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Exploring Data Efficiency in Image Restoration: A Gaussian
Denoising Case Study

Anonymous Authors

ABSTRACT
Amidst the prevailing trend of escalating demands for data and
computational resources, the efficiency of data utilization emerges
as a critical lever for enhancing the performance of deep learning
models, especially in the realm of image restoration tasks. This
investigation delves into the intricacies of data efficiency in the
context of image restoration, with Gaussian image denoising serv-
ing as a case study. We postulate a strong correlation between the
model’s performance and the content information encapsulated in
the training images. This hypothesis is rigorously tested through
experiments conducted on synthetically blurred datasets. Building
on this premise, we delve into the data efficiency within training
datasets and introduce an effective and stabilized method for quanti-
fying content information, thereby enabling the ranking of training
images based on their influence. Our in-depth analysis sheds light
on the impact of various subset selection strategies, informed by
this ranking, on model performance. Furthermore, we examine the
transferability of these efficient subsets across disparate network
architectures. The findings underscore the potential to achieve
comparable, if not superior, performance with a fraction of the
data—highlighting instances where training IRCNN and Restormer
models with only 3.89% and 2.30% of the data resulted in a negligi-
ble drop and, in some cases, a slight improvement in PSNR. This
investigation offers valuable insights and methodologies to address
data efficiency challenges in Gaussian denoising. Similarly, our
method yields comparable conclusions in other restoration tasks.
We believe this will be beneficial for future research. Codes will be
available at [URL].

1 INTRODUCTION
Image restoration, a critical domain within low-level vision [15, 19,
38, 45], addresses the reconstruction or enhancement of images
degraded by various distortions. It encompasses a spectrum of chal-
lenges including image denoising [44, 49–51], JPEG compression
artifact removal [8, 10, 24], image deblurring[18, 41], and super-
resolution[9, 21]. Among these, image denoising serves as a quin-
tessential example, aiming to recover clean images from their noisy
counterparts, and highlights the unique computational demands
distinct from broader classification[6, 36] or pattern recognition
tasks.
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Figure 1: PSNR outcomes for Gaussian image denoising rel-
ative to training dataset size at noise level 50 on Set12 [49]
testset. We trained representative CNN/transformer models
on both the original datasets and efficient subsets with same
iterations for fair comparison. Our results underscore the
potential to match or surpass fully trained models with sig-
nificantly fewer training images.

Recent trends reveal a surge in model complexity [11, 12, 32, 46],
particularly with the advent of large-scale vision models [13, 14,
16, 42], necessitating substantial data and computational resources.
Although data has consistently remained a pivotal factor influenc-
ing deep learning models, the approach adopted by researchers in
the domain of low-level vision predominantly falls into one of two
categories: either they modify model architectures based on pub-
licly available datasets to achieve state-of-the-art results on popular
tasks [22, 37, 44, 48], or they curate bespoke datasets and innovative
methodologies for less mainstream tasks [20, 23, 30]. Notwithstand-
ing these developments, there remains a conspicuous gap in the
exploration of data itself, particularly in terms of efficiency in the
context of image restoration tasks. While some studies like [49, 50]
have marginally touched upon the impact of enlarging training
data, suggesting only modest enhancements in model performance
on certain testsets, a comprehensive exploration into how data in-
fluences model learning is markedly absent. This gap underscores
the potential for significant advancements in understanding and
exploiting data efficiency in this field.

In this paper, we investigates data efficiency in image restoration
tasks, using Gaussian image denoising as a case study. Through fun-
damental hypothesis-driven experiments, we initially substantiate
that content information within the images is pivotal for acquiring
a perfect denoising model. Our investigation reveals variations in
content information complexity across dataset images, highlighting
the importance of selecting the most efficient images for training.
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Notably, there is currently no concrete method for quantitatively
analyzing content information numerically, and removing sam-
ples one by one would necessitate 2𝑛 model retraining, rendering
it impractical. To address these challenges, we employ statistical
machine learning techniques to introduce a content information
quantification method based on influence function [17]. Specifically,
influence function enables the estimation of the impact of training
data on test results without the need for retraining the model. We
leverage the Hessian-vector product (HVP) method in influence
calculation, and propose a stabilized computation process that is
particularly suited to image restoration tasks. Through compre-
hensive experiments, we elucidate the principles of efficient subset
selection based on influence scores, assess their applicability across
diverse network architectures, and provide an in-depth analysis of
model learning behaviors on these subsets. Our findings demon-
strate the feasibility of achieving, and in some instances surpassing,
the performance of fully trained models with a fraction of the data
(see Fig. 1). In summary, the main contributions of this paper are
as follows:

• We provide a comprehensive exploration of data efficiency
for image restoration research using Gaussian image de-
noising as a case study, we investigate the effects of content
information onmodel performance, point out that their varia-
tions exist inside training datasets and introduce an effective,
stabilized method to estimate the influence of each training
image.

