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ABSTRACT

Large Language Models (LLMs) shows powerful capability in natural language
understanding by capturing hidden semantics in vector space. This process en-
riches the value of the text embeddings for various downstream tasks, thereby
fostering the Embedding-as-a-Service (EaaS) business model. However, the di-
rect transmission of text to servers poses a largely unaddressed risk of privacy
leakage. To mitigate this issue, we introduce Split-N-Denoise (SnD), an innova-
tive framework that split the model to execute the token embedding layer on the
client side at minimal computational cost. This allows the client to introduce noise
prior to transmitting the embeddings to the server and subsequently receive and
denoise the perturbed output embeddings for downstream tasks. Our approach
is designed for the inference stage of LLMs and requires no modifications to the
model parameters, while also being computationally efficient on the client side.
Extensive experiments demonstrate SnD’s effectiveness in optimizing the privacy-
utility tradeoff across various LLM architectures and diverse downstream tasks.
The results reveal an significant accuracy improvement under the same privacy
budget compared to the baseline, offering clients a privacy-preserving solution for
local privacy protection.

1 INTRODUCTION

Large Language Models (LLMs) has shown powerful capability in natural language understanding
by capturing hidden semantics in vector space. Consequently, As a result, users can leverage LLMs
to obtain embeddings and subsequently apply them to their own downstream tasks, known as ”em-
bedding as a service” (EaaS). However, EaaS is typically provided as an online service, giving rise
to significant privacy concerns. In particular, users may input sensitive information, such as names,
phones, and email addresses, that needs to be kept hidden from the service provider. With the grow-
ing concern around the potential leakage of confidential data, certain companies, such as Samsung,
have temporally prohibited the usage of online LLM services.

Recent research on privacy-preserving LLM inference investigates around two directions, crypto-
graphic Liu & Liu (2023); Chen et al. (2022) and perturbation Du et al. (2023). Cryptographic
typically employs homomorphic encryption (HE) to compute the inference result of the users’ en-
crypted input. Unfortunately, the application of cryptographic technique is constrained by the sig-
nificant computation overhead of cryptographic operations, especially on large transformer models.
Perturbation provides differential privacy (DP) guarantee by adding calibrated noise to the origi-
nal data. A key challenge of this approach is how to balance the utility and privacy tradeoff in
a local differential privacy (LDP) setting, where users’ inputs are privatized before being released
to the server. Furthermore, privatization on text data is particularly difficult when the randomized
algorithm is required to map text input to text output.

Split learning Gupta & Raskar (2018); Vepakomma et al. (2018) has emerged as a solution to
privacy-preserving computation among two parties. During inference, the user performs affordable
computation locally to obtain intermediate results (IRs), and forwards them to the service provider
for subsequent operations. DP is employed to mitigate privacy leakage by injecting noises into the
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IRs before sharing with the server. In the split inference setting, a crucial problem is to design an
algorithm that minimizes the impact on model performance while ensuring LDP.

A notable approach involves the application of denoising techniques to conduct error correction and
enhance model utility. Existing studies incorporate denoising layers on the server side, leveraging
the post-processing properties of DP Nasr et al. (2020); Wang et al. (2019); Xu et al. (2022). How-
ever, the effectiveness of denoising is hindered by the fact that the server is ignorant of the injected
noise levels. Driven by the limitation, a question arises: can we improve the utility by conducting
denoising on the user side, leveraging the knowledge of noise levels and raw IRs? It’s a highly
non-trivial task to unconver the closed-form mapping between denoised embedding and noises as
well as raw IRs, since the inputs have undergone a series of complex transformations.

In this paper, we answer this question affirmatively by proposing Split-N-Denoise (SnD), a frame-
work that integrates split inference and denoising techniques to enhance utility under LDP bound.
To minimize the computational overhead on users, we deploy only the token representation layer on
client sides. A denoise model that enhances noisy embeddings using raw inputs and noise levels is
pretrained on the server side and subsequently shared with the user. Once receiving the output from
server, users input their private data into the denoise model to improve the utility of embeddings.

Our main contributions involve the following:

• To the best of our knowledge, this paper represents the pioneering effort in protect user’s
privacy during LLM inference with strong privacy guarantee. Existing research focuses
on the privacy-preserving pre-training and fine-tuning for LLM, while few studies pay at-
tention to the privacy concerns at inference stage, especially on privatizing user’s input to
guarantee DP. Our research introduces a framework to guarantee user’s privacy with LDP
while maintaining acceptable utility of the output.

