
Published as a conference paper at ICLR 2023

A APPENDIX

A.1 1:2 MINIMUM VARIANCE UNBIASED ESTIMATOR- FULL

For a block a ≜ [a1, a2], one entry needs to be pruned:

θ (a) =
{
[v1, 0] ,w.p. p
[0, v2] ,w.p. 1− p

(22)

We wish to design an unbiased estimator for this pruning method where E[θ (a)] = [a1, a2]:

E[θ (a)] = p · [v1, 0] + (1− p) · [0, v2] = [a1, a2] (23)

Therefore, the following constraints apply:

p · v1 = a1 ⇒ p = a1

v1
(1− p) · v2 = a2 ⇒ v2 = a2

1− a1
v1

(24)

To find an unbiased estimator which minimizes the total block variance, we first calculate the variance
for each element in the block θ (a) = [θ1, θ2] as follows:

Var[θ1] = E
[
θ21
]
− E2(θ1) = v21 · p− a21

Var[θ2] = E
[
θ22
]
− E2[θ2] = v22 · (1− p)− a22

(25)

Then, the total variance of a block is the sum of its element variances:

VarB [θ] = Var[θ1] + Var[θ2] = v21p− a21 + v22 − v22p− a22 (26)

Putting Equation (24) into Equation (26) yields the following expression for the total variance in the
block, that depends on v1

VarB [θ] = v21 ·
a1
v1
− a21 +

a22(
1− a1

v1

)2 · (1− a1
v1

)
− a22

= v1 · a1 − a21 +
a22

1− a1

v1

− a22

= v1 · a1 − a21 +
a22 · v1
v1 − a1

− a22

(27)

By by finding the derivative of Equation (27) with respect to v1 and setting it to zero we get the
following equation:

∂VarB [θ]

∂v1
=

a22
v1 − a1

− a22v1

(v1 − a1)
2 + a1 = 0 (28)

The solution to Equation (28) gives two possible solutions for v1, but only one is feasible (the first):

v1 = a1 + a2

v1 = a1 − a2
(29)

Therefore, the following unbiased estimator has the lowest variance of all unbiased estimators

θ (a) =

{
[sign(a1) · (|a1|+ |a2|), 0] ,w.p. |a1|

|a1|+|a2|
[0, sign(a2) · (|a1|+ |a2|)] ,w.p. |a2|

|a1|+|a2|
(30)

Substituting into Equation (27) the optimal solution vq = a1 + a2, the optimal method outlined in
Equation (30) has a variance of 2a1a2. Therefore, since the method is unbiased it results with a
mean-square-error of

MSE = Bias2 + Var = 0 + 2a1a2 = 2a1a2 (31)

In Table 2 we compare different 1:2 structured sparsity on the neural gradients on ResNet18 Cifar10
dataset. We show that although the proposed MVUE method doesn’t minimize the MSE, it gets the
best results.

13

Published as a conference paper at ICLR 2023

A.2 MINIMUM-VARIANCE UNBIASED ALGORITHM FOR 2:4

Given a block [a1, a2, a3, a4], assume without loss of generality that a4 > a3 > a2 > a1. We need
to choose two elements ai, aj from the block with a probability pi,j . We have three cases:

A.2.1 CASE 1: a4 ≤ 2a1 + a3:

p12 = 0

p13 =
2a1 + a3 − a4

2(a1 + a2 + a3 + a4)

p14 =
2a1 − a3 + a4

2(a1 + a2 + a3 + a4)

p23 =
2a2 + a3 − a4

2(a1 + a2 + a3 + a4)

p24 =
2a2 − a3 + a4

2(a1 + a2 + a3 + a4)

p34 =
−a1 − a2 + a3 + a4
a1 + a2 + a3 + a4

(32)

Using the above solution, one can verify that all probabilities are between 0 and 1, normalized, and
adhere to the optimality conditions outlined in Equation (16). Here is an example for p1 and p2:

p1
p2

=
p12 + p13 + p14
p12 + p23 + p24

=
a1
a2

(33)