• We offer an insightful analysis on efficient subset selection
based on influence scores, validating their generalization
across different network structures, and conducting exten-
sive studies on models’ learning behaviors. Our findings
reveal that subsets with mid-level influence scores consis-
tently yield optimal test performance.

• Our experimental outcomes underscore the potential tomatch
or exceed the performance of comprehensively trained IR-
CNN and Restormer denoisingmodels withmerely 3.89% and
2.30% of the original dataset, respectively. To our knowledge,
this represents the first in-depth exploration and insightful
analysis of data efficiency in the domain of image restoration.

2 RELATEDWORK
2.1 Image Restoration and Gaussian Denoising
Image Restoration, a critical domain within low-level vision which
tasked with unraveling the intricacies of elementary image features,
such as edges, textures, and optical flow. Image Restoration tasks en-
compass a wide range of challenges, such as super-resolution [9, 21],
denoising [49–51], deblurring [18, 41], JPEG compression artifact
removal [8, 10, 24], low-light enhancement [19, 38], and more. In
general, the goal is to restore images degraded by specific factors
to a higher quality. Gaussian image denoising, a fundamental chal-
lenge within the domain of image restoration, has been extensively
studied to achieve the highest possible PSNR for images tarnished
by noise. Besides, the learning behavior of models in image restora-
tion tasks differs somewhat from high-level vision tasks. High-level
vision tasks [25, 53], such as image classification [6, 36], typically
involve models that perform stepwise feature extraction on im-
ages. These features are then processed through fully connected

layers and softmax functions to output a vector representing the
probabilities of belonging to different classes. In contrast, image
restoration tasks, like Gaussian image denoising, often require mod-
els to establish relationships between current pixels and other pixels.
Through these relationships and high-dimensional functions, pixel
restoration is achieved. This training process cultivates the model’s
proficiency in identifying optimal restoration patterns.

Despite the extensive exploration of image restoration tech-
niques, a gap remains in understanding the impact of data on model
learning. Specifically, there is a scarcity of research investigating
data efficiency in image restoration, indicating a fertile ground for
future inquiries.

2.2 Data Efficiency
Reducing the size of the dataset while keeping as much information
in the remained dataset has long been considered as a challenging
problem and a considerable number of researchers have pushed
progress in this area theoretically and practically. Data synthesis
methods [4, 5, 29, 35, 52] (dataset distillation/condensation) have
been the research hotspot recently. For example, Wang et al. [35]
tried to synthesize a small dataset that can obtain a good perfor-
mance in the testset by minimizing the classification loss. Another
work by Zhao et al. [52] inspired by dataset distillation proposed
to match the gradients and features to better learn how to synthe-
size images. Nevertheless, these approaches are computationally
expensive and cannot provide a very satisfactory result. Another
line of works focuses on data selection/pruning [28, 31, 33, 40, 43],
in which methodologies are usually more theoretically explainable.
For example, Sorscher et al. [33] demonstrated breaking beyond
power law scaling by developing a self-supervised pruning metric.
Yang et al. [43] presented an optimization-based dataset pruning
method based on influence function [17] and pruned 40% training
examples on the CIFAR-10 dataset with only 1.3% test accuracy
decrease.

However, due to the distinct natures and learning patterns of
classification tasks and image restoration tasks, it is imperative to
rethink how to address data efficiency issues within the sphere of
image restoration.

3 RETHINKING THE LEARNING PROCESS IN
IMAGE RESTORATION

This section delves into the intrinsic learning behavior specific to
image restoration tasks. We formulate the general pattern for a
learning algorithm to solve a image restoration problem and define
that a model’s ability to generalize effectively is deeply rooted
in the content information—like texture and edges—gleaned from
training images. Using the Gaussian image denoising as a case study,
we explore how content information influences the development
of proficient denoising models uncovering both challenges and
insights. Inspired by these observations, we venture into employing
the influence function as a novel approach to address these issues.

3.1 Formulating Image Restoration Learning
Notations. In the realm of image restoration, supervised meth-
ods typically leverage a deep neural network 𝑓𝜃 which maps a
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degraded image y to an estimated image 𝑓𝜃 (y), with the clean im-
age x as supervision signal. To optimize the parameters of the deep
neural network, the target is to minimize the empirical risk func-
tion 1

𝑛

∑𝑛
𝑖=1 L(𝑥𝑖 , 𝑦𝑖 , 𝜃 ), through solving the following optimization

problem:

𝜃
𝑑𝑒𝑓
= arg min𝜃 ∈Θ

1
𝑛

∑︁𝑛

𝑖=1
L(𝑥𝑖 , 𝑦𝑖 , 𝜃 ) (1)