• We propose SnD, a framework that integrates split inference and denoising techniques to
protect user’s privacy with LDP. We conduct empirical analysis to demonstrate the utility
of embeddings on various downstream tasks.

• We design a novel denoising method deployed on user side. In this approach, a denoise
model is pre-trained on server side using public dataset and synthetic noises. Subsequently,
this trained model is deployed on the user side, where it leverages the specific noise levels
and raw IRs provided by the user to enhance the embeddings.

2 PRIOR WORKS

Local Privacy for Frozen LLMs With the advent of LLMs, privacy leakage has emerged as a
crucial concern. Existing literature predominantly focuses on privacy conservation throughout the
entire training process, encompassing pre-training Hoory et al. (2021), fine-tuning Huang et al.
(2020); Kerrigan et al. (2020); Yu et al. (2021); Lukas et al. (2023), and prompt-tuning phases Duan
et al. (2023); Li et al. (2023). Yet, there is a notable dearth of research addressing local privacy
during the inference phase with a fully frozen LLM. This scenario, which prohibits alterations to
the model’s structure and parameters, is particularly complex. Nonetheless, it holds significance
in black-box API access contexts, especially for proprietary models like GPT-4. One intuitive ap-
proach involves anonymizing sensitive terms prior to LLM input and subsequently restoring them
post-output Kan et al. (2023); Chen et al. (2023). However, this method, while effective for ob-
fuscating specific entities, falls short in concealing other linguistic elements, including verbs and
non-named entities. Such a limitation compromises full privacy and is unsuitable for tasks neces-
sitating exact semantic interpretation of the altered entities, such as knowledge retrieval and text
continuation Chen et al. (2023). An alternative strategy might entail input text perturbation via text-
to-text privatization or synthetic data generation, preserving high-dimensional features while alter-
ing human-perceivable sequences Li et al. (2023). Specifically, the text-to-text privatization projects
text into a high-dimensional vector space with a pre-determined word embedding model,adding
carefully calibrated noise to the vector representation, and then reconvert it to obtain the perturbed
text Feyisetan et al. (2019); Qu et al. (2021a). Yet, the mere application of this technique during
inference does not guarantee a satisfactory balance between privacy and utility. Another direction
employs homomorphic encyption (HE) to conduct private transformer inference Liu & Liu (2023);
Chen et al. (2022), but the significant overhead renders it impractical for implementation in LLM.
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Privacy-Preserving Split Learning Split learning is a novel privacy-preserving approach in dis-
tributed learning, where each client trains a segment of a deep network up to a designated ”cut layer.”
The outputs at this layer are then forwarded to the server side, which completes the training without
accessing the client’s raw data. This approach facilitates forward and backward propagation without
sharing raw data, ensuring the client-side local privacy Gupta & Raskar (2018); Vepakomma et al.
(2018). Vepakomma et al shows that split learning surpasses federated learning and large batch syn-
chronous SGD in achieving superior accuracy with significantly reduced client-side computational
demands Gupta & Raskar (2018). Singh et al further validate its efficacy across broader experi-
mental contexts, demonstrating that an increase in the number of clients or model dimensions gives
split learning an edge over federated learning Singh et al. (2019). The advantage in its computa-
tional efficiency renders it suitable for LLM local privacy setting, where the client side executes
minimal computational tasks, such as noising and denoising operations at specific segmented layers,
to ensure privacy at reduced computational expenses. Meanwhile, the server handles the bulk of
the model’s layers. Our research serves as an initial endeavor to integrate split learning with LLM
privacy concerns.

