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1 TRAINING DETAILS

Within the core narrative of our paper, we delineate extensive
training outcomes utilizing two eminent CNN architectures: IR-
CNN [14] and DnCNN [13], alongside a powerful vision trans-
former framework, Restormer [12]. We meticulously curated four
efficacious Mid subsets from the BSD [2], WED [9], Flicker2K [10],
DIV2K [1] datasets, respectively. Each model-IRCNN, DnCNN, and
Restormer—was trained on these subsets in addition to the original
datasets as prescribed in their foundational papers. Collectively,
across noise levels of 15, 25, and 50, we have cultivated 45 models,
with their Peak Signal-to-Noise Ratio (PSNR) metrics systemati-
cally documented in the primary manuscript. This supplementary
section is dedicated to elucidating the particulars of our training
regimen.

1.1 Ensuring Equitable Comparisons

To guarantee a rigorously equitable evaluation, we adhered to a
uniform training protocol across all models. Specifically, we em-
ployed the Adam optimizer, configuring it with f; = 0.9, 2 = 0.999,
and a steadfast learning rate of 1e~# without any modification. For
IRCNN and DnCNN, training batches were composed of 8 sam-
ples, with the training extending to 1,000,000 iterations. In contrast,
Restormer was trained with batch sizes of 6 over 300,000 iterations.
This protocol was consistently applied across both the selected Mid
subsets and the comprehensive original datasets.

1.2 Training and Evaluation Dynamics

We present the training and validation progression for the IRCNN,
DnCNN, and Restormer models with Set12 [13] testset, specifically
at a noise level of 50, across the most advantageous Mid subsets
(consist with the main result in main manuscript, the optimal Mid
subsets were derived from WED for both IRCNN and DnCNN, and
from DIV2K for Restormer) and the unabridged original datasets,
the results are illustrated in Fig. 1. For additional comparative anal-
yses, refer to Fig. 2.

Table 1: Comparative summary of subset selection strategies
utilizing Top/Bottom/Mid/Uniform/Mix categories, symbol-
ized as T/B/M/U/-. Subsets are selected from BSD dataset and
PSNR are tested on Set12 with IRCNN model. The analysis
confirms the Mid subset strategy as the optimal choice for
data efficiency exploration.

Size\Type T-M  B-M U T-B M
200 26.987 27.017 27.014 27.008 27.020
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(a) IRCNN train/test over iterations.
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(c) Restormer train/test over iterations.

Figure 1: Comparative analysis of training and validation
trajectories across three models (IRCNN/DnCNN/Restormer),
the left curves are based on most efficient Mid subset and
the right curves are based on full original dataset, which em-
phasizes the superior efficiency of select Mid subsets (WED
for IRCNN and DnCNN; DIV2K for Restormer) against the
backdrop of full dataset training.
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Table 2: Summary of JPEG Compression Artifact Reduction task results using efficient Mid subsets (size 200) from BSD and

WED. We train ARCNN, DnCNN-3 respectively on each subset with 1000k iterations and record their best PSNR results on the
classic5 testset. We also train them on a mixed large dataset with same iterations for fair comparison.

Efficient Subset | Ratio ‘ ARCNN [4] ‘ DnCNN-3 [13]
| q q=20 q=30 ¢q=40|g=10 g=20 g=30 g=40
BSD* 29.193 31.429 32.758 33.613 | 29.662 31.862 33.177 34.047
WED* 2. 30% 29.262 31.390 32.696 33.570 | 29.713 31.887 33.198 34.038
Full dataset | 8694 |29.255 31.400 32.727 33.592 | 29.715 31.955 33.220 34.084

1.3 Additional Methodology for Subset Selection

In our primary manuscript, we undertook a comprehensive evalua-
tion of Top, Mid, and Bottom subsets. Expanding upon this, our sup-
plementary discourse includes alternative subset selection strate-
gies predicated on influence scores. Novel approaches such as top-
mid, bottom-mid, and uniform-sampling have been explored. We
train IRCNN models on selected subsets from BSD using additional
selection methodology, as evidenced in Tab. 1, the Mid subset se-
lection strategy emerges as the most effective, attaining superior
PSNR values.