RethinkingGaussian ImageDenoising.Considering the grayscale
Gaussian image denoising as the case, we model the pixel-level dis-
tribution of the 𝑖𝑡ℎ clean image, 𝑥𝑖 , existing in R𝑚×𝑚 , with 𝑝 (𝑥𝑖 ),
assuming an undetermined𝑚 ×𝑚 dimensional distribution. The
additive noise adheres to a Gaussian distribution, denoted as 𝑛 ∼
N(0, 𝜎2). Consequently, the 𝑖𝑡ℎ noise-afflicted image is formulated
as𝑦𝑖 = 𝑥𝑖 +𝑛. The pixel-level distribution of𝑦𝑖 , 𝑝 (𝑦𝑖 ), integrates the
effects of 𝑥𝑖 and 𝑛, expressed as 𝑝 (𝑦𝑖 ) = 𝑝 (𝑥𝑖 + 𝑛) = 𝑝 (𝑥𝑖 ) + 𝜙 (𝑛),
where 𝜙 represents the Gaussian distribution’s probability density
function. A paramount objective for an ideal denoising model is to
distinguish and segregate the original image distribution 𝑝 (𝑥𝑖 ) from
the noise-induced distribution in 𝑦𝑖 , irrespective of the underlying
pixel distribution in 𝑥𝑖 . This entails developing a model capable of
reversing the noise addition process to isolate 𝑥𝑖 from 𝑦𝑖 , which is a
synthesis of 𝑥𝑖 ’s distribution and Gaussian noise. The effectiveness
of this separation can be quantitatively measured by a minimal
𝜖 , representing the discrepancy between the denoised image and
the original clean image. The denoising model’s success hinges on
minimizing 𝜖 , thereby achieving a near-perfect reconstruction of 𝑥𝑖
from𝑦𝑖 . The model’s theoretical underpinning and empirical valida-
tion underscore its potential in advancing denoising methodologies,
as outlined below:

Given : 𝑥𝑖 , 𝑦𝑖 , 𝑛 ∼ N(0, 𝜎2)
Perfect Denoising Model : 𝑥𝑖 = 𝑓 (𝑦𝑖 : 𝑥𝑖 + 𝑛)
Subject to : ∀ 𝑥𝑖 ∈ 𝑝 (𝑥𝑖 ) and | |𝑥𝑖 − 𝑥𝑖 | |1 < 𝜖

(2)

Motivation. In the pursuit of optimizing image denoising models,
a critical inquiry emerges: the specific contribution of each
training image to model performance. Notably, since Gaussian
noise is synthetically introduced using the Gaussian distribution
formula, the inherent characteristics of the image, denoted as 𝑥𝑖 ,
and its pixel-level distribution, 𝑝 (𝑥𝑖 ), emerge as pivotal factors influ-
encing model learning. Given that 𝑥𝑖 can represent diverse contents,
including various objects and landscapes, we propose an empirical
hypothesis: the content information, particularly edge and texture
details, significantly influences the denoising model’s theoretical
performance ceiling. This perspective underscores the intrinsic link
between content information complexity and denoising capability
and presented as follow:
Hypothesis 1. Given a dataset D = {𝑥1, ..., 𝑥𝑛} containing 𝑛

training images, supposing function C(·) summarize content in-
formation of a clean image,

∑
𝑥𝑖 ∈D C(𝑥𝑖 ) represents the whole

content information of dataset D, then we hypothesize that the
upper-bound performance P(·) of a DNN model 𝑚 marked as
P(𝑚) is positively correlated with content information, denoted as
P(𝑚) ∝ ∑

𝑥𝑖 ∈D C(𝑥𝑖 ).

3.2 Exploring Effects of Content Information by
Blurring the Ground Truth

Blurring images reduces their clarity and informational content [18,
41], posing challenges to human perception and computational
models alike. This degradation effect allows us to investigate the
role of content information in denoising model performance.
Definition 1 (𝑟 -blur dataset). Given a dataset D, we construct an
𝑟 -blur dataset D̂𝑟 by applying a blurring operation with kernel
size 𝑟 to each image. Training DNN model on 𝑟 -blur dataset D̂𝑟 ,
we can define that the upper-bound performance P(𝑚) inversely
correlates with 𝑟 based on Hypothesis 1.

�3

�5

�10

�20

�

Blur dataset Increase blur kernel size to destroy image content

Figure 2: Synthetic datasets generated by applying image
blur functions demonstrate how increased blur kernel size
degrades edges and textures, reducing the available content
information in ground truth images.

Synthetic Dataset Construction. To study the impact of content
information on model learning, we generate four synthetic datasets
based on the BSD dataset [3], each with a blur effect at a different
level, from small to large. We use the mean filter (see Equation (3))
to blur images and set different kernel sizes to perform local convo-
lutions on pixel regions, resulting in distinct levels of blurriness in
the generated datasets (see Fig. 2).