Denoising for Differential Privacy (DP) While elevated noise levels offer robust privacy protec-
tions, privacy-preserving methods inevitably compromise the model’s quality Wang et al. (2019). A
notable approach involves the application of denoising techniques specifically tailored for Differen-
tial Privacy (DP), incorporating a post-processing layer to enhance DP utility. Pioneering research
in statistical estimation underscores the efficacy of post-processing denoising in achieving accurate
private network degree distribution estimates Hay et al. (2009), and in reducing linear regression
estimation errors when the ground truth is sparse Nikolov et al. (2013). Balle et al. demonstrated
that denoising significantly enhances the Gaussian mechanism’s accuracy in high-dimensional set-
tings for DP algorithms with output perturbations Balle & Wang (2018). More recently, denoising
mechanisms have been extended to the training of Machine Learning (ML) models, particularly
Deep Neural Networks (DNNs), by applying denoising techniques to Gaussian noise-injected gradi-
ents, thereby improving the utility of privately trained ML models Wang et al. (2019). Nasr, Shokri,
and Houmansadr further explored the use of scaling as a denoising strategy to optimize DP utility
in Differential Privacy Stochastic Gradient Descent (DP-SGD), scaling the noisy gradients based
on their usefulness Nasr et al. (2020). Subsequently, Xu et al. employed scaling and masking as
post-processing denoising techniques on top of Gaussian noise-injected intermediate results in split
learning, aiming to reduce the noisy neural network output’s estimation error without compromising
privacy Xu et al. (2022).

3 METHODOLOGY

3.1 PRELIMINARIES

3.1.1 LDP

Differential privacy (DP) Dwork (2006); Dwork et al. (2014) is considered the gold standard for data
privacy. Its definition is as follows:

Definition 1 ((ϵ, δ)-Differential Privacy) A randomized mechanism M with domain D and range
R preserves (ϵ, δ)-differential privacy if and only if for any two neighboring datasets D,D′ ∈ D
and for any subset S ⊆ R, the following inequality holds:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ

where ϵ is the privacy budget and δ is the failure probability.

Local differential privacy (LDP) is a particular case of DP, where the server is not trusted and data
privatization is conducted by the client. For any inputs x, x′ ∈ D, LDP requires a randomized
mechanism M to satisfy:

Pr[M(x) ∈ S] ≤ eϵ Pr[M(x′) ∈ S] + δ (1)

for any measurable subset subset S ⊆ Range(M).
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3.1.2 dχ-PRIVACY

In the context of local privacy preservation, we employ dχ-privacy Chatzikokolakis et al. (2013), a
specialized variant of local differential privacy tailored for textual data Feyisetan et al. (2019); Qu
et al. (2021a). dχ-privacy allows to impose high probability of observing the same output for inputs
with similar semantics. We state the formal definition in the following:

Definition 2 (dχ-privacy) For an input domain X and an output domain Y , dχ serves as a metric
space over X . A stochastic mechanism M : X → Y is said to adhere to ηdχ-privacy if, for any two
elements x, x′ ∈ X , the output distributions M(x) and M(x′) satisfy the following inequality:

P (M(x) = y)

P (M(x′) = y)
≤ eηdχ(x,x

′), ∀y ∈ Y,

where η ≥ 0 is a tunable privacy parameter that modulates the level of privacy protection.

The privacy guarantee indicates that the log-likelihood ratio of producing the same outcome y is
bounded by ηdχ(x, x

′) for any two possible inputs x, x′.

3.2 ARCHITECTURE

Local Encoder Module Privatization Module

Denoise Module

Local User Side LLM Server Side

Obtain
denoised
results

Output noised
results

Initial Embedding Noise Matrix

Send privatized
embedding

User input
texts

Figure 1: Overview of our privacy-preserving SnD framework.Users first obtain an initial embed-
ding from a local encoder, followed by a noise addition via the privatization module. This privatized
embedding is then transmitted to the server for processing. Upon completion, users receive a noised
output, which is subsequently refined using a pre-trained denoising model to achieve an optimal
balance between privacy and utility.

Denote G : Vn → Rd as the language model that maps n-token to embedding. In Split-N-Denoise
(SnD), we split the language model G into a local encoder Gl : Vn → Rn×d at user side and a cloud
encoder Gc : Rn×d → Rd at server side. The local encoder consists of only the token representation
layer to minimize the computation cost for user, and the server performs subsequent operations on
the IRs uploaded by the clients. The architecture of SnD is depicted in figure, containing four main
components:

• Local encoder module: the user retrieves the token embeddings of their input locally.

• Privatization module: the token representations are privatized by the user before being
transmitted to the server to satisfy LDP.

• Cloud encoder module: the server performs transformation on the privatized token repre-
sentations and returns the embedding to user.

