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ABSTRACT

Complementary Label Learning (CLL) is a typical weakly supervised learning
protocol, where each instance is associated with one complementary label, which
specifies the class that the instance does not belong to. Existing CLL methods
assume that the complementary label is sampled uniformly from all non-ground-
truth labels, or from a biased probability depending on the ground-truth label.
However, these assumptions are normally unrealistic, for example, an annotator
tends to choose a label that is largely irrelevant to the instance to avoid mistaking
the ground-truth label as the complementary one. Therefore, in this paper, we
introduce instance-dependent CLL (IDCLL), where non-ground-truth labels that
are less relevant to the instances are more likely to be selected as the complemen-
tary ones. Accordingly, we present our generation process for instance-dependent
complementary label and observe that directly applying existing CLL methods
to IDCLL results in poor performance. We further empirically analyze this phe-
nomenon and identify: Existing methods exhibit a decline in their capacity to share
complementary labels under the instance-dependent setting, resulting in small logit
margins, thus difficult to identify ground-truth labels. To address this problem, we
introduce complementary logit margin loss (CLML) and demonstrate CLML can
enhance the capacity to share complementary labels. Additionally, we propose a
novel form of the complementary one-vs-the-rest loss (COVR) as the surrogate
loss for CLML, and provide theoretical proof that COVR can decrease CLML to a
greater extent compared to existing CLL methods. The estimation error bound of
the proposed COVR is also theoretically characterized. Extensive experiments con-
ducted on benchmark datasets demonstrate the superiority of the proposed method
compared to the existing CLL methods under our instance-dependent setting.

1 INTRODUCTION

In ordinary supervised classification, each instance is specified to the class it belongs to (Xue &
Hauskrecht, 2019). However, accurately annotating large-scale datasets in a fully supervised manner
can be both time-consuming and costly. To overcome this problem, weakly supervised learning
protocols have gained increasing attention in recent years, including partial label learning (Tian et al.,
2023; Wang et al., 2022), semi-supervised learning (Kou et al., 2023; Guo et al., 2022), noisy label
learning (Natarajan et al., 2013; Li et al., 2022), and positive-unlabeled learning (Elkan & Noto,
2008; Wilton et al., 2022).

Particularly, in this paper, we consider another weakly supervised learning protocol called comple-
mentary label learning (CLL) (Ishida et al., 2017; 2019), where each instance is only associated with
a complementary label to specify a class that the instance does not belong to. Then, CLL aims to learn
a classifier to predict the ground-truth label for each instance by leveraging the complementary labels.
Existing CLL methods primarily focus on two assumptions for the generation of the complementary
label: the uniform assumption and the biased one. The uniform assumption assumes that each
complementary label is sampled uniformly from all labels except the ground-truth label (Ishida et al.,
2017; 2019; Chou et al., 2020), while the biased assumption considers that the complementary label
is selected from a biased probabilities only depending on the ground-truth label (Yu et al., 2018).
In other words, traditional CLL methods consider that the selection of complementary labels is
independent of the instance.
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Nevertheless, in real-world scenarios, the selection of complementary labels is mostly instance-
dependent: An annotator tends to choose a complementary label that is largely unrelated to the
instance, in order to ensure the correctness of the selection. Consequently, in this paper, we propose a
realistic instance-dependent assumption:

The non-ground-truth labels with lower relevance to the instance are more likely to be chosen as the
complementary labels than the ones with higher relevance.

Based on this assumption, we formally introduce the protocol of instance-dependent complementary
label learning (IDCLL), which assumes that the selection of each instance-dependent complementary
label (IDCL) explicitly/implicitly depends on the instance. In particular, to facilitate the generation
of IDCL, we propose a systematic mechanism named “Mink” that utilizes a selection probability
p̄(Ȳ |Y,X), which indicates the likelihood of selecting a non-ground-truth label as the complementary
one based on its relevance to the instance. Specifically, a pre-trained model is used to obtain the
selection probability and k non-ground-truth labels with the highest selection probabilities are chosen.
Subsequently, we randomly designate one label as the IDCL from the k selected labels. Moreover,
we present the definition of complementary label distribution and compare its difference between
uniform and instance-dependent settings.

A straightforward attempt to solve IDCLL is to use existing CLL methods (Ishida et al., 2017; Yu
et al., 2018; Chou et al., 2020) employed for instance-independent settings. However, our empirical
study suggests that directly applying existing CLL methods to IDCLL leads to poor performance. In
order to further investigate the underlying reason, we conduct in-depth investigation on existing CLL
losses and explain why these methods work well under uniform setting. We first introduce the share
complementary label hypothesis and logit margin loss (LML), and provide insight into the root cause
of the poor performance: The sparser complementary label distribution under instance-dependent
settings diminishes the capacity of existing CLL methods to effectively share complementary labels,
resulting in small logit margin losses and making it challenging to disambiguate for the potential
ground-truth labels. To tackle this challenge, we introduce complementary logit margin loss (CLML)
and demonstrate that minimizing CLML can enhance model’s capacity to share complementary
labels. We also tailor a novel complementary one-versus-rest loss (COVR) as a surrogate loss to
CLML. Our empirical and theoretical analysis has verified that the proposed COVR significantly
enhances the capacity to share complementary labels and decreases CLML, which ultimately leads to
an improved performance in identifying the ground-truth labels.

Our contributions are summarized in the following four levels:

• Problem setting level: We for the first time introduce the concept of IDCLL and provide a
systematic mechanism for generating IDCLs according to our assumption.

• Empirical study level: We demonstrate the poor performance of existing CLL methods under the
instance-dependent setting and conduct thorough empirical analysis to identify the underlying
cause, i.e., the weaken capacity to share complementary labels.

• Methodology level: To enhance the capacity to share complementary label, we accordingly
introduce CLML and propose COVR as the surrogate loss to CLML.

• Experimental level: We conduct extensive experiments on benchmark datasets to verify the
effectiveness and superiority of the proposed method under different instance-dependent settings.

2 RELATED WORK

Complementary label learning (CLL) To solve CLL under uniform assumption, an unbiased risk
estimator (URE) was derived using a specific complementary loss function (e.g., one-versus-all or
pairwise comparison) that satisfies a symmetric condition (Ishida et al., 2017). Additionally, a more
general URE for arbitrary loss functions and models was derived: To alleviate the overfitting issue of
this URE in practice, non-negative correction and gradient ascent methods were further proposed
(Ishida et al., 2019). However, URE suffers from huge gradient variance and results in unsatisfactory
performance in practice. In order to mitigate this issue, the surrogate complementary loss framework
(SCL) was proposed to reduce the gradient variance (Chou et al., 2020). Moreover, several promising
approaches have been proposed to solve CLL, such as using weighted complementary loss (Gao
& Zhang, 2021) and introducing partial-output regularization (Liu et al., 2023). Different from
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the uniform assumption, biased CLL was considered where the selection of complementary labels
depends on a biased probabilities (Yu et al., 2018). We should emphasize that IDCLL is different
from biased CLL and a comprehensive understanding of the distinctions can be found in Appendix G.