𝐼 (𝑥,𝑦) = 1
𝑟 × 𝑟

𝑟−1∑︁
𝑖=0

𝑟−1∑︁
𝑗=0

𝐼 (𝑥 + 𝑖 − 𝑠,𝑦 + 𝑗 − 𝑠) (3)

𝑟 is the kernel size and 𝑠 = 𝑟−1
2 presents the center shift. We use

𝑟 = {3, 5, 10, 20} to control blurriness in the generated data. We
obtain four synthetic datasets D𝑟 = {D3,D5,D10,D20}, and the
blurriness increases with the value of kernel size 𝑟 . This aids in
comprehending the connection between content information and
the upper-bound performance of denoising models.
Content Information Influences What Model Learns.We con-
duct experiments with Definition 1 on the synthetic data to validate
Hypothesis 1. We train IRCNN [50] on the synthetic datasets and
expect the model’s performance on test datasets would inversely
correlate with the kernel size 𝑟 , as less blurring datasets carry more
distinctive content information than others. To evaluate this, we
measure their performance over 1000k iterations training with a
fixed learning rate 1e-4, calculating the PSNR/SSIM values on the
Set12 [49] testset. Our findings, as detailed in Tab. 1, reveal a sub-
stantial decrease in PSNR/SSIM values, particularly for D20 which
exhibits the most significant blurring effect, resulting in a 4.81dB
decrease.

Remarkably, even the dataset with the least blurring, D3, exhib-
ited a notable 0.83dB decrease in PSNR. These results underscore
the critical role of distinct content information in guiding the learn-
ing process of denoising models. Consequently, this leads us to two

3
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pivotal inquiries: (1) Is content information variability inher-
ent within a single training dataset, and does it differ across
samples? (2) How can we harness this attribute to enhance
data efficiency?

Table 1: Results of Gaussian image denoising by training
IRCNN on four synthetic datasets and original dataset. Per-
formance metrics illustrate the decline in PSNR/SSIM with
increasing dataset blurriness.

Dataset D D̂3 D̂5 D̂10 D̂20

PSNR↑ 27.03 26.20 25.03 23.30 22.22
SSIM↑ 0.7791 0.7614 0.7250 0.6477 0.6054

3.3 Explore Data Efficiency Inside Dataset
So far, our investigation into image restoration and Gaussian image
denoising, utilizing blur function to destroy the content of ground
truth images, confirms the significant influence of content informa-
tion on model training outcomes. It suggests that training images
vary in content quality, which if properly identified and leveraged,
could potentially address data efficiency challenges. However the
main obstacles are:

• How to conduct quantitative content information analysis
directly on each training image still remains an intractable
problem.

• One intuitive method is to evaluate the test performance
drop caused by removing each image. However, this is not
impractical because it requires re-train the model for 2𝑛
times given a dataset with size 𝑛.

To circumvent these challenges, we propose a methodology for
efficiently and quantitatively assessing the impact of individual
training images without necessitating model re-training.

3.4 Influence Estimation Theory
Considering a denoising problem from noised image space Y to
clean image spaceX with Gaussian noise distributionN(0, 𝜎2). We
are given training points {𝑧1, ..., 𝑧𝑛}, where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ). Let us start
by studying the model parameter 𝜃 change of removing each single
training image 𝑧 from the training datasetD. This change can be for-
mulated as𝜃−𝑧−𝜃 , where𝜃−𝑧

def
= arg min𝜃 ∈Θ

1
𝑛−1

∑
𝑧𝑖 ∈D,𝑧𝑖≠𝑧 L(𝑧𝑖 , 𝜃 ).

However, due to 𝑛 is usually not small and the training denoising
model needs a large number of iterations, therefore retraining the
model for each removed 𝑧 is unacceptable and time-consuming.

Fortunately, the research of influence function in machine learn-
ing theory [17] provides us with an accurate and fast estimation
of parameter change caused by weighting an sample for training.
For a training image 𝑧 and 𝑧 is weighted by a small 𝜂, the new
parameters can be obtained through Equation (4):

𝜃𝜂,𝑧
def
= arg min𝜃 ∈Θ

1
𝑛

𝑛∑︁
𝑖=1

L(𝑧𝑖 , 𝜃 ) + 𝜂L(𝑧, 𝜃 ) (4)

Thus assigning − 1
𝑛 to 𝜂 is equal as removing the training image 𝑧

from original training dataset. A classic result [39] tells us that the

influence of upweighting 𝑧 on the parameter 𝜃 can be calculated
by Equation (5):

Iup, param =
𝑑𝜃𝜂,𝑧

𝑑𝜂
|𝜂=0 = −𝐻−1

𝜃
∇𝜃L(𝑧, 𝜃 ) (5)

where 𝐻
𝜃

𝑑𝑒 𝑓
= 1

𝑛

∑𝑛
𝑖=1 ∇2

𝜃
L(𝑧𝑖 , 𝜃 ) denotes the Hessian and is posi-

tive definite by assumption. Then, we can linearly approximate the
parameter change due to removing 𝑧 without retraining the model
by computing 𝜃−𝑧 − 𝜃 ≈ − 1

𝑛Iup, param (𝑧) = 1
𝑛𝐻

−1
𝜃

∇𝜃L(𝑧, 𝜃 ). To
further evaluate the influence of upweighting 𝑧 on the loss at a test
point 𝑧test, a closed-form expression can be obtained via the chain
rule, indicated as Equation (6).