• Denoise module: user conducts local denoising on the received embedding leveraging their
raw inputs and specific noise levels.
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3.3 NOISE MECHANISM

We adopt dχ-privacy to privatize the token representation layers on user side. Given an input
sequence x = [x1, . . . , xn], the token representation layer transforms x into a vector sequence
X = [x1, . . . ,xn] ∈ Rn×d via embedding model E ∈ R|V|×d, where |V| denotes the vocabulary
size and d represents the dimensionality of the embeddings.

Assuming L2 norm as the distance metric, the application of dX privacy, parameterized by η, to a
given word embedding xt ∈ Rd is realized by the addition of Laplacian noise z ∼ c exp(−η||z||),
where c is a real-valued constant Wu et al. (2017). To sample z from the Laplacian distribution,
consider z = lv, where l is sampled from a Gamma distribution Γ(d, 1/η) and v is uniformly
sampled from the unit ball Bd. Consequently, the privatized representation M(xt) can be succinctly
expressed as:

M(xt) = xt + z.

The following theorem states that the noise mechanism M : Rd → Rd adheres to ηdχ−privacy.

Theorem 1 For any d ≥ 1 and any η > 0, the mechanism M : Rd → Rd achieves ηdχ−privacy
with respect to dχ(x, x

′) = ∥x− x′∥.

Refer to appendix A.1 for the proof.

3.4 DENOISE MODEL

On receiving the noisy embeddings, users conduct error correction on the embeddings using their
specific noises and raw inputs. Given the black-box nature of neural network transformation on
the privatized token representations, we propose to train a transformer-based model for embedding
denoise.

Let X̃ = [x̃1, . . . , x̃n], Z = [z1, . . . ,zn] ∈ Rn×d denote, respectively, the privatized token repre-
sentations and noise matrix. After a series of operations, the server returns a noisy embedding en
capturing the context of input token to the user. The denoise model is parameterized by a L-layer
transformer decoder, D : R(2n+1)×d → Rd:

ed = D(en, X̃, Z) (2)

The input to the denoise model H0 is a concatenation of vectors:
H0 = [en; x̃1, . . . , x̃n; z1, . . . ,zn] (3)

Let hl
t represents the hidden state for the tth vector at layer l. This state is computed using the

following recursive relation:
hl
t = hl−1

t + al−1
t +ml−1

t (4)
where

al−1
t = attnl(hl−1

1 ,hl−1
2 , ...,hl−1

2n+1), m
l−1
t = W l

projσ(W
l
fcγ(a

l
t + hl−1

t )) (5)
The denoised embedding is obtained directly from the hidden state representation for en at the final
layer:

ed = hL
0 (6)

We visualize the architecture of the denoise model in figure 2. Intuitively, the noisy embedding
undergoes L steps to transform into the denoised embedding. In each step, the transformation is
conditioned on the feature representations of raw IRs as well as specific noises.

To train a denoise model, the server samples a set of noises added to the token representations of
public corpus. Subsequently, the clean embedding ec and noisy embedding en are computed from,
respectively, the raw and privatized token representations:

ec = G(X), en = G(X̃) (7)

The denoise model is trained on the above datasets with the objective to minimize the deviation
between denoised and clean embeddings:

min
D

E[∥D(en, X̃, Z)− ec∥2] (8)

The pretrained model is shared with users to conduct denoising on the received embeddings locally.
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Figure 2: Architecture of denoise model.

3.5 COMPLEXITY ANALYSIS

In this section, we analyze the communication complexity and user computation complexity of our
framework.

Communication complexity: the communication cost can be broken as: (1) user uploads the token
representations to the server (O(nd) messages); (2) server share the embeddings with user (O(d)
messages). Hence, the total communication overhead is O(nd).

User computation complexity: user’s computation cost can be broken as: (1) retrieving token embed-
dings from input text (O(n) complexity); (2) performing local denoising with the transformer-based
model (O(n2dL) complexity Vaswani et al. (2017)). Therefore, the user’s computation cost adds up
to O(n2dL).

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETTUP

We evaluate our framework on three classes of LLMs: Bert Devlin et al. (2018), GPT2 Radford
et al. (2019), and T5 Raffel et al. (2020). The hyperparameters and model sizes of our denoise
model are described in appendix A.4. We benchmark our experiments against the token embedding
privatization (TokEmbPriv) method Qu et al. (2021b), where the token embeddings are perturbed by
the user before sending them to the server.