A.2.2 CASE 2: 2a1 + a3 ≤ a4 ≤ a1 + a2 + a3:

p12 = 0

p13 = 0

p14 =
2a1

a1 + a2 + a3 + a4

p23 =
a1 + a2 + a3 − a4
a1 + a2 + a3 + a4

p24 =
−a1 + a2 − a3 + a4
a1 + a2 + a3 + a4

p34 =
−a1 − a2 + a3 + a4
a1 + a2 + a3 + a4

(34)

A.2.3 CASE 3: a4 ≥ a1 + a2 + a3:

Choose a4 with probability 1, and also choose one ai from {a1, a2, a3} with probability

p̃i =
ai

a1 + a2 + a3
(35)

A.3 A COMPARISON OF OPTIMAL 1:2 AND OPTIMAL 2:4 - PROOF

To prove this claim we first find Var[θ2:4(a)] by assigning a probability pi =
ai

a1+a2+a3+a4
to each

element i in Equation 12:

Var [θ(a)] =
a1
2

(a1 + a2 + a3 + a4)− a21 +
a2
2

(a1 + a2 + a3 + a4)− a22

+
a3
2

(a1 + a2 + a3 + a4)− a23 +
a4
2

(a1 + a2 + a3 + a4)− a24

= a1 · a2 + a1 · a3 + a1 · a4 + a2 · a3 + a2 · a4 + a3 · a4

− a21
2
− a22

2
− a23

2
− a24

2

(36)

14

Published as a conference paper at ICLR 2023

Table 7: ResNet18 (R18) and ResNet50 (R50) top-1 accuracy on ImageNet dataset with greedy N:M
fine-grained sparse activations.

Method R18 top-1 R50 top-1

Baseline 70.6% 76.6%
4:8 activations 70.6% 76.45%

the left hand side of Equation 19 is given by Equation 36 and its right-hand side equals to 2a1a2 +
2a3a4. Let D be the difference between the left-handside of Equation 19 and its right handside. To
prove our claim we need to show that D is negative:

D = a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4

− a21
2
− a22

2
− a23

2
− a24

2
− (2a1a2 + 2a3a4)

=

(
−a21

2
+ a1a4 −

a24
2

)
︸ ︷︷ ︸

−0.5(a1−a4)
2

+

(
−a22

2
+ a2a3 −

a23
2

)
︸ ︷︷ ︸

−0.5(a2−a3)
2

+

+ a4a2 + a1a3 − a1a2 − a3a4︸ ︷︷ ︸
−(a1−a4)·(a2−a3)

(37)

Let A ≜ (a1 − a4) and B ≜ (a2 − a3) then we have that

D = −A2

2
−A ·B − B2

2
= −1

2
(A+B)2 < 0 (38)

Our claim is thus proven.

A.4 EXPERIMENTS DETAILS

In all our experiments we use 8 GPU GeForce Titan Xp or GeForce RTX 2080 Ti.

N:M structured sparsity on the neural gradients In the vision models, we used the standard
pre-processing of ImageNet ILSVRC2012 dataset. We train for 90 epochs, use an initial learning rate
of 0.1 with a 1

10 decay at epochs 30,60,80. We use standard SGD with momentum of 0.9 and weight
decay of 1e-4. The batch size used is 256. Following the DNNs quantization conventions (Banner
et al., 2018; Nahshan et al., 2019; Choi et al., 2018b) we kept the first and last layer (FC) at higher
precision.

Accelerating all training phases In these experiments, we used the exact same experiment setting
as Hubara et al. (2021).

A.5 ACCELERATING INFERENCE

N:M sparsity on the activations In Table 7 we experimented with greedy N:M fine-grained sparse
activations on ResNet18 and ResNet50 over ImageNet, wherein for each block of size M we keep the
M-N larger elements. Note that in CNNs the activations memory footprint is much larger than the
weights footprint (especially for the first set of layers), so in term of memory reduction activations
pruning is more effective than weights pruning. Throughout our experiments, we did not change the
training regime and used the sparse activations from scratch. As can be seen in Figure 3 applying
only fine-grained sparse activations results in notable accuracy degradation for both training and
validation. However, a simple fix is to apply ReLU before the fine-grained sparse activations; this
results in on-par accuracy over ResNet18 and ResNet50.

