Appendix

Organisation of the Appendix. The Appendix is structured as follows. In Section [A] we give
more precisions regarding the way we model stochastic gradient descent as a stochastic gradient flow.
Section[B.6]is the core of the Appendix as it provides the proof of the theorem in a self-contained
fashion. For the sake of completeness, in Section [C] we gather the results on the link between
mirror-descent and implicit bias as well as give convergence results in the deterministic case (gradient
flow). In Section[D.I] we provide more experiments supporting our results. In Section[E.2] we discuss
some extensions of our results ; (E.T) regarding a more general stochastic gradient flow model and in
(E.2) we extend our results to depths p > 3. Finally, Section[F provides the technical material needed
for the proofs of our results.

A Details on the SDE modelling

‘We recall that the SGD recursion writes for ¢t > 1 as:

Wit1+ = Wi — YBuw — B Ti,) Tiy O w4
Wiy1,— = wy,— +Y{Bw — B%,4,) Ti, © wy -

Since the full gradient is V., L(w) = £[2 37 (8w — 8%, 21) zx] © we € RY. We can rewrite
the recursion as:

where i; ~ Unif(1,n).
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Now notice that
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where e; is the i* element of the R™-canonical basis. Let us denote by &;, (8) = — ((8— 8%, z;,)e;, —

E;, [(8 — B*,%;,)e;,]). Itis a zero-mean random variable with values in R™ and it can be seen as a
multiplicative noise, i.e., proportional to 3 — 3%, which vanishes at the optimum. The SGD recursion
then writes as:

W1+ = Wi+ — YVay L(w,) £ ’Y[XT&t (5t)] O w4
= wyt — YV, L(wy) &y diag(wy,+) X &, (By).

As we are interested in the stochastic differential model of the SGD recursion, let us now compute
the covariance of the SGD noise. We first notice that
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where L;(8) = (8 — 8%, x;)? is the individual loss of the observation z;, such that L(3) =
% Z?:l Li(B).
Thus, the covariance satisfies the relation Cov;, [&;, (8)] = 2 diag(L;(8))1<i<n + O(5%). From this

expression we can obtain a good model for Cov;, [£;, (8)]. Tli“irst, we neglect the second term of order
1/n?. Then, we assume that all partial losses are approximately uniformly equal to their mean: i.e.

for any 4, L;(8) = E;,[L;,(B)] (the general case is discussed Appendix [E.1). Hence,
4 1 4
Covs 6 (9)] = 7 ding (3 3 Li(3)) = ZLA.
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