To assess the performance of our approach, we employ two distinct evaluation metrics: (1) similarity
with ec: we compute the mean square error (MSE) and cosine similarity (COS) between ec and
ed, the clean and privatized embeddings, to quantify the extent of data variations induced by the
perturbation process; (2) performance on downstream tasks: we utilize accuracy scores (ACC) and
area under the roc curve (AUC) to gauge the utility of the embeddings on downstream tasks.

4.2 DATASETS

To train the denoise model, we use the combination of 20 datasets to better mimic the generalized
training scenarios, including TweetEval Offensive Barbieri et al. (2020), Hate Speech 18 de Gibert
et al. (2018), Health Fact Kotonya & Toni (2020),Daily Dialogue Li et al. (2017), etc. See the full
list of datasets we used in Appendix A.2.
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We test our denoising performance on a collection of downstream tasks:

• Sentence classification: CoLA Warstadt et al. (2019)

• Pair similarity: Quora Question Pairs (QQP) Chen et al. (2018), MSR Paraphrase Corpus
(MRPC) Dolan & Brockett (2005)

• Recognizing Textual Entailment (RTE) Dagan et al. (2006); Bar-Haim et al. (2006); Gi-
ampiccolo et al. (2007); Bentivogli et al. (2009)

Refer to appendix A.3 for the evaluation details.

4.3 EXPERIMENT RESULTS

4.3.1 PERFORMANCE ON DOWNSTREAM TASK

We record the performance on various downstream task in terms of accuracy (ACC) under varing η in
table 4.3.1, 4.3.1 and 4.3.1. The utility is benchmarked against the case without any noise injection,
denoted by η = ∞. One important observation is that our framework maintains acceptable accuracy
compared with the non-privatized setting. Noted that we perform evaluation on the embeddings
from pre-trained model without any fine-tuning, and thus there’s a gap between the accuracy in our
results and the SOTA benchmarks.

DistillBert (66m) Bert Base (110m) Bert Large (340m)

eta 100 500 ∞ 100 500 ∞ 100 500 ∞
CoLA 0.688 0.689 0.701 0.670 0.670 0.751 0.691 0.683 0.744
QQP 0.618 0.626 0.683 0.618 0.656 0.728 0.637 0.631 0.706
MRPC 0.670 0.672 0.674 0.672 0.670 0.664 0.684 0.689 0.659
RTE 0.578 0.580 0.592 0.563 0.566 0.569 0.585 0.549 0.599

Table 1: Accuracies on downstream tasks for BERT

4.3.2 COMPARISON WITH BASELINE

In Figure 4.3.2, we assess and compare the performance of three model families using three distinct
metrics: AUC (Area Under Curve) for overall efficacy, MSE (Mean Squared Error) for model loss,
and Cosine Similarity between the initial and recovered embeddings to gauge the effectiveness of our
denoising mechanism. Against each metric, we compare our techniques with the baseline method
TokEmbPriv Qu et al. (2021b).

For the three model families, we selected three distinct eta levels for experimentation, given the
varying noise tolerance of each model. Specifically, for the Bert models, we set eta to 50, 100, and
500; for the GPT models, the values were 1, 100, and 1000; and for the T5 models, we chose 0.1,
1, and 10. For each model family, a representative task was selected. Our observations indicate that
our method outperforms the baseline in terms of AUC in roughly 77% of the tested combinations,
highlighting our model’s ability to retain utility. Moreover, in approximately 90% of the combi-
nations, we noted substantially reduced MSE values and enhanced Cosine Similarity scores. This
suggests our technique’s proficiency in restoring the original attributes of the noised embedding after
procuring the perturbed results from the server.

T5 Small (60m) T5 Base (220m) T5 Large (770m)
eta 0.001 0.01 1 ∞ 0.001 0.01 1 ∞ 0.001 0.01 1 ∞
CoLA 0.69 0.69 0.69 0.71 0.70 0.69 0.69 0.73 0.69 0.69 0.69 0.74
QQP 0.68 0.69 0.68 0.71 0.63 0.69 0.69 0.72 0.63 0.62 0.70 0.71
MRPC 0.68 0.68 0.68 0.69 0.68 0.68 0.68 0.71 0.68 0.68 0.68 0.71
RTE 0.51 0.52 0.54 0.58 0.52 0.54 0.55 0.56 0.55 0.56 0.53 0.58