2 EXTENSIONS TO OTHER IMAGE
RESTORATION TASKS

This section investigates the application of our data-efficient method-
ology to two pivotal image restoration tasks: JPEG Compression
Artifact Reduction and Image Super-Resolution.

2.1 JPEG Compression Artifact Reduction

Our approach for JPEG Compression Artifact Reduction involved
the use of two classic CNN architectures: ARCNN [4] and DnCNN-
3 [13]. Similar to gray image denoising, we initially trained ARCNN
on a combined dataset from four sources [1, 2, 9, 10], targeting
various quality factors. Subsequently, efficient subsets (200 images)
were identified using ARCNN and assessed for their applicability
to DnCNN-3, with classic5 [5] serving as the testset. As Tab. 2 illus-
trates, our methodology achieved comparable PSNR performance
with substantially less data (2.30%). In the experiments utilizing
ARCNN, our approach surpassed the results achieved with the full-
sized dataset. Conversely, in the DnCNN experiments, the observed
drop in PSNR was minimal, remaining within a margin of 0.08db.
These outcomes collectively attest to the robustness and efficacy
of our methodology in the context of JPEG Compression Artifact
Reduction. The promising results not only validate our current ap-
proach but also underscore the merit in further investigating data
efficiency within this domain.

2.2 Image Super-Resolution

In the realm of image super-resolution, we conducted experiments
using Modified SRResNet (MSRResNet) [6, 11] and EDSR [8, 11],
considering scale factors of 2 and 4. Following [7], we employ
DIV2K [1] as original training dataset (full size) and Set5 [3] as
the evaluation testset. Experiments are conducted in a similar way
with gray image denoising. MSRResNet, initially trained on 900

DIV2K images, was subsequently applied to identify efficient sub-
sets (comprising 200 images). These subsets were evaluated for their
generalization to EDSR. Notably, we modified the model depth from
the standard in BasicSR [11], reducing the number of residual blocks
to accelerate training. The comprehensive results are tabulated in
Tab. 3. Notably, for scale x2, our methodology achieved superior
PSNR performance using only 22.2% of the data. For scale x4, the
PSNR reduction was marginal (0.04db and 0.001db), underscoring
the effectiveness of our approach in image super-resolution. These
findings highlight the potential for further research into data effi-
ciency in this domain.

Table 3: Summary of Image Super-Resolution task results
using efficient Mid subsets (size 200) from DIV2K. We train
MSRResNet, EDSR respectively on each subset with 500k
iterations and record their best PSNR results on the Set5
testset. We also train them on original DIV2K (full size) with
same iterations for fair comparison.

DIV2K Scale: x2  Scale: x4
MSRResNet [11] 35650  30.019
EDSR [8] 35709  30.053

Efficient (Ratio) Scale: x2  Scale: x4
MSRResNet [11] (22.2%) | 35.666  29.979
EDSR [8] (22.2%) 35720  30.052

3 LIMITATIONS AND FUTURE WORKS

While our method demonstrates effectiveness in exploring data effi-
ciency for restoration tasks, it is inherently bounded by the existing
datasets’ quality ceiling. This limitation highlights the necessity for
approaches that can transcend the constraints of current datasets.
Future research will pivot towards a generative strategy, leverag-
ing the characteristics of efficient subsets identified through our
methodology. This generative direction is anticipated to broaden
the scope and improve the efficacy of data utilization in the context
of image restoration.
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(b) DnCNN train/test over iterations.
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(c) Restormer train/test over iterations.

Figure 2: Comparative analysis of the training and validation trajectories for three models—IRCNN, DnCNN, and Restormer.
The results are presented from left to right for the BSD Mid subset, WED Mid subset, Flickr2K Mid subset, DIV2K Mid subset,

and the original full-size dataset.
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