform our DSDM with different numbers of
models 𝑀 ∈ {1, 5, 10, 20} with the pre-training epochs 𝐸 = 20. As
illustrated in the right of Figure 5, we show the distillation perfor-
mance. When M is set to 1 and 5, the performance is slightly worse.
This indicates that the number of models has a significant effect
on the distillation performance. Despite this, our DSDM achieves
optimal performance with only 10 pre-trained models with little
storage and computation consumption.

Effect of 𝜆1. The parameter 𝜆1 is a weighting parameter for
the degree of improved semantic diversity. Figure 6 illustrates the



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 5 10 15 20 25 30
Epoch (E)

70

72

74

76

78

Te
st

 A
cc

ur
ac

y 
(%

)

72.9

74.3
74.9

75.4 75.8 75.6 75.7

1 5 10 15 20 25 30
Number of Pre-trained Models (M)

70

72

74

76

78

Te
st

 A
cc

ur
ac

y 
(%

)

71.0

73.2

75.8
75.2

75.7 75.4 75.6

Figure 5: The distillation performance for different pre-train
epochs (Left) and different number of pre-trained models
(Right). The evaluation is on CIFAR-10 with IPC = 50.
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Figure 6: Effect of 𝜆1 and 𝜆2 on CIFAR-10 with IPC=50.

effect of 𝜆1 on the distillation performance for IPC=50 on CIFAR-10.
We find that performance improves as the range of 𝜆1 goes from
10 to 50, while the effect of increasing the range of 𝜆1 from 50
to 100 is almost negligible. So we set 𝜆1 to 50. Furthermore, we
observe that our DSDM improves by 2.3% over the suboptimal M3D
result despite 𝜆1 = 0.01, which further illustrates the importance of
semantic diversity matching in dataset distillation.

Effect of 𝜆2. Similarly, we observe the effect of the weighting
parameter 𝜆2 on the performance of the historical prototype. When
𝜆2 = 0.2, our DSDM performance reaches the optimal value. As 𝜆2
continues to increase, the performance decreases, which may be
because the integration of the historical model is quite different
from the current model, causing the current model to deviate from
the class center of the original data.

5.6 Visualization
Distribution Visualization. To qualitatively illustrate the effec-
tiveness of our DSDM in modeling the distribution of the original
dataset, we use t-SNE to visualize the distilled data of the same
category on CIFAR-10 for IPC=10/50 obtained by DM and DSDM,
respectively. The results are depicted in Figure 7, where the "green
dots" and the "red stars" stand for the real data and distilled data. It
is obvious that the distilled data obtained by DSDM distribute more
dispersedly than those of DM, especially for the distilled instances
in the blue circles.

Distilled Images. To evaluate whether our method captures the
semantic diversity of the original dataset, we visualize the distilled
data of DM and our DSDM on CIFAR-10 in Figure 8. Each class
contains 10 images. Our observations lead to two key conclusions:
(1) The distilled data of our DSDM are more different compared to
those of DM, proving that our covariance matrix alignment captures
the semantic diversity of the original dataset. (2) The distilled data
of our DSDM is more discriminative between each class, indicating

(a) DM (IPC=10) (b) DSDM (IPC=10)

(c) DM (IPC=50) (d) DSDM (IPC=50)

Figure 7: The data distributions of original images and dis-
tilled images through DM and DSDM for the same category
on CIFAR-10, with IPC=10/50. "Green dots" denote the real
data, while "red stars" represent the distilled data.

(a) The distilled images of DM. (b) The distilled images of DSDM.

Figure 8: Visualizations of distilled images generated by DM
and DSDM on CIFAR-10 with IPC=10.

that the class center of the pre-trained model effectively preserves
the inherent features of the classes.

6 CONCLUSION
In this work, we propose a novel approach called Diversified Seman-
tic Distribution Matching (DSDM) for Dataset Distillation, which
explicitly aims to capture the semantic diversity features of the
original dataset. DSDM consists of three carefully designed losses:
prototype alignment, semantic diversity alignment, and historical
prototype alignment. The prototype alignment and semantic diver-
sity alignment modules are employed to capture the distribution
of the original dataset. The historical prototype alignment enables
DSDM to perform more stably during the training process. Experi-
mental results across five image datasets and one speech dataset
demonstrate that our DSDM outperforms existing techniques and
generalizes well across different model architectures. In the future,
we will explore how to better capture semantic diversity in more
challenging scenarios of a low condensation ratio (e.g., IPC=1).
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