Table 2: Accuracies on downstream tasks for T5
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GPT2 Small GPT2 Medium GPT2 large GPT2 Xlarge
(120m) (345m) (774m) (1.5b)

eta 1 100 ∞ 1 100 ∞ 1 100 ∞ 100 ∞
CoLA 0.688 0.684 0.709 0.688 0.692 0.728 0.691 0.69 0.724 0.690 0.766
QQP 0.617 0.600 0.716 0.626 0.632 0.711 0.615 0.631 0.721 0.592 0.721
MRPC 0.688 0.681 0.720 0.684 0.686 0.710 0.674 0.684 0.701 0.676 0.705
RTE 0.535 0.549 0.579 0.556 0.567 0.583 0.567 0.596 0.582 0.574 0.592

Table 3: Accuracies on downstream tasks for GPT2
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Figure 3: Baseline performance comparison of 3 model families under multiple eta levels

5 DISCUSSION AND FUTURE WORK

Scalability to larger language model: our experiments primarily focused on language models
ranging from 100MB to 1GB in size. We also tested our approach on larger language model, such
as LLaMa and OPT-6.7B. While we observed substantial improvements in terms of MSE and COS
of the embeddings compared to the baseline, we discovered that the accuracy on downstream tasks
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still requires further enhancement. We suspect that the inputs undergo significantly more intricate
transformations in these larger language models, necessitating the use of more sophisticated noise
and denoising mechanisms.

Reduce user computation cost: local denoising constitutes a major component of user’s computa-
tion overhead. We observe that the size of denoise model, and thus the user computation cost, scale
with the underlying LLM. For those users with limited computation resource, it’s crucial to design
a lightweight denoise mechanism with minimal computation cost.

Sequence-to-sequence (S2S) inference: it’s of great interest to extend our EaaS framework to
S2S inference model. One important obstacle of the generalization is the noise amplification issue
with S2S model. In particular, S2S relies on the auto-regressive mechanism, where the prediction
of previous token is taken as an input to the next token. Therefore, the error from the previous
prediction would exaggerate the deviation of the following tokens. A universal denoise model might
be insufficient to correct the errors in the generated sequence.

6 CONCLUSION

This paper proposes SnD, a framework that employs split inference and denoising techniques to
protect LLM inference with LDP. We split the language model to deploy the token representation
layer on user side. User perturbs the token embeddings to guarantee dχ-privacy before transmitting
them to the server. To improve the utility of embeddings, user conducts local denoising with a pre-
trained model leveraging the raw token representations and specific noises. The empirical studies
show that: (1) SnD performs better in maintaining the utility of embeddings compared with baseline
method. (2) The denoise model significantly reduce the noises in the output, as demonstrated by
improvements in terms of both cosine similarity (COS) and mean squared error (MSE). Our study
opens up new possibilities for privacy-preserving LLM inference, in terms of scalabibility to larger
LLM, optimizating user computation cost, and extension to sequence-to-sequence inference model.
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A APPENDIX

A.1 PROOF OF THEOREM 1

To prove the theorem, we first demonstrate that the noise follows Laplacian distribution:

Lemma 1 By sampling l from Gamma distribution Γ(d, 1/η), and v from the unit ball Bd, the
vector z = lv can be released as d-dimensional Laplacian z ∼ c exp(−η∥z∥).

Proof 1 The proof follows by changing variables to spherical coordinates and showing that the
Laplacian can be expressed as the product of v and l. See, for instance, Lemma 4 in Fernandes
et al. (2019).
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We can now proceed to the proof of theorem 1.

Proof 2 Plugging in the probability density function of z, it holds that:
P (M(x) = y)

P (M(x′) = y)
=

P (z = y − x)

P (z = y − x′)
= exp(η(∥y − x′∥ − ∥y − x∥)) ≤ exp(η(∥x′ − x∥)) (9)

, for any η > 0.

A.2 DETAILS OF DATASETS

A.2.1 DATASET TO TRAIN DENOISE MODEL

SQuAD: The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,
with questions posed by crowdworkers based on a set of Wikipedia articles. The answer to every
question is a segment of text from the corresponding article, or the question might be unanswerable
Rajpurkar et al. (2016).

AG News: This dataset contains more than 1 million news articles, categorizing text into classes
like sports, business, and tech Zhang et al. (2015).

Financial Phrasebank: Comprising sentiments in the financial domain, specifically with sentences
where all annotators concur. It is primarily for 3-class sentiment analysis Malo et al. (2014).

Banking77: It contains online banking queries annotated with their corresponding intents, focusing
on fine-grained single-domain intent detection Casanueva et al. (2020).

Health Fact: A comprehensive dataset for explainable automated fact-checking of public health
claims Kotonya & Toni (2020).

Poem Sentiment: A dataset for 4-class sentiment analysis on poem verses from Project Gutenberg
Sheng & Uthus (2020).

Tweet Eval - Sentiment: Containing tweets for sentiment analysis Barbieri et al. (2020).

Tweet Eval - Emotion: Comprising tweets labeled with specific emotions Barbieri et al. (2020).

Tweet Eval - Hate: A dataset to classify tweets containing hate speech Barbieri et al. (2020).

Tweet Eval - Offensive: A dataset for classifying tweets deemed offensive Barbieri et al. (2020).

ADE Corpus V2: A dataset for classification if a sentence discusses Adverse Drug Reaction or not.
This dataset also extracts the relation between Adverse Drug Event and Drug Gurulingappa et al.
(2012).

Hate Speech18: Dedicated to detecting hate speech in texts extracted from Stormfront, a white
supremacist forum de Gibert et al. (2018).

SMS Spam: Comprising SMS labeled texts, this dataset is utilized to identify spam messages
Almeida et al. (2011).

Daily Dialog: A high-quality multi-turn dialog dataset contains dialogues derived from daily con-
versations Li et al. (2017).

Yelp Review Full: Comprising reviews from Yelp for text classification. This dataset is extracted
from the Yelp Dataset Challenge 2015 data Zhang et al. (2015).

App Reviews: A dataset of user reviews of Android applications belonging to different categories
Grano et al. (2017).

Amazon Polarity: Contains reviews from Amazon, including product and user information, ratings,
and a text review McAuley & Leskovec (2013); Zhang et al. (2015).

Rotten Tomatoes: A movie review dataset used for sentiment analysis. This dataset comprises
reviews from the Rotten Tomatoes website (Pang & Lee, 2005).

Wikitext: A collection of over 100 million tokens extracted from the set of verified Good and
Featured articles on Wikipedia. Used for language modeling and other NLP tasks (Merity et al.,
2016).
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OpenWebText: An open-source collection of web articles, modeled after the dataset used in the
original ”GPT” work (Gokaslan* et al., 2019).

A.2.2 DATASET FOR DOWNSTREAM TASKS

QQP: The Quora Question Pairs2 dataset consists of question pairs to determine semantic equiva-
lence Chen et al. (2018).

RTE: The Recognizing Textual Entailment (RTE) datasets aggregates multiple Recognizing Textual
Entailment challenges, determining if texts entail each other. It combines data from several RTE
challenges Dagan et al. (2006); Bar-Haim et al. (2006); Giampiccolo et al. (2007); Bentivogli et al.
(2009).

SST2: The Stanford Sentiment Treebank contains movie review sentences labeled for sentiment,
aiming to predict positive or negative sentiments Socher et al. (2013).

A.3 EVALUATION OF DOWNSTREAM TASKS

We follow the steps below to conduct evaluation on downstream tasks:

• Obtain the embeddings of text in training and testing datasets via privacy-preserving LLM
inference framework.

• Train a classification model on the privatized (denoised) embeddings from training set.
• Test the performance of classification model on the privatized (denoised) embeddings from

testing set.

A.4 HYPERPARAMETERS OF DENOISE MODEL

The hyperparameters of denoise model are represented as followed:

• dmodel: Dimension of input embeddings and hidden states.
• dff : Hidden dimension in the feed forward network.
• dkv: Dimension of each head in the multi-head attention layer.
• nhead: Number of heads in the multi-head attention layer.
• L: Number of layers.

Table A.4 lists the hyperparameters for each denoise model.

dmodel dff dkv nhead L

DistillBert 768 768 240 6 3
Bert Base 768 1024 240 8 6
Bert Large 1024 1024 256 8 6
T5 Small 512 512 240 6 6
T5 Base 768 768 256 8 6
T5 Large 1024 1024 256 8 6
GPT2 Small 768 768 240 8 6
GPT2 Medium 1024 1024 256 8 6
GPT2 Large 1280 1280 256 8 6
GPT2 XLarge 1600 1600 256 10 6

Table 4: Hyperparameters of denoise models
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