
Appendix
Organisation of the Appendix. The Appendix is structured as follows. In Section A, we give
more precisions regarding the way we model stochastic gradient descent as a stochastic gradient flow.
Section B.6 is the core of the Appendix as it provides the proof of the theorem in a self-contained
fashion. For the sake of completeness, in Section C we gather the results on the link between
mirror-descent and implicit bias as well as give convergence results in the deterministic case (gradient
flow). In Section D.1, we provide more experiments supporting our results. In Section E.2, we discuss
some extensions of our results ; (E.1) regarding a more general stochastic gradient flow model and in
(E.2) we extend our results to depths p ≥ 3. Finally, Section F provides the technical material needed
for the proofs of our results.

A Details on the SDE modelling

We recall that the SGD recursion writes for t > 1 as:
wt+1,+ = wt,+ − γ〈βw − β∗, xit〉 xit � wt,+
wt+1,− = wt,− + γ〈βw − β∗, xit〉 xit � wt,−

where it ∼ Unif(1, n).

Since the full gradient is ∇w±L(w) = ±
[

1
n

∑n
k=1〈βw − β∗, xk〉 xk

]
� w± ∈ Rd. We can rewrite

the recursion as:

wt+1,± = wt,± − γ∇w±L(wt)∓ γ
[
〈βwt − β∗, xit〉 xit −

1

n

n∑
k=1

〈βwt − β∗, xk〉 xk
]
� wt,±.

Now notice that

〈β − β∗, xit〉 xit −
1

n

n∑
k=1

〈β − β∗, xk〉 xk = X>
(
〈β − β∗, xit〉eit − Eit

[
〈β − β∗, xit〉eit

])
,

where ei is the ith element of the Rn-canonical basis. Let us denote by ξit(β) = −
(
〈β−β∗, xit〉eit−

Eit
[
〈β − β∗, xit〉eit

])
. It is a zero-mean random variable with values in Rn and it can be seen as a

multiplicative noise, i.e., proportional to β − β∗, which vanishes at the optimum. The SGD recursion
then writes as:

wt+1,± = wt,± − γ∇w±L(wt)± γ
[
X>ξit(βt)

]
� wt,±

= wt,± − γ∇w±L(wt)± γ diag(wt,±)X>ξit(βt).

As we are interested in the stochastic differential model of the SGD recursion, let us now compute
the covariance of the SGD noise. We first notice that
Covit [ξit(β)] = Eit [ξit(β)⊗2]

= Eit [(〈β − β∗, xit〉eit)⊗2]− Eit [〈β − β∗, xit〉eit ]⊗2

=
1

n

〈β − β
∗, x1〉2 0

. . . 0
0 〈β − β∗, xn〉2

− 1

n2

(
〈β − β∗, xi〉〈β − β∗, xj〉

)
1≤i,j≤n

=
4

n

L1(β) 0
. . . 0

0 Ln(β)

− 1

n2

(
〈β − β∗, xi〉〈β − β∗, xj〉

)
1≤i,j≤n

where Li(β) = 1
4 〈β − β∗, xi〉2 is the individual loss of the observation xi, such that L(β) =

1
n

∑n
i=1 Li(β).

Thus, the covariance satisfies the relation Covit [ξit(β)] = 4
n diag(Li(β))1≤i≤n +O( 1

n2 ). From this
expression we can obtain a good model for Covit [ξit(β)]. First, we neglect the second term of order
1/n2. Then, we assume that all partial losses are approximately uniformly equal to their mean: i.e.
for any i, Li(β) ∼= Eit [Lit(β)] (the general case is discussed Appendix E.1). Hence,

Covit [ξit(β)] ∼=
4

n
diag

( 1

n

∑
i

Li(β)
)

=
4

n
L(β)In.
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