Instance-dependent weakly supervised learning Instance-dependent assumption has been intro-
duced into two weakly supervised learning protocols: Instance-dependent partial label learning
(IDPLL) and instance-dependent label noise learning (IDN). IDPLL assumes that the labels with high
relevance to the instance are more likely to be selected in the candidate set (Xu et al., 2021). Recover-
ing the latent label distribution (Xu et al., 2021), performing Maximum A Posterior (MAP) based
on an explicitly model generation process of candidate labels (Qiao et al., 2023), and purifying the
candidate set with dynamic thresholds (Xu et al., 2022) has been proposed to solve IDPLL. Similarly,
IDN assumes that poor quality or ambiguous instances in real-world datasets are more likely to be
mislabeled (Garg et al., 2023), including the instance-dependent dichotomous label noise (Menon
et al., 2018), bounded instance-dependent label noise (Cheng et al., 2020), and instance-dependent
noise with confidence scores (Berthon et al., 2021). Moreover, several work directly estimated the
transition matrix to solve IDN (Yang et al., 2022; Cheng et al., 2022; Yao et al., 2021; Xia et al.,
2020). Our work is the first to introduce the instance-dependent assumption to CLL.

3 PRELIMINARIES

Different from supervised classification, each instance is only provided with single complementary
label in CLL. Let D̄ = {(xi, ȳi)}ni=1 denotes the complementary dataset, sampled from an unknown
probability distribution p̄(x, ȳ), where ȳi ∈ Y\{yi} is the complementary label of the instance xi.
The goal of CLL is to learn a DNN classifier hθ(xi) : X → Y , which is expected to predict the
ground-truth label of an input xi:

hθ(xi) = argmax
k∈{1,2,...,K}

fk(xi,θ), fk(xi,θ) = egk(xi,θ)/

K∑
j=1

egj(xi,θ), (1)

where g(xi,θ) = [g1(xi,θ), g2(xi,θ), .., gK(xi,θ)]
T and gk(xi,θ) is the k-th logit of the model

with respect to the instance xi. Meanwhile, f(xi,θ) = [f1(xi,θ), f2(xi,θ), .., fk(xi,θ)]
T and

fk(xi,θ) is the predicted probability of xi belonging to class k, i.e., pθ(Y = k|X = xi).

A commonly used CLL method based on DNNs is the Surrogate Complementary Loss (SCL)
framework(Chou et al., 2020), which defines a novel Complementary 0-1 Loss:

ℓ̄01(ȳ, hθ(x)) = 1(hθ(x) = ȳ), (2)

where 1 is the indicator function. Based on the Complementary 0-1 Loss, the expected complementary
classification risk of classifier hθ on p̄(x, ȳ) can be defined as:

R̄(hθ; ℓ̄01) = Ep̄(x,ȳ)[1(hθ(x) = ȳ)]. (3)

Consequently, the expected complementary classification risk R̄(hθ; ℓ̄01) is an Unbiased Risk Esti-
mator (URE) of the expected risk of supervised classification R(hθ; ℓ01) (Chou et al., 2020):

R(hθ; ℓ01) = (K − 1)R̄(hθ; ℓ̄01). (4)

In other words, minimizing the empirical complementary 0-1 risk is equivalent to the supervised
learning. In order to mitigate the overfitting issue and improve traditional URE-based methods, Chou
et al. (2020) proposed to use negative learning loss (SCL_NL) as the Surrogate Complementary Loss:

ℓ̄SCL_NL(ȳ,f(x)) = − log(1− fȳ(x)) = − log(1− egȳ(x)/

K∑
j=1

egj(x)). (5)

4 INSTANCE-DEPENDENT COMPLEMENTARY LABEL LEARNING

4.1 GENERATION PROCESS FOR IDCLS

In this section, we introduce the generation process for IDCLs based on the instance-dependent
assumption. In general, we select the IDCL for each instance x according to the probability p̄(Ȳ =
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Table 1: Classification accuracy (mean±std) of each baseline approach on benchmark datasets under
uniform and “Min3” settings, respectively. The symbol ↓ indicates a decrease in classification
accuracy for these approaches under the “Min3” setting compared to the uniform setting.

Dataset MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 SVHN

Setting Uniform Min3 Uniform Min3 Uniform Min3 Uniform Min3 Uniform Min3

W_Loss 97.14 ± 0.28 46.19 ± 4.56 ↓ 77.01 ± 1.16 46.73 ± 3.94 ↓ 83.42 ± 0.66 42.61 ± 6.14 ↓ 72.11 ± 1.14 45.57 ± 0.63 ↓ 79.54 ± 0.21 38.46 ± 3.13 ↓
Forward 98.00 ± 0.07 51.82 ± 6.81 ↓ 78.05 ± 0.74 53.69 ± 4.51 ↓ 85.16 ± 0.32 39.54 ± 0.13 ↓ 76.56 ± 0.97 45.12 ± 2.03 ↓ 87.22 ± 2.43 31.43 ± 2.86 ↓
SCL_NL 98.06 ± 0.11 55.56 ± 6.91 ↓ 78.21 ± 0.35 51.33 ± 1.76 ↓ 85.18 ± 0.31 39.53 ± 0.08 ↓ 74.94 ± 4.06 38.40 ± 0.34 ↓ 82.32 ± 4.72 32.97 ± 2.18 ↓

SCL_EXP 97.73 ± 0.15 33.78 ± 4.03 ↓ 76.86 ± 0.36 42.78 ± 4.20 ↓ 84.70 ± 0.13 37.06 ± 1.60 ↓ 74.02 ± 0.26 30.78 ± 0.94 ↓ 79.58 ± 5.06 20.59 ± 0.06 ↓

ȳ|Y = y,X = x), which reflects the likelihood of ȳ being selected as the IDCL for x. Recent
work suggests that the prediction probability of a DNN classifier, i.e., p(Y |X), indicates the label’s
relevance to the corresponding instance (Wu et al., 2018). Specifically, lower prediction probability
means less association between the label and instance. Hence, we consider to utilize the prediction
probability of a pre-trained model to generate the non-noisy IDCL by introducing the following
assumption (Gao & Zhang, 2021):
Assumption 1. For an instance x with ground-truth y, the selection probability p̄(Ȳ =j|Y =y,X=

x)= exp(1−p(Y=j|X=x))∑
k ̸=y exp(1−p(Y=k|X=x)) , j ∈ Y\{y}, and p̄(Ȳ =y|Y =y,X=x) = 0.