N:M sparsity on the weights and activations Inference requires compressing only the weights
and activations. Thus, we experimented in Table 8 with greedy N:M fine-grained sparsity of weight
and activations. To compete with the latest inference acceleration results based on quantization-aware

15

Published as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Epochs

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Baseline
Greedy (4:8)
ReLu + Greedy (4:8)

Figure 3: Top-1 accuracy on ResNet18 Cifar10 dataset with 4:8 fine-grained sparsity on the activations.
ReLU + greedy refers to applying ReLU and then the structured sparsity, while greedy does not
include the ReLU function. As can be seen, applying only N:M structured sparsity as the activation
function leads to accuracy degradation.

techniques, we further quantize the weights and activation to 4-bit using the SAWB method (Choi
et al., 2018a). Since on average we have N/2 MAC operations for each block, the BOPS (Wang et al.,
2020) reduction is equivalent to 2-bit quantization. We experimented with N:M fine-grained sparse
activations and weights using ResNet18 over ImageNet using two training schemes:

Scheme A is similar to Zhou et al. (2021) regime, in which the fine-grained sparsity is applied from
scratch. Here we additionally applied 4-bit asymmetric quantization for both weights and activations.
Scheme B is similar to Nvidia (2020) regime and has three phases: (a) train with sparse activation full
precision model; (b) set a mask for the weights; and (c) train a sparse weights and activation model
while using 4bit quantization-aware training.

In all our experiments we kept last fully connected layer dense and in full precision. We used 2:4
structure for the weights and 4:8 structure for the activations. Notice that 4:8 sparsity was previously
showed in Hubara et al. (2021) as a feasible method. In Table 10 we showed the overhead of the 4:8
sparsity in comparison to 2:4 and standard ReLU activation.

Table 8: Inference acceleration of ResNet18 on ImageNet dataset. We quantize the weights and
activations to 4-bit and apply in both greedy N:M fine-grained sparsity getting an equivalent of 2-bit
inference. We compare our results with different 2-bit quantization-aware training methods (PACT
(Choi et al., 2018b) , QIL (Jung et al., 2019), LSQ (Esser et al., 2019)) : we achieve comparable
results in Scheme A, and better results in Scheme B.

Method Baseline 2:4 Scheme A Scheme B PACT QIL LSQ
activations (ours) (ours) 2-bit 2-bit 2-bit

Accuracy (%) 70.6 70.6 65.62 67.22 64.4 65.7 66.9

B PRUNING OVERHEAD

The pruning overhead depend on the hardware at hand the gradients numerical precision and the
user implementation. Nevertheless in this section we would try to roughly access the overhead both
quantitatively and by measuring it.

B.1 N:M STRUCTURED PRUNING ON THE NEURAL GRADIENTS

In Table 3 we measured the overhead of the proposed MVUE 1:2, MVUE 2:4 and Approx MVUE
2:4 over regular training of ResNet50. Importantly, the measurements were done the FP32 over

16

Published as a conference paper at ICLR 2023

Titan1080 where done using current unoptimized code, so there is much room for improvement. To
explain this in more detail, we focus on the overhead of the two parts of the proposed algorithms:

1. Random sampling according to the probabilities pi.
2. Calculating the probabilities pi.

Part 1: the overhead of random sampling A possible implementation of the random sampling
is with stochastic-rounding (SR) (Croci et al., 2022), where the probabilities are pre-computed. In
Table 9 we show the small overhead of SR in software with a non-optimizer CUDA kernel. This
overhead can be reduced more in modern deep learning accelerators (Tes; Hab; Gra) which include
SR in hardware.

Notice that we can define sampling using random i.i.d samples: Assume for a block a ≜ [a1, a2],
according to the proposed MVUE 1:2 we should sample a1 with probability p1 and sample a2 with
probability 1−p1, then we can implement this sampling by random variable ε ∼ U [0, 1] and if ε < p1
we choose a1, otherwise we choose a2. This can be easily extended to the proposed approx-MVUE
2:4. Now, it is possible to drastically reduce the overhead of random sampling if we re-use the random
samples ε (i.e., sample a new ε only every 50 iterations). In Figure 4 we show a comparison of the
proposed approx-MVUE 2:4 and the same algorithm where we re-use the random samples every 50
iterations. As can be seen sampling every 50 iterations does not affect the accuracy. As we can notice,
we are able to reduce the overhead of the part (1) of the proposed algorithm without affecting the
accuracy. Since the overhead of part (1) can be significantly reduced by amortization, we next focus
on part (2).