Iup,loss (𝑧, 𝑧test)
def
=

𝑑L(𝑧test, 𝜃𝜂,𝑧)
𝑑𝜂

|𝜂=0

= ∇𝜃L(𝑧test, 𝜃 )⊤
𝑑𝜃𝜂,𝑧

𝑑𝜂
|𝜂=0

= ∇𝜃L(𝑧test, 𝜃 )⊤Iup, param
= −∇𝜃L(𝑧test, 𝜃 )⊤𝐻−1

𝜃
∇𝜃L(𝑧, 𝜃 )

(6)

In this way, we can efficiently approximate the loss change on the
test dataset caused by removing 𝑧 as − 1

𝑛×𝑚
∑𝑚

𝑗=1 Iup, loss (𝑧, 𝑧test𝑗 ).

3.5 Influence Calculation
Hessian-Vector Products. To calculate Iup,loss (𝑧, 𝑧test), we need
to invert 𝐻

𝜃
= 1

𝑛

∑𝑛
𝑖=1 ∇2

𝜃
L(𝑧𝑖 , 𝜃 ), which requires large amount of

operations. The inverse of Hessian is well-studied in second-order
optimization and can be avoided by using implicit Hessian-vector
products (HVPs). First, 𝑠test

def
= 𝐻−1

𝜃
∇𝜃L(𝑧test, 𝜃 ) can be efficient ap-

proximated via HVPs and then we can compute Iup, loss (𝑧, 𝑧test) =

Algorithm 1: Pseudo-code, PyTorch-like
# y_test and x_test : test sample (noised and clean)
# times: default = len(train_loader)
# scale : default = 25.0
# calculate first order derivative
v = grad (y_test, x_test, model)
s_estimate = copy (v)
# random shuffle
index = random.choice(times)
for i in range (times) :

# random sampling
y_i, x_i = train_loader[index[i]]
# smooth loss to stabilize hvp
loss = smooth (cal_loss (model (y_i), x_i))
hv = hvp (loss, params, s_estimate)
s_estimate = v+ s_estimate - hv/scale

def hvp (y, w, v):
grads = grad (y, w)
p = grads · v
return grad (p, w)
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Figure 3: Showcase of images. We rank images inside each training dataset through influence estimation methodology and
create subsets that are directly sampled from three intervals. We define the top K high influence images as the Top subset,
mid K influence images as the Mid subset, and lowest K influence images as the Bottom subset, with each subset containing K
images.

−𝑠test · ∇𝜃L(𝑧, 𝜃 ). Because 𝑠test is only related with 𝐻−1
𝜃

and gra-

dient of 𝑧test with respect to 𝜃 , so we can efficiently calculate
Iup,loss (𝑧𝑖 , 𝑧test) across all training points 𝑧𝑖 with only one calcula-
tion of 𝑠test.
Stabilized Stochastic Estimation.We use the stochastic estima-
tion method developed by [1] to get an estimator that only samples
a single point per iteration. Algorithm 1 provides the pseudo-code
of stochastic estimation to calculate 𝑠test. For each iteration, the
HVP method uses two back-prop and one element-wise products
to estimate hv (the product of Hessian and 𝑣), then 𝑠estimate can
be calculated by 𝑣 + 𝑠estimate + ℎ𝑣/scale. In the initial use of the
𝐿1 pixel loss (MAE, defined as | |𝐼𝑖 − 𝐼𝑖 | |1) for gradient calculation,
the problem arises due to the fact that the first-order derivative of
the 𝐿1 pixel loss is a constant value (if not zero point) that is not
dependent on the current input values. Consequently, when this
constant value is multiplied and summed with the HVP method
and iteration operation, the estimated matrix values might become
too large. This, in turn, leads to a numerical explosion during the
computation of 𝑠estimate. To stabilize the calculation, we originally
propose to use the smooth function on the calculation of 𝐿1 pixel
loss as 1

2 | |𝐼𝑖 − 𝐼𝑖 | |2, if | |𝐼𝑖 − 𝐼𝑖 | |1 < 1, as presented in Equation (7):

𝑠test
def
= 𝐻−1

𝜃
∇𝜃L(𝑧test, 𝜃 )

= hvp (loss, params, s_estimate)

𝑙𝑜𝑠𝑠 =

{
1
2 | |𝐼𝑖 − 𝐼𝑖 | |2 if | |𝐼𝑖 − 𝐼𝑖 | |1 < 1
| |𝐼𝑖 − 𝐼𝑖 | |1 − 0.5, otherwise

(7)

Given the effective performance of the denoising model, we observe
minimal absolute pixel discrepancies between the denoised image
𝐼𝑖 and the original image 𝐼𝑖 . This minimal deviation therefore con-
tributes to the stability of the entire stochastic estimation process
with our proposed stabilization method.