Based on Assumption 1, the non-ground-truth labels has lower relevance to the instance are prone to
be chosen as IDCL due to the higher selection probabilities. To further study IDCLL, we present our
generation process of IDCLs named “Mink” through the selection probability for each instance.
Definition 1 (Mink). We utilize a pre-trained model to obtain prediction probability p(Y |X = x) for
each instance x, and calculate the selection probability p̄(Ȳ |Y = y,X = x) based on Assumption 1.
Subsequently, we randomly select one complementary label for each instance from the labels with the
k highest selection probabilities.

The rationale behind the above “Mink” stems from the belief that, although individuals may adhere to
our assumption when selecting IDCLs, they actually do not consider the labels with high correlation
to the ground-truth one. More importantly, this design allows us to generate various settings by
varying the value of k and recovery the uniform setting with k=K−1, thus simulating the diverse
scenarios encountered in practice. Further analysis on the rationality can be found in Appendix E.

4.2 EMPIRICAL ANALYSIS OF EXISTING CLL METHODS

In this section, we first evaluate the performance of existing CLL methods under “Min3” setting. We
select four baseline methods originally employed for solving uniform CLL: W_loss (Gao & Zhang,
2021), Forward (Yu et al., 2018), SCL_NL (Chou et al., 2020), and SCL_EXP (Chou et al., 2020).
Table 1 presents the classification accuracy of these baseline methods on different benchmark datasets
under the uniform and “Min3” settings, respectively. The results demonstrate a consistent decrease in
accuracy for all the methods when switching from the uniform to “Min3” setting, confirming that
most existing CLL methods are not well-suited for our instance-dependent setting.

We conducted experiments on the Kuzushiji-MNIST (KMNIST) dataset to further investigate the
cause of the accuracy drop. When considering the existing CLL methods, most of them mathemati-
cally try to minimize the predictions of complementary label pθ(Y = ȳ|X=x) in one way or another.
We calculate the average prediction of complementary label pθ(Y = ȳ|X=x) for SCL_NL over all
instances in every epoch and Figure 1a presents SCL_NL effectively minimizes pθ(Y = ȳ|X=x)
under “Min3” setting, which even lower than the value under the uniform setting. This phenomenon
reveals the ineffectiveness of existing complementary losses: Although these complementary losses
optimize their objectives, i.e., minimizing pθ(Y = ȳ|X=x), they still fail to make the ground-truth
label prominent from the non-complementary labels.

To further explain this phenomenon, we first present the definition of complementary label distribution
and introduce share complementary label hypothesis (Lin et al., 2023). Subsequently, we take an
insight in why existing CLL methods demonstrate effectiveness under uniform setting.
Definition 2 (Complementary label distribution). The complementary label distribution refers to the
distribution of complementary labels given the same ground-truth label, denoted as p(Ȳ |Y =y). In
addition, we use the entropy H(Ȳ |Y ) to characterize the dispersion of this distribution.
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(a) pθ(Y = ȳ|X = x) for SCL_NL (b) Implicit Sharing Efficiency (c) Logit Margin Loss for SCL_NL

Figure 1: (a) The prediction of complementary label pθ(Y = ȳ|X = x); (b) Implicit sharing
efficiency for various methods. Dotted line represents the uniform setting and the solid line represents
the “Min3” setting; (c) Logit margin loss for SCL_NL under both uniform and “Min3” settings.

Remark 1. Under the uniform setting, the complementary label distribution is assumed to be a
uniform distribution over K−1 non-ground-truth labels. However, under the “Mink” setting, the
complementary label distribution becomes relatively sparser, i.e., H(Ȳ |Y ) becomes smaller. As k
increases, the complementary label distribution approaches a uniform distribution, thus the “Min9”
setting is equivalent to the uniform setting. More details can be found in Appendix F.

Hypothesis 1 (Share complementary label). Instances that exhibit proximity in the feature space
tend to share their complementary labels with each other. Under the uniform assumption, the
complementary label distribution for each class is close to a uniform one, and each instance has
access to all non-ground-truth labels as complementary labels shared by the neighboring instances.

Next, we elucidate the significance of the ability to share complementary labels for CLL. We consider
the logit margin loss (LML) ℓLM in supervised classification as (Kanai et al., 2023):

ℓLM = max
j ̸=y

gj(x)− gy(x). (6)

When ℓLM < 0, the model correctly classifies the instance, whereas when ℓLM > 0, the model
misclassifies the instance. Under the uniform setting, due to the share complementary label mech-
anism, existing CLL methods can potentially decrease the logit of all non-ground-truth label, i.e.,
gj(x),∀j ̸= y, thereby making ℓLM small enough to correctly identify ground-truth label. However,
the sparsity of the complementary label distribution under the instance-dependent setting diminishes
the ability of existing CLL methods to share complementary labels, which makes the classifier hardly
distinguishes the ground-truth label from the non-complementary labels. In order to validate our
conjecture, we borrow the implicit sharing efficiency (ISE) from Lin et al. (2023):

ISE = 1− 1

n

n∑
i=1

K − 1

K − 2

∑
j /∈{ȳi,yi}

pθ(Y = j|X = xi). (7)

This metric quantifies the decrease in the model’s confidence regarding the unseen CLs. If implicit
sharing helps identify all complementary labels, then pθ(Y =j|X=xi) will become zero, resulting
in an ISE of one. In the absence of implicit sharing among instances, pθ(Y = j|X = xi) will be
average 1

K−1 and the ISE becomes zero. We calculate ISE during the training process for various
CLL methods under both the “Min3” setting and the uniform setting. As shown in Figure 1b,
different colors denote different CLL methods, with the dotted line representing ISE under the
uniform setting and the solid line representing the “Min3” setting, respectively. Figure 1b reveals
a substantial decrease in ISE for the existing CLL methods under the “Min3” setting compared to
the uniform one. Furthermore, we present histograms of ℓLM for SCL_NL under both uniform and
“Min3” settings in Figure 1c, which clearly illustrates that SCL_NL exhibits smaller ℓLM values
under the uniform setting compared to the “Min3” setting. This observation solidifies the notion that
greater ability of sharing complementary labels leads to smaller ℓLM, and consequently, improves
the identification of potential ground-truth labels. From the empirical results, it is evident that
existing CLL methods experience a diminished capacity to share complementary labels under the
instance-dependent settings, which results in smaller ℓLM and hinders their ability to effectively
identify the ground-truth label.
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5 METHODOLOGY

5.1 COMPLEMENTARY LOGIT MARGIN LOSS

Our empirical analysis highlights the connection between large ℓLM and label disambiguation.
However, in CLL problem, we are given only single complementary label for each instance and ℓLM
is underdetermined. In order to enhance ISE and identify the ground-truth label, we instead consider
a novel complementary logit margin loss (CLML) ℓ̄LM as:

ℓ̄LM = gȳ(x)−max
j ̸=ȳ

gj(x), (8)

and define complementary logit margin (CLM) as maxj ̸=ȳ gj(x)−gȳ(x). If ℓ̄LM > 0, the model
misclassifies instance, while ℓ̄LM<0 does not mean correct classification. However, ℓ̄LM of correct
classification should be negative and small, which suggests to penalize small CLM.