0 20 40 60 80
Epochs

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Baseline
approx-MVUE (2:4)
approx-MVUE (2:4) amortized

Figure 4: Top-1 validation accuracy of ResNet18 over ImageNet dataset with the proposed approx-
MVUE 2:4 and the amortization of the random samples every 50 iteration to reduce the overhead.
Notice that both methods achieved similar accuracy.

Table 9: Measured time of a non-optimized CUDA kernel implementation of stochastic-rounding
for different sizes of a random tensor. For each tensor size we repeat the experiment 100 times and
average the results.

Tensor size Stochastic rounding [micro sec] Round-to-nearest [micro sec]

103 2.64 2.55
104 2.64 2.6
105 3.94 3.89
106 4.07 4.01
107 6.89 6.78
108 9.83 9.77

Part 2: Quantitative estimation of the probability calculation overhead The practical
overhead depends on many details, such as the numerical precision, the hardware architecture,

17

Published as a conference paper at ICLR 2023

and the pruning implementation. Therefore, we will estimate the overhead of the probability
calculation by using the simplified measure of counting the number of mathematical operations
in Algorithm 1 per block size M = 4 or M = 2. A simple derivation leads to 22 additions, 10
divisions, 4 multiplications, and 5 comparisons for M = 4 (and one addition, 3 divisions, and
one comparison for M = 2). To sum all operation’s overhead, we followed Horowitz (2014);
Mach et al. (2020) and converted each operation overhead to a single multiplication’s overhead
by assuming: 1 div = 4 mul = 16 add/subtract/compare. Converting and summing the operations
result in 50.75 mul for M = 4 and 12.5 mul for M = 2. Note that this is only a rough estimation
based on the operations power consumption. Now we will analyze the potential gain and overhead
for Linear and Convolution layers assuming 50% sparsity.

First, we focus on the simpler case of a Linear Layer. There, given activation h ∈ RB×CI and
gradients g ∈ RB×CO , where B is the batch size and CI , CO are the number of input and output
channels respectively, the weight update would be ∆ ∈ RCI×CO . Thus, the total number of
multiplication operations reduction would be CIBCo/2. Since we prune only the gradients, pruning
overhead, in this case, is 50.75BCo/4 for M = 4. Comparing gain and overhead suggests that when
CI > 26 for M = 4 (and CI > 7 for M > 2), the gain surpasses the overhead. Similar derivation
can be done for convolution.

Second, we calculate the overhead of the Convolution Layer. Given activation A ∈ RB×CI×H×W

and gradients G ∈ RB×CO×H×W , where H,W are the spatial dimensions, the update would be
∆ = RCI×CO×k×k (K is the kernel size). Thus, the total number of multiplication operations
reduction is k2CIBHWCo/2. Similarly the pruning overhead in this case is 50.75HWBCo/4 for
M = 4.Comparing gain and overhead suggest that for convolution layers if CI > 26/k2 for M = 4
(and CI > 7/k2 for M > 2), then the gain surpass the overhead. So, if for example k = 3, as is
common in many filters, we have a net gain if CI ≥ 3 for M = 4 (and for any CI for M = 2).

Algorithm 1 set mask index and scale

Require: X ∈ RK×M , R ∈ RK×M ,M
out← abs(out)
s← sum(outs, dim = 1) ▷ 3 or 1 additions (for M = 4 or 2)
v ← outs/s ▷ 4 or 2 divisions (for M = 4 or 2)
vv ← v/(1− v) ▷ 4 subtractions and 4 divisions (for M = 4, not required for M = 2)
q ← sum(vv, dim = 1) ▷ 3 additions (for M = 4, not required for M = 2)
p← v · (1 + q − vv) ▷ 8 additions and 4 multiplications (for M = 4, not required for M = 2)
indices← topk(outs/rdn,K = M) ▷ 5 comparisons (for M = 4, not required for M = 2)
scale← 1/p ▷ 2 or 1 divisions (for M = 4 or 2)
return indices, scale

B.2 N:M STRUCTURED PRUNING ON THE ACTIVATIONS

In Appendix A.5 we showed the effect of applying greedy N:M fine-grained structured sparsity on
the activations and showed we are able to preserve the accuracy and potentially accelerate by x2
the multiplication with the activations in the forward phase. In Table 10 we show the overhead of
2:4 and 4:8 structured pruning of the activations, in comparison to standard ReLU activations over
regular training of ResNet18. The measurements were done on FP32 over a Titan1080 GPU using
current unoptimized code, we believe there is potentially place for improvement. As can be seen,
even with the unoptimized implementation, the overhead is negligible. Similar overhead can be found
in Weixiang et al. (2022) for weight pruning.

Quantitative estimation of the activations pruning overhead Note that for the activations we do
not use the approx-MVUE, since a simple magnitude-based approach works well. Thus a similar
derivation to Appendix B.1 results in 5 comparisons for M = 4 and for M = 8. For a Linear
Layer with activations h ∈ RB×CI and weights W ∈ RCI×CO , the operations reduction would be
BCICO/2 while pruning the activations requires 1.25BCI/4 (for M = 4). Therefore for M = 4
pruning is always efficient (CO > 1) and for M = 8 it is efficient if CO > 3. Similarly, for a

18

Published as a conference paper at ICLR 2023

Convolution layer, with activation h ∈ RB×CI×H×W and weights CI × CO × k × k we get that the
operations reduction would be BCICOHWk2/2 while the pruning requires 1.25BCIHW/4 (for
M = 4). Therefor here as well for M = 4 pruning is always efficient (CO > 1) and for M = 8 it is
efficient if CO > 3/k2.

Table 10: Overhead of 2:4 and 4:8 activation pruning in comparison to standard ReLU activation in
ResNet18 ImageNet dataset.

Method Overhead (%)

2:4 0.1 %
4:8 0.17 %

B.3 COMPARISON WITH SDGP (MCDANEL ET AL., 2022)

In parallel to our work, McDanel et al. (2022), proposed to prune the neural gradients to accelerate
only the backward phase, while the update and forward phase are not pruned. Their method is based
on the traditional greedy method, followed by a rescaling of the remaining elements to keep the l1
norm. In order to check the effect of their method we show in Table 11 the results of applying SDGP
also in the update phase. As can be seen, while their method works well in the backward phase, their
biased method creates a high degradation in the update phase. Notice that in all their experiments
they use FFCV (Leclerc et al., 2022) training regime, which achieves a higher baseline.

Table 11: ResNet18 top-1 validation accuracy in ImageNet dataset while applying SDGP (McDanel
et al., 2022) in the backward and update phases.

Method Accuracy (%)

Baseline 71.4 %
SDGP backward 71.2 %
SDGP update 64.2 %

B.4 ADDITIONAL SPARSITY RESULTS

In Table 12 we extend Table 4 to additional N:M sparsity setups. "Approx-4:8" is similar to "Approx-
2:4" but we extend it to additional elements. "MVUE 1:4" is similar to "MVUE 1:2", but for a
bigger block. Notice that, as remarked in Section 6 applying higher sparsity ratios requires additional
hardware support since we increase the required bandwidth as for every single block of neural
gradient we bring four activations to the engine.

Table 12: Extension of Table 4 to additional sparsity setups for ResNet18 and ResNet50 in ImageNet
dataset.

Model FP32 Greedy MVUE 1:2 Approx-2:4 Approx-4:8 MVUE 1:4

ResNet18 70.6 % 48.2 % 70.58 % 70.6 % 70.6 % 69.93 %
ResNet50 77.2 % 59.3 % 76.4 % 77.12 % 77.15 % 75.8 %

19

	Appendix
	1:2 minimum variance unbiased estimator- Full
	minimum-variance unbiased algorithm for 2:4
	case 1: a4 2a1+a3:
	case 2: 2a1+a3 a4 a1+a2+a3:
	case 3: a4 a1+a2+a3:

	A comparison of optimal 1:2 and optimal 2:4 - Proof
	Experiments details
	Accelerating inference

	Pruning Overhead
	N:M structured pruning on the neural gradients
	N:M structured pruning on the activations
	Comparison with SDGP McDanel2022AcceleratingDT
	Additional sparsity results