Table 2: With the influence scores and selected subsets (Top,
Mid, Bottom) from WED, we train IRCNN models on the
identified subsets and full dataset. Notice that Mid subset
only has a size of 3.89% comparedwith full dataset but obtains
best PSNR.

Trainset\Type Bottom Top Mid Full Size

WED 27.000 26.963 27.051 27.038

4 EXPERIMENT
4.1 Experiment Setup
We perform experiments on grayscale Gaussian image denoising
with thorough analysis (Similar conclusions on other restoration
tasks can be found in supplementary materials). We assess the data
efficiency across four benchmark training datasets: BSD500 [3] (400
images), WED [26] (4744 images), Flickr2K (2650 images) [34], and
DIV2K (900 images) [2], referenced respectively. We employ two
CNN architectures, IRCNN [50] and DnCNN [49], alongside the
powerful vision transformer model Restormer [44], with Set12 [49]
and BSD68 [27] testset, to evaluate their performance in our exper-
iments. All experiments are conducted in PyTorch framework with
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Table 3: Summary of grayscale Gaussian image denoising task results using efficient Mid subsets (size 200) from four training
datasets. We train IRCNN, DnCNN, and Restormer respectively on each subset (1000k iterations for CNN models and 300k
iterations for transformer model), and record their best PSNR results on the Set12 testset. We also train them on their original
training datasets with same iterations for fair comparison. IRCNN is trained with BSD and WED (5144 images), while one
manually selected training dataset from ImageNet (400 images) is not available. The best results (PSNR) are highlighted in blue.

Efficient Subset Ratio IRCNN [50] Ratio DnCNN [49] Ratio Restormer [44]
𝜎 = 15 𝜎 = 25 𝜎 = 50 𝜎 = 15 𝜎 = 25 𝜎 = 50 𝜎 = 15 𝜎 = 25 𝜎 = 50

BSD*
200

(3.89%)

32.693 30.262 27.020
200
(50%)

32.858 30.442 27.177
200

(2.30%)

32.713 30.476 27.277
WED* 32.753 30.298 27.051 32.908 30.444 27.198 32.956 30.583 27.442

Flickr2K* 32.685 30.259 26.992 32.852 30.439 27.196 33.079 30.822 27.723
DIV2K* 32.694 30.249 27.004 32.862 30.430 27.201 33.133 30.822 27.746

Original dataset 5144 32.748 30.314 27.038 400 32.856 30.438 27.179 8694 33.252 30.900 27.780

RTX 4090 GPU. In model training, we use Charbonnier loss [7],
Adam optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999. For fair comparison,
models are trained over same iterations and learning rate is fixed
to 1𝑒−4 without any modifications, for data augmentation, we use
horizontal and vertical flips and obtain random 128 × 128 patches.

4.2 Main results
4.2.1 Efficient Image Identification via Proxy IRCNN. The
process of determining the influence of individual images on model
parameters typically involves computationally intensive gradient
calculations. To streamline this, we employ IRCNN as a proxymodel,
enabling the identification of subsets of images that exhibit high
efficiency. This strategy involves training the proxy IRCNN model
on a composite dataset derived from four distinct training sources,
with noise levels set at 15, 25, and 50. Such an approach ensures the
model captures a comprehensive representation of each image’s
unique characteristics, thereby yielding more accurate influence
scores. Utilizing these scores, we select three efficient subsets: Top,
Mid, and Bottom based on their score intervals, as illustrated in
Figure 3. To concisely evaluate the effectiveness of our subset selec-
tion method, we trained IRCNN models on the identified Top, Mid,
and Bottom subsets and compared their PSNR performance against
that of an IRCNN model trained on the full dataset (5144 images,
WED + BSD, in accordance with its official configuration), over an
identical span of 1000k iterations. The outcomes of this comparison
are summarized in Tab. 2. This experiment yielded two noteworthy
observations:

• As indicated in Tab. 2, theMid subset demonstrates better
PSNR performance relative to both the Top and Bot-
tom subsets, underscoring the efficacy of Mid subset
selection in optimizing PSNR outcomes.

• Remarkably, training the IRCNNmodel onmerely 200 images
deemed efficient (3.89%) not only matches but potentially ex-
ceeds the PSNR performance achieved using the entire 5144
image training set (WED + BSD). This finding suggests
that a substantial portion of the data (96.11%)may be su-
perfluous, having a negligible impact on the learning
efficacy of the model.

4.2.2 Generalize to DnCNN and Restormer. Building upon
the insights from Section 3, the direct correlation between data

efficiency and the intrinsic content information of the datasets
has been established. This foundational understanding allows us
to extend the training to include other models, such as DnCNN
and Restormer, using the efficient subsets identified via the IRCNN
proxy model. Specifically, we focus on the Mid subsets (show best
performance in Tab. 2) derived from the BSD, WED, Flickr2K, and
DIV2K datasets for this phase of experimentation. When training
DnCNN and Restormer on these subsets, our results, delineated in
Tab. 3, reveal significant findings.

For IRCNN, the Mid subset sourced from WED consistently
delivers the highest PSNR across the evaluated subsets, achieving
superior performance at noise levels 15 and 50 with only a minimal
performance decrement at noise level 25, despite utilizing merely
3.89% of the dataset. This efficiency in data usage while maintaining
or enhancing performance metrics underscores the effectiveness of
our subset selection methodology.

Cross-model training further validates our approach; the Mid
subsets consistently outperform training on the full dataset for
the DnCNN model. In the case of Restormer, despite the dataset
comprising only 2.30% of the original, the decrease in PSNR is
marginal: minimal to 0.03 dB for noise level 50. These results indi-
cate the transformer model’s heightened sensitivity to image size,
with larger images from Flickr2K and DIV2K contributing to its
performance due to increased pixel availability. Conversely, CNN
architectures, such as DnCNN, show a preference for efficient sub-
sets from WED, suggesting a nuanced interaction between data
efficiency and network architecture. This exploration indicates that
the principle of optimal data efficiency is also intricately linked to the
architecture of the network.

4.2.3 Extensions on Restormer. Building on the observations
detailed in Tab. 3, where IRCNN and DnCNN models trained on
Mid subsets surpassed the performance of models trained with full
datasets, we note a slight performance decrement in Restormer
under similar conditions. This subsection delves deeper into the
Restormer’s adaptability and performance nuances.
Evaluating The Impact of Mid Subset Size Variations. A key
area of inquiry pertains to the potential of achieving or exceeding
full dataset performance through adjustments in the size of the Mid
subset. This exploration is motivated by the desire to understand
the implications of such modifications on model performance. Sub-
sequently, we conducted experiments with Mid subset sizes of K
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Figure 4: Illustration of PSNR’s progressive change as
Restormer models are trained on increasingly larger sub-
sets, presenting the trend of improved model performance
with greater subset sizes.

= 20, 50, 100, 300, specifically chosen from the DIV2K dataset due
to its optimal Restormer performance in Tab. 3. Each subset size
was assessed under a noise level of 25, adhering to the previously
established train/test regimen. The findings, as depicted in Fig. 4,
illustrate a pronounced PSNR decline with the smallest subset (20
images, constituting 0.23% of the full dataset), recording a PSNR of
30.511dB—0.389dB below the full dataset benchmark. Expanding
the subset to 100 images (1.15%) ameliorated this gap, with a PSNR
of 30.767dB, merely 0.133dB shy of the full dataset result. A fur-
ther increase to 300 images (3.45%) closely matched the full dataset
performance, exhibiting a PSNR of 30.832dB, just 0.068dB lower.
Although it remains challenging to surpass the performance of
full-size dataset, this trend underscores a diminishing marginal
return on performance gains beyond the 100-image subset size.

Table 4: Results on testset BSD68 [27]. Only 0.02dB∼0.06dB
gap in PSNR using 2.3% training data, which is similar with
Table 3.

Efficient Subset Ratio Restormer [44]
𝜎 = 15 𝜎 = 25 𝜎 = 50

BSD*
200

(2.30%)

31.678 29.194 26.220
WED* 31.734 29.279 26.326

Flicker2K* 31.792 29.413 26.483
DIV2K* 31.849 29.411 26.501

Original dataset 8694 31.905 29.447 26.524

Restormer Performance on BSD68 Testset. To extend our ex-
amination of Restormer’s capabilities, we also evaluated its per-
formance on the BSD68 [27] testset. As indicated in Tab. 4, the
Mid subset derived from DIV2K continued to lead in performance
among the four Mid subsets, albeit with a slight decrement (rang-
ing from 0.02dB to 0.06dB) relative to the full dataset—a gap more
narrow than that reported in Tab. 3. This parallel in findings further
elucidates the nuanced yet consistent behavior of the Restormer
model across different testing scenarios, highlighting the efficacy of
optimized Mid subsets in approaching, the performance achievable
with much larger datasets.

4.3 Analysis Experiments
In the preceding section, we have presented the primary experi-
mental findings and highlighted the generalization of Mid subsets
across various network architectures. In this section, for a better
understanding of model’s learning, we present thorough analysis
experiments on both Top, Bottom and Mid selection methods. First,
we conduct experiments under more constrained data settings, we
shrink dataset to a smaller size and compare their performances
on Top, Mid, Bottom subsets. Then, we comprehensively analyze
model’s learning behavior with these three subsets, finding that
Mid subset presents both faster convergence speed and better con-
vergence result. Furthermore, we offer visualization of frequency
spectrum from three subsets and provide a perspective from fre-
quency and gradient to understand how and why Mid selection
outperforms other selection methods. All analysis and subset se-
lections are conducted on original WED [26] with noise level 50
unless mentioned otherwise.
What If We Further Shrink Three Training Subsets? It’s in-
structive to explore the difference on model performance if we
reduce the selection size of three subsets from K = 200 to a lower
number. In this case, we train IRCNN with noise level 50 on less
data and record their corresponding best PSNR performances. As
shown in Tab. 5, we can discover two phenomenons:

• Mid selection method obtains the best PSNR performance in
all experiments.

• The smaller the dataset size is, the larger the Max Diff among
the three selection methods becomes, this demonstrates that
data efficiency possesses a much a higher status in scenarios
lack of training data.

Table 5: Training IRCNN with noise level 50 on three subsets
(Bottom, Mid, Top) selected from WED dataset. We record
their best PSNR performances in case of using only 0.39%,
0.97%, 1.94% of training data (5144 images).

Size\Type Bottom Mid Top Max Diff (Mid-Top)

20 (0.39%) 26.766 26.889 26.747 +0.142
50 (0.97%) 26.898 26.997 26.888 +0.109
100 (1.94%) 26.952 27.019 26.937 +0.082

What to Learn: Outlier or Basis? From the definition of influ-
ence estimation, it is a little counter-intuitive that the Mid selection
method always obtains the best PSNR results. Our methodology
tells us, that the Top selection method can select data that have the
largest influence on test loss if discarded in model training, while
the Bottom selection method presents the opposite characteristic.
We record the model performances in whole learning process and
visualize the PSNR differences between three subset selection meth-
ods (subset size: 20), as presented in Fig. 5. Interestingly enough,
We can see that Bottom subset and Mid subset demonstrate simi-
lar test performance in the beginning stage, but gradually present
larger PSNR gap with more iterations, Top subset seems hard to
learn by model so that leads to a max PSNR drop of 0.5 db, but
gradually converge to around 0.2 db drop. Similar with [33], from
machine learning perspective, Top subset acts like outliers (or hard
examples), but Bottom subset acts like basis data (or easy examples),
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Figure 5: The learning behaviors of IRCNNmodel with three
subset selection methods (subset size: 20).

basis data provides coarse-grained information about the target
function, while outliers provide fine-grained information. It turns
out that neither keeping the hardest samples nor keeping the easiest
samples is the best way to obtain the most efficient data in Gauss-
ian image denoising task. Contrary to what might be intuitive, the
most effective strategy involves preserving the samples that exhibit
smooth characteristics (referred to as the Mid subset).
Relation to Frequency and Gradient. In order to gain a deeper
understanding of the underlying principles, we select examples
from three subsets and apply the Fast Fourier Transform to obtain
their corresponding spectrum. As shown in Fig. 6, we can see that
high frequency information visually differs in (a)/(b)/(c) which rep-
resent examples from Bottom/Mid/Top subsets respectively. Top
subset example contains more high frequency information, while
Gaussian noise is also high frequency information, thus increase
the difficulty for model learning. To obtain a more statistical re-
sults, we average all examples with three criteria: 1. gradient based
image quality assessment method (IQA [47]) 2. high frequency av-
erage pixel intensity (HFAPI, with spectrum center masked). 3. low
frequency average pixel intensity (LFAPI, with spectrum center
reserved). Tab. 6 presents the quantitative results. It is observed

(a) Bottom Subset (b) Mid Subset (c) Top Subset

Figure 6: Spectrum obtained via Fourier Transform, (a)/(b)/(c)
column provide examples from Bottom/Mid/Top subsets re-
spectively.

that the Mid subset exhibits IQA value that is relatively close to
the Bottom subset. Simultaneously, the Mid subset contains high-
frequency information of almost the same intensity as the Top
subset. However, the intensity of low-frequency information in
the Mid subset is comparatively lower. Conversely, the Top subset
possesses the strongest high-frequency information, but its overall
IQA is significantly lower than that of the other two subsets. This
observation underscores a limitation in the model’s performance on
the Top subset. Moreover, the Bottom subset showcases the highest
IQA value. This implies that the model is more adept at learning the
coarse-grained information provided by the Bottom subset, how-
ever, it’s difference between the intensity of high-frequency and
low-frequency information is minimal among three subsets, which
subsequently leads to a lower final result in comparison to the Mid
subset.

Table 6: Statistical results of three criteria on Bottom, Mid
and Top subsets (size 20).

Type\Criteria IQA HFAPI LFAPI

Bottom 0.365 0.3646 0.0279
Mid 0.3304 0.3858 0.0242
Top 0.2692 0.3860 0.0264

5 CONCLUSION
In this paper, we navigate the intricacies of data efficiency in the
realm of image restoration, with a spotlight on Gaussian image de-
noising as a pivotal case study. Our comprehensive analysis reveals
the profound influence of content information encapsulated within
training datasets on the performance of image denoising models.
By introducing a novel, stabilized methodology for quantifying this
content information, we have enabled a strategic ranking of train-
ing images based on their score intervals. Additionally, we perform
an in-depth analysis to understand the model’s learning behavior
under diverse situations. Our experimental results demonstrate that
models can achieve, or even exceed, the performance of fully trained
counterparts with a fraction of the training data, challenging tradi-
tional views on data requirements. We hope our methodological
framework and insights will serve as valuable resources for future
research.
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