By decreasing CLML, we should minimizes gȳ(x), which aligns with the existing CLL methods.
However, CLML also takes into account maxj ̸=ȳ gj(x) and aims to maximize it. According to
Assumption 1, IDCL tends to be the least relevant label to the instance, while the ground-truth
label is typically the most relevant one and has the largest logit. This allows instances that exhibit
proximity in the feature space to obtain not only the complementary label from neighbors, but also
their ground-truth labels, which enhance the ISE and the ability to identify the ground-truth label.

5.2 COVR LOSS FOR IDCLL

For the purpose to increase CLML, it is essential to design a loss function that penalizes the small
complementary logit margins. The CLML is a straightforward choice as the loss function. However,
it exclusively considers the pair of the largest logit gj(x)(j ̸= ȳ) and the logit for the complemen-
tary label gȳ(x), leading to a significant loss of information. In order to take all the logits into
consideration, we utilize the Complementary One-Versus-Rest Loss (COVR) (Ishida et al., 2017):

ℓ̄COVR(y, g(x)) = ℓ(−gȳ(x)) +
1

K − 1

∑
j ̸=ȳ

ℓ(gj(x)). (9)

In particular, we set ℓ(z) = log(1 + e−z) and the COVR takes the form of:

ℓ̄COVR(y, g(x)) = log(1 + egȳ(x)) +
1

K − 1

∑
j ̸=ȳ

log(1 + e−gj(x)). (10)

We should point out that this novel form of COVR has not been proposed in previous work. As
illustrated in Figure 1b, the implicit sharing efficiency of COVR demonstrates a substantial enhance-
ment in its capacity to share complementary labels, allowing to better identify the ground-truth label.
However, it is worth noting that ISE of COVR diminishes under the uniform setting. This decline is
attributed to the fact that complementary labels obtained in the uniform setting are not necessarily
the least relevant labels. Consequently, using COVR to decrease CLML may lead to overfitting. We
also derived an estimation error bound for COVR to justify its convergence: To what extent, the
empirical complementary risk minimization leads to the expected complementary risk minimization.
The details of the estimation error bound can be found in Appendix C.

5.3 THEORETICAL ANALYSIS FOR COVR

To illustrate the effectiveness of COVR in decreasing CLML, we conduct a theoretical comparison
between COVR and SCL_NL. First, we observe that COVR is the upper bound of SCL_NL:

Theorem 1. If we consider COVR and SCL_NL, we can have

0 ≤ ℓ̄SCL_NL(ȳ, g(x)) ≤ ℓ̄COVR(ȳ, g(x)),∀(x, ȳ) ∈ {(xi, ȳ)}ni=1. (11)

When gȳ(x) → −∞ and gj(x) → +∞,∀j ̸= ȳ, we have ℓ̄COVR(ȳ, g(x)) → 0, and then
ℓ̄SCL_NL(ȳ, g(x))→0.
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For IDCLL, ℓ̄COVR(ȳ, g(x)) is consistently larger or at least equal to the baseline ℓ̄SCL_NL(ȳ, g(x)).
Furthermore, as |ℓ̄LM | increases towards infinity, both ℓ̄COVR(ȳ, g(x)) and ℓ̄SCL_NL(ȳ, g(x)) con-
verge towards zero asymptotically. Consequently, we anticipate that COVR penalize the large CLML
more strongly than SCL_NL.

In addition, we further explore the impact of COVR on CLML to behavior of CLM by the problem:

min
g

ℓ̄(ȳ, g), (12)

where ℓ̄ is set to ℓ̄COVR or ℓ̄SCL_NL, and g ∈ RK is the logit vector for a instance x. To dissect the
training dynamics of Eq. (12), we use the following assumption (Kanai et al., 2023):
Assumption 2. The logit vector g follows the following gradient flow to solve Eq.(12):

dg

dt
= −∇g ℓ̄(ȳ, g), (13)

where t is the time step of training. We assume that g is initialized to zeros g = 0 at t = 0 .

Eq. (13) serves as a continuous approximation of the gradient descent equation gτ+1 = gτ − η∇g ℓ̄
and aligns with it as the learning rate η approaches zero. It is a commonly used method to analyze
the training dynamics (Kunin et al., 2021; Elkabetz & Cohen, 2021).

Under Assumption 2, we obtain the following two lemmas for the logits in the training of Eq.(12):
Lemma 1. If we use ℓ̄COVR(ȳ, g) in Eq.(12), the j-th logit gj at time t is

gj(t) =

{
−t− 1 +W (et+1) j ̸= ȳ,

1
K−1 t+ 1−W (e

1
K−1 t+1) j = ȳ,

(14)

where W is Lambert W function, which is a function satisfying x = W (xex) (Corless et al., 1996).

Lemma 2. If we use ℓ̄SCL_NL(ȳ, g) in Eq. (12), the j-th logit gj at time t is

gj(t) =

{
1

K−1 t+
K−1
K − 1

KW [(K − 1)e
K

K−1 t+K−1] j ̸= ȳ,

−t− (K−1)2

K + K−1
K W [(K − 1)e

K
K−1 t+K−1] j = ȳ.

(15)

These two lemmas provide insights into the trajectories of the logit vectors during the minimization
of ℓ̄COVR(ȳ, g(x)) and ℓ̄SCL_NL(ȳ, g(x)), respectively. Both methods decrease the complementary
label logit gȳ and increase the logits for non-complementary labels, but they exhibit different rates of
update. From the above lemmas, we derive the trajectory of the complementary logit margins:
Theorem 2. Complementary logit margin loss for the logit vector gCOVR in the minimization of
ℓ̄COVR(ȳ, g(x)) and logit vector gSCL_NL in the minimization of ℓ̄SCL_NL(ȳ, g(x)) at time t are

ℓ̄LM(gCOVR(t)) = − K

K − 1
t− 2 +W (et+1) +W (e

1
K−1 t+1), (16)

ℓ̄LM(gSCL_NL(t)) = − K

K − 1
t−K + 1 +W [(K − 1)e

K
K−1 t+K−1]. (17)

For large t, they can be approximated by

ℓ̄LM(gCOVR(t)) ≈ − log[(
1

K − 1
t+ 1)(t+ 1)], (18)

ℓ̄LM(gSCL_NL(t)) ≈ − log[
K

(K − 1)2
t+ 1 + log(K − 1)

1
K−1 ]. (19)

Then, we have limt→∞
ℓ̄LM(gCOVR(t))

ℓ̄LM(gSCL_NL(t))
= 2 for any fixed K.

Theorem 2 elucidates the disparity in the trajectories of CLML between COVR and SCL_NL under
Assumption 2 and shows that SCL_NL does not decrease the CLML as small as COVR for sufficiently
large t. As a result, COVR is proved to be more effective and efficient at decreasing the large CLML.
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Table 2: Classification accuracy (mean±std) of various methods on benchmark datasets under “Min3”
setting. The symbol • indicates the statistically significant superiority (at a significance level of 0.05).

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 SVHN

PRODEN(PLL) 63.84 ± 1.12 • 46.37 ± 0.74 • 40.74 ± 3.77 • 40.72 ± 1.69 • 33.05 ± 1.06 •

W_Loss 46.19 ± 4.56 • 46.73 ± 3.94 • 42.61 ± 6.14 • 45.57 ± 0.63 • 38.46 ± 3.13 •

Forward 51.82 ± 6.81 • 53.69 ± 4.50 • 39.54 ± 0.13 • 45.12 ± 2.03 • 31.43 ± 2.86 •

SCL_NL 55.56 ± 6.91 • 51.33 ± 1.76 • 39.53 ± 0.08 • 38.40 ± 0.34 • 32.97 ± 2.18 •

SCL_EXP 33.78 ± 4.03 • 42.78 ± 4.20 • 37.06 ± 1.60 • 30.78 ± 0.94 • 20.59 ± 0.06 •

NN 60.55 ± 4.88 • 37.67 ± 2.24 • 39.15 ± 2.22 • 34.03 ± 1.51 • 33.67 ± 2.84 •

PC 83.94 ± 2.20 • 64.99 ± 1.44 • 45.10 ± 1.15 37.51 ± 1.21 • 72.53 ± 1.67

COVR (ours) 87.52 ± 0.02 67.31 ± 1.53 47.41 ± 0.60 63.21 ± 0.18 74.81 ± 1.19

Table 3: Classification accuracy (mean±std) of different CLL methods on CIFAR10 under different
instance-dependent settings. The symbol • indicates the statistically significant superiority (at a
significance level of 0.05).

Method
CIFAR10

CLCIFAR10
CIFAR10_Min1 CIFAR10_Min3 CIFAR10_Min5 CIFAR10_Min7

Forward 30.48 ± 3.47 • 45.12 ± 2.03 • 49.18 ± 0.27 • 65.54 ± 1.97 36.83 ± 1.17 •

SCL_NL 30.32 ± 3.34 • 38.40 ± 0.34 • 48.71 ± 0.45 • 66.01 ± 1.92 37.81 ± 2.21

SCL_EXP 25.97 ± 0.90 • 30.78 ± 0.94 • 42.74 ± 3.31 • 55.05 ± 1.32 • 36.96 ± 0.18 •

PC 63.88 ± 0.54 37.51 ± 1.21 • 49.76 ± 1.02 • 44.20 ± 1.62 • 35.88 ± 0.98 •

COVR (ours) 66.22 ± 1.34 63.21 ± 0.18 62.23 ± 0.59 64.34 ± 1.08 38.29 ± 0.21

6 EXPERIMENTS

6.1 SETUPS

Datasets and Baselines In our experiments, we adopt five widely used benchmark datasets including
MNIST , Fashion-MNIST (FMNIST) , Kuzushiji-MNIST (KMNIST) , CIFAR-10, and SVHN . For
MNIST, FMNIST and KMNIST, we train a convolutional neural network with two convolutional
layers and two fully-connected layers for 100 epochs with batch size of 256. Adam optimizer (Kingma
& Ba, 2014) is used with the learning rate=1×10−3, weight decay=1×10−4. For CIFAR-10 and
SVHN, we train ResNet-18 (He et al., 2016) for 200 epochs with batch size of 128. SGD optimizer is
used with the learning rate=1×10−1, weight decay=5×10−4. We choose six existing CLL methods
to date, including W_Loss (Gao & Zhang, 2021), Forward (Yu et al., 2018), SCL_NL (Chou et al.,
2020), SCL_EXP (Chou et al., 2020), NN (Ishida et al., 2019), PC (Ishida et al., 2017), and a partial
label learning method PRODEN (Lv et al., 2020). To generate IDCLs for each dataset, we use MLP
and ResNet-18 trained with ground-truth labels as the pre-trained models and follow the generation
processes of IDCLs defined in Section 4. More experimental details can be found in Appendix D.

6.2 EXPERIMENTAL RESULTS

Classification accuracy on benchmark datasets Table 2 reports the classification accuracy of each
CLL method on benchmark datasets under “Min3” setting. The best results are highlighted in bold
and the symbol • indicates that our method is statistically superior to the comparing methods on
each dataset (pairwise t-test at a significance level of 0.05). From Table 2, COVR demonstrates the
best performance and significantly outperforms other existing CLL methods under “Min3” setting.
Furthermore, we find that COVR exhibits a lower standard deviation compared to other baseline
methods, indicating its improved consistency and stability under the instance-dependent setting.
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(a) KMNIST SCL_NL (b) KMNIST COVR (c) SVHN SCL_NL (d) SVHN COVR

Figure 2: The t-SNE visualization of the image representation on KMNIST (left panel) and SVHN
(right panel) under “Min3” setting. Different colors represent the corresponding classes.

The effectiveness of COVR under different instance-dependent settings To validate the effec-
tiveness of COVR, we conducted experiments using the CIFAR10 with various instance-dependent
settings, including “Min1”, “Min5”, and “Min7”. A human-annotated CLL dataset CLCIFAR10
(Wang et al., 2023) (more details in Appendix H) is also considered. Table 3 presents the accuracy of
different CLL methods across these instance-dependent settings on the CIFAR10 dataset. We observe
that COVR consistently performs well under various instance-dependent settings, and as k increases
(becoming more uniform), COVR does not exhibit significant performance degradation. As Figure
1b illustrates, COVR exhibits a more stable performance across both uniform and instance-dependent
settings. Moreover, our proposed approach demonstrates notable improvement compared to other
methods when evaluated on the human-annotated CLCIFAR10 dataset. These results emphasize the
effectiveness of our approach on the CLCIFAR10 dataset, further validating its superiority in practice.

COVR learns more distinguishable representations In Figure 2, we present a visualization
of the image representations generated by the feature encoder using t-SNE (Torralba et al.,
2008). Different colors represent distinct ground-truth labels. This analysis was conducted
using the KMNIST and SVHN datasets under the “Min3” setting, respectively. We com-
pare the t-SNE embeddings of two approaches: (a) The best-performing baseline method, i.e.,
SCL_NL, and (b) Our method, i.e., COVR. It is shown that on both datasets, representa-
tion learned by SCL_NL is indistinguishable, especially for the more complex dataset SVHN.

Figure 3: ℓLM for SCL_NL
and COVR under “Min3”.

Conversely, COVR consistently generates well-separated clusters
and learns distinct representations on both datasets. This observation
confirms that COVR allows the model to learn the feature that is
more relevant to the instance (Lv et al., 2020; Wang et al., 2023).

COVR effectively increases the logit margin In Figure 3, we
display histograms of ℓLM for both SCL_NL and COVR under the
“Min3” setting on SVHN. Instances with ℓLM > 0 are misclassified.
Figure 3 reveals that by reducing ℓ̄LM, COVR enhances the capacity
to share complementary labels and subsequently decreases ℓLM. This
improvement allows COVR to better identify potential ground-truth
labels compared to SCL_NL, which validates our explanation.

7 CONCLUSION

In this paper, we for the first time introduce the instance-dependent assumption to complementary
label learning and present the generation process for IDCL according to our assumption. Subsequently,
we discover that directly applying existing CLL methods to IDCLL results in a poor performance and
further empirically identify the underlying reason as the diminishing capacity to share complementary
labels. To address this problem, we introduce CLML to enhance the share of complementary labels.
We additionally propose COVR as the surrogate loss, and thoroughly investigate its advantages in
theoretical and empirical under our instance-dependent setting.

Nevertheless, there are three limitations in our study. First, although we explore the share comple-
mentary label mechanism, COVR cannot explicitly utilize this mechanism, especially under uniform
setting. Second, the generation process of IDCL presented in our work may not be the most realistic
one. Third, the estimation of instance-dependent transition matrix may be a better solution for IDCLL.
To overcome these limitations will shed light on the promising improvement of our current work.
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APPENDIX

We first show the detailed complementary loss functions in Appendix A. Then, the proofs of Lemma
1, Lemma 2, Theorem 1 and Theorem 2 are given in Appendix B. Later, we derive the estimation
error bound for COVR to verify its convergence and consistency in Appendix C. In Appendix D, there
are more details of our experiments. Moreover, in order to confirm the consistency of our generation
process of IDCLs under different pre-trained models, more experiments are shown in Appendix E. To
further validate the effectiveness of our proposed method, in Appendix F, we conduct experiments
under different “Mink” settings, respectively. In Appendix G, we compare the difference between
“biased” and instance-dependent settings. Finally, we conduct experiments on a human-annotated
CLL dataset CLCIFAR10 in Appendix H.

A THE DETAILED COMPLEMENTARY LOSS FUNCTIONS

In this section, we introduce the popular complementary loss functions in CLL, which are used as the
baselines in our paper. Here, we mainly consider the single complementary label learning.

PC loss PC (Ishida et al., 2017) is an unbiased risk estimator (URE) for CLL under uniform setting,
which takes the form of:

ℓ̄PC(ȳ, g(x)) = (K − 1)
∑
j ̸=ȳ

σ(gj(x)− gȳ(x))−M1 +M2, (20)

where the constants M1 = K(K − 1)/2n and M2 = (K − 1)/n are used to derive the URE for
CLL.

SCL_NL and SCL_EXP To mitigate the huge empirical gradient variance caused by URE, the
surrogate complementary loss (SCL) framework was proposed (Chou et al., 2020), where SCL_NL
takes the form of:

ℓ̄SCL_NL(ȳ,f(x)) = − log(1− pθ(Y = ȳ|X = x)) = log(1− fȳ(x)), (21)

and SCL_EXP takes the form of:

ℓ̄SCL_EXP(ȳ,f(x)) = exp(pθ(Y = ȳ|X = x)) = exp(fȳ(x)). (22)

Forward loss Forward is the complementary loss derived by forward correction technique (Yu et al.,
2018). In detail, Q is the transition matrix with each element Qij = p(Ȳ = j|Y = i). By using the
transition matrix, Forward loss takes the form of:

ℓ̄Forward(ȳ,f(x)) = − log(
∑
j ̸=ȳ

Qjȳ · pθ(Y = j|X = x)) = − log(
∑
j ̸=ȳ

Qjȳ · fj(x)). (23)

In particular, under the uniform setting, the transition matrix Q takes 0 on diagonals and 1
K−1 on

non-diagonals.

W_Loss W_Loss is proposed by introducing weighted loss to the SCL_NL to maximize the predictive
gap between potential ground-truth label and complementary label, which takes the form of:

ℓ̄W_Loss(ȳ,f(x)) = −(1 + λwȳ) log(1− fȳ(x)), (24)

where wj , j = 1, 2, · · · ,K are defined as:

wj =
1− fj(x)∑K

k=1(1− fk(x))
, j = 1, 2, · · · ,K. (25)
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B PROOFS

B.1 PROOF OF THEOREM 1

Proof. By the definition, we have

ℓ̄COVR = log(1 + egȳ ) +
1

K − 1

∑
j ̸=ȳ

log(1 + e−gj ) (26)

=
1

K − 1

∑
j ̸=ȳ

[log(1 + egȳ ) + log(1 + e−gj )] (27)

=
1

K − 1

∑
j ̸=ȳ

log[(1 + egȳ )(1 + e−gj )] (28)

ℓ̄SCL_NL = − log(1− egȳ∑K
k=1 e

gk
) = − log(

∑
m ̸=ȳ

egm∑K
k=1 e

gk
). (29)

We want to prove ℓ̄SCL_NL(ȳ, g(x)) ≤ ℓ̄COVR(ȳ, g(x)), i.e., − log(
∑

m̸=ȳ
egm∑K
k=1 egk

)K−1 ≤∑
j ̸=ȳ log[(1 + egȳ )(1 + e−gj )]. We consider one term of both the right hand and left hand of

the equation, and we should prove

− log(
∑
m ̸=ȳ

egm∑K
k=1 e

gk
) ≤ log[(1 + egȳ )(1 + e−gj )]. (30)

Since the log(x) is a monotonically increasing function, and we should prove∑K
k=1 e

gk∑
m ̸=ȳ e

gm
≤ (1 + egȳ )(1 + e−gj ) (31)

1 +
egȳ∑

m ̸=ȳ e
gm

≤ 1 + egȳ + e−gj + egȳ−gj (32)

egȳ∑
m ̸=ȳ e

gm
≤ egȳ + e−gj + egȳ−gj . (33)

We have
egȳ + e−gj + egȳ−gj

egȳ∑
m̸=ȳ egm

(34)

=
∑
m̸=ȳ

egm(1 + e−gj−gȳ + e−gj ) (35)

=
∑
m̸=ȳ

egm +
∑
m̸=ȳ

egm−gj−gȳ +
∑
m ̸=ȳ

egm−gj (36)

≥
∑
m ̸=ȳ

egm−gj (37)

=
∑

m ̸=ȳ,j

egm−gj + 1 (38)

≥1. (39)

Then we complete the proof of ℓ̄SCL_NL(ȳ, g(x)) ≤ ℓ̄COVR(ȳ, g(x)). When gȳ(x) → −∞ and
gk(x) → +∞ for k ̸= ȳ, we have

lim
gȳ→+∞,gj→−∞

ℓ̄COVR(ȳ, g(x)) (40)

= lim
gȳ→+∞,gj→−∞

log(1 + egȳ ) +
1

K − 1

∑
j ̸=ȳ

log(1 + e−gj ) (41)

=0. (42)
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And gj(x)− gȳ(x) → +∞,∀j ̸= ȳ, we have

lim
gȳ→+∞,gj→−∞

ℓ̄SCL_NL(ȳ, g(x)) (43)

= lim
gȳ→+∞,gj→−∞

− log(1− egȳ∑K
j=1 e

gj
) (44)

= lim
gȳ→+∞,gj→−∞

− log(1− 1

1 +
∑

j ̸=ȳ e
gj−gȳ

) (45)

=0. (46)

Then we complete the proof of Theorem 1.

B.2 PROOF OF LEMMA 1

Proof. From the Assumption 2 , we consider the following ordinary differential equation (ODE):

dgj
dt

= −∂ℓ̄COVR(ȳ, g)

∂gj
. (47)

The initial condition is g(0) = 0. For the complementary label ȳ, the gradient of COVR is given by

∂ℓ̄COVR(ȳ, g)

∂gȳ
=

egȳ

1 + egȳ
. (48)

Thus, the ODE becomes

dgȳ
dt

= − egȳ

1 + egȳ
(49)

−1 + egȳ

egȳ
dgȳ = dt (50)

−gȳ + e−gȳ = t+ c (51)

e−gȳ+e−gȳ
= et+c, (52)

where c is a constant, which is determined by the initial condition. From the Assumption 2, we have
g(0) = 0, and thus, c = 1. We apply the Lambert W function (Corless et al., 1996) for both sides
and use W (xex) = x and logW (x) = log x−W (x) for x > 0 as

W (e−gȳ+e−gȳ
) = W (et+1) (53)

e−gȳ = W (et+1) (54)

−gȳ = logW (et+1) = t+ 1−W (et+1) (55)

gȳ = −t− 1 +W (et+1). (56)

Next, we consider the logit of non-complementary label gj for j ̸= ȳ. Since the gradient of gj is

∂ℓ̄COVR(ȳ, g)

∂gj
= − 1

(K − 1)(1 + egj )
, (57)

we have
dgj
dt

=
1

(K − 1)(1 + egj )
(58)

(1 + egj )dgj =
1

K − 1
dt. (59)

We can use the same way to solve this ODE, and get

gj =
1

K − 1
t+ 1−W (e

1
K−1 t+1), (60)

for j ̸= ȳ. Then we complete the proof.
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B.3 PROOF OF LEMMA 2

Proof. By definition, we have ℓ̄SCL_NL(ȳ, g) = log(
∑K

j=1 e
gj )− log(

∑
k ̸=ȳ e

gk). Same as the proof
of Lemma 1, we first solve the ODE for the logit of the complementary label gȳ. The gradient of
ℓ̄SCL_NL is

∂ℓ̄SCL_NL(ȳ, g)

∂gȳ
= − egȳ∑K

k=1 e
gk

(61)

∂ℓ̄SCL_NL(ȳ, g)

∂gj
=

egj∑K
k=1 e

gk
− egj∑K

k=1 e
gk
. (62)

Since g = 0 at t = 0, we have gi = gj for ∀i, j ̸= ȳ. We can also find that
∑

k
∂ℓ̄SCL_NL(ȳ,g)

∂gk
= 0 for

∀t. Thus, the logits satisfy the following equality:

gȳ = −(K − 1)gj , (63)

for j ̸= ȳ. Then we have

dgȳ
dt

= − egȳ∑K
k=1 e

gk
(64)

−
∑K

k=1 e
gk

egȳ
dgȳ = dt (65)

−(1 +
∑
j ̸=ȳ

egj−gȳ )dgȳ = dt (66)

−1− (K − 1)e−
K

K−1 gȳdgȳ = dt (67)

(
1

K − 1
+ e−

K
K−1 gȳ )dgȳ = − 1

K − 1
dt (68)

1

K − 1
gȳ −

K − 1

K
e−

K
K−1 gȳ = − 1

K − 1
t+ c (69)

1

K − 1
gȳ −

K − 1

K
e−

K
K−1 gȳ = − 1

K − 1
t+ c (70)

− K

K − 1
gȳ + (K − 1)e−

K
K−1 gȳ =

K

K − 1
t+ c (71)

(K − 1)e−
K

K−1 gȳe(K−1)e
− K

K−1
gȳ

= (K − 1)e
K

K−1 t+c (72)

(K − 1)e−
K

K−1 gȳ = W [(K − 1)e
K

K−1 t+c] (73)

− K

K − 1
gȳ = logW [(K − 1)e

K
K−1 t+c]− log(K − 1) (74)

− K

K − 1
gȳ =

K

K − 1
t+ c−W [(K − 1)e

K
K−1 t+c] (75)

gȳ = −t− K − 1

K
c+

K − 1

K
W [(K − 1)e

K
K−1 t+c], (76)

and we have g(0) = 0, and thus, c = K − 1, and then

gȳ = −t− (K − 1)2

K
+

K − 1

K
W [(K − 1)e

K
K−1 t+K−1], (77)

Then we use Eq.(63) and have

gj =
1

K − 1
t+

K − 1

K
− 1

K
W [(K − 1)e

K
K−1 t+K−1], (78)

for j ̸= ȳ. Then we complete the proof.
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B.4 PROOF OF THEOREM 2

Proof. From Lemma 1 and Lemma 2, we can calculate the complementary logit margin loss for
ℓ̄COVR and ℓ̄SCL_NL, respectively. We have

ℓ̄LM(gCOVR(t)) = − K

K − 1
t− 2 +W (et+1) +W (e

1
K−1 t+1), (79)

ℓ̄LM(gSCL_NL(t)) = − K

K − 1
t−K + 1 +W [(K − 1)e

K
K−1 t+K−1]. (80)

Since W (x) = log(x)− log(log(x)) +O(1) for large x (Hoorfar & Hassani, 2007), we have

ℓ̄LM(gCOVR(t)) ≈ − log(t+ 1)− log(
1

K − 1
t+ 1) +O(1) (81)

= − log[(t+ 1)(
1

K − 1
t+ 1)] +O(1), (82)

ℓ̄LM(gSCL_NL(t)) ≈ − log[log(K − 1) +
K

K − 1
t+K − 1] + log(K − 1) +O(1). (83)

Then, we can have

lim
t→∞

ℓ̄LM(gCOVR(t))

ℓ̄LM(gSCL_NL(t))
= lim

t→∞

− log[(t+ 1)( 1
K−1 t+ 1)] +O(1)

− log[ log(K−1)
K−1 + K

(K−1)2 t+ 1] +O(1)
(84)

= lim
t→∞

2 log t+ log( 1
K−1 + K

(K−1)t +
1
t2 ) +O(1)

log t+ log( log(K−1)
K−1

1
t +

K
(K−1)2 + 1

t ) +O(1)
(85)

= lim
t→∞

2 + 1
log t log(

1
K−1 + K

(K−1)t +
1
t2 ) +

O(1)
log t

1 + 1
log t log(

log(K−1)
K−1

1
t +

K
(K−1)2 + 1

t ) +
O(1)
log t

(86)

= 2. (87)

Then we complete the proof.

C ESTIMATION ERROR BOUND

In this section, we derive an upper bound for the estimation error of ℓ̄COVR. To this end, let G =
{g(x)} be a function class for empirical risk minimization. For the simplicity, we denote ℓ̄ = ℓ̄COVR

in this section. We define the complementary expected risk as R̄(h; ℓ̄), and the complementary
empirical risk as R̄n(h; ℓ̄). Let g∗ be the expected risk minimizer and ĝ∗ be the empirical risk
minimizer, i.e.,

g∗ = argmin
g∈G

R̄(h; ℓ̄) and ĝ∗ = argmin
g∈G

R̄n(h; ℓ̄), (88)

and
h∗(x) = argmax

y∈Y
g∗y(x) and ĥ∗(x) = argmax

y∈Y
ĝ∗y(x). (89)

Let Lℓ be any Lipschitz constant of ℓ and M = supx∈X̄ ,g∈G ℓ(g(x)).

Lemma 3. Let R̄n(ℓ̄ ◦ G) be the Rademacher complexity of G for X̄ with data size n drawn from D̄.
Then,

R̄n(ℓ̄ ◦ G) ≤ KLℓR̄n(G). (90)

The proof of Lemma 3 can be found in Appendix C.1.Given the upper bound for R̄n(ℓ̄ ◦ G), we
can obtain Lemma 4 based on McDiarmid’s inequality McDiarmid et al. (1989) and symmetrization
Mohri et al. (2018), which defines the uniform deviation bound.
Lemma 4. For any δ > 0, with the probability at least 1− δ, we have

sup
g∈G

|R̄(h; ℓ̄)− R̄n(h; ℓ̄)| ≤ 2R̄n(ℓ̄ ◦ G) +M

√
2 log(2/δ)

n
. (91)
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The proof is given in Appendix C.2.

Finally, based on Lemma 4, we can establish the estimation error bound for COVR as follows:

Theorem 3. For any δ > 0, with the probability at least 1− δ, we have

R̄(ĥ∗; ℓ̄)− R̄(h∗; ℓ̄) ≤ 4KLℓR̄n(G) + 2M

√
2 log(2/δ)

n
. (92)

The proof can be found in Appendix C.3. For all parametric models with a bounded norm, R̄(ĥ∗; ℓ̄) →
R̄(h∗; ℓ̄) as n → ∞. Theorem 3 shows that the proposed risk estimator exists an estimation error
bound and the convergence rate is O(1/

√
n).

C.1 PROOF OF LEMMA 3

Proof. By the definition of the Rademacher complexity, we have

R̄n(ℓ̄ ◦ G) = EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σi{ℓ(−gȳi(xi)) +
1

K − 1

∑
j ̸=ȳi

ℓ(gj(xi))}
]

(93)

= EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σi{
1

K − 1

K∑
j=1

ℓ(gj(xi)) +
K − 2

K − 1
ℓ(−gȳi

(xi))}
]

(94)

≤ 1

K−1
EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σi

K∑
j=1

ℓ(gj(xi))

]
+
K−2

K−1
EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σiℓ(−gȳi
(xi))

]
.

(95)

The first term of Eq. (95) is

1

K − 1
EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σi

K∑
j=1

ℓ(gj(xi))

]
(96)

≤ 1

K − 1

K∑
j=1

EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σiℓ(gj(xi))

]
(97)

=
K

K − 1
R̄n(ℓ ◦ G). (98)

Let 1 be the indicator function and αi = 21(j = ȳi)− 1. Then, the second term of Eq. (95) is

K − 2

K − 1
EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σiℓ(−gȳi
(xi))

]
(99)

=
K − 2

K − 1
EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σi

K∑
j=1

ℓ(−gj(xi))1(j = ȳi)

]
(100)

=
K − 2

K − 1
EX̄Eσ

[
sup
g∈G

1

2n

n∑
i=1

σi(αi + 1)

K∑
j=1

ℓ(−gj(xi))

]
(101)

=
K − 2

K − 1
EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σi

K∑
j=1

ℓ(−gj(xi))

]
(102)

≤K − 2

K − 1

K∑
j=1

EX̄Eσ

[
sup
g∈G

1

n

n∑
i=1

σiℓ(−gj(xi))

]
(103)

=
K(K − 2)

K − 1
R̄n(ℓ ◦ G). (104)
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Then we have

R̄n(ℓ̄ ◦ G) =
K

K − 1
R̄n(ℓ ◦ G) +

K(K − 2)

K − 1
R̄n(ℓ ◦ G) (105)

= KR̄n(ℓ ◦ G) (106)

= KLℓR̄n(G), (107)
which completes the proof.

C.2 PROOF OF LEMMA 4

Proof. We only consider the single direction supg∈G(R̄(h; ℓ̄)− R̄n(h; ℓ̄)) with probability at least
1− δ/2, and the other direction is similar. Let M be the upper bound of ℓ̄ and a single (xi, ȳi) be
replaced with (x′

i, ȳ
′
i), then the change of supg∈G(R̄(h; ℓ̄) − R̄n(h; ℓ̄)) is no greater than 2M/n.

Applying McDiarmid’s inequality McDiarmid et al. (1989) to the single-direction uniform deviation
supg∈G(R̄(h; ℓ̄)− R̄n(h; ℓ̄)), we have

sup
g∈G

(R̄(h; ℓ̄)− R̄n(h; ℓ̄)) ≤ E
[
sup
g∈G

(R̄(h; ℓ̄)− R̄n(h; ℓ̄))

]
+M

√
2 log(2/δ)

n
. (108)

By symmetrization Mohri et al. (2018), we have

E
[
sup
g∈G

(R̄(h; ℓ̄)− R̄n(h; ℓ̄))

]
≤ 2R̄n(ℓ̄ ◦ G) = 2KLℓRn(G), (109)

which completes the proof.

C.3 PROOF OF THEOREM 3

Proof. Based on Lemma 4, the estimation error bound can be proven through

R̄(ĥ∗; ℓ̄)−R̄(h∗; ℓ̄)=(R̄n(ĥ
∗; ℓ̄)− R̄n(h

∗; ℓ̄))+(R̄(ĥ∗; ℓ̄)−R̄n(ĥ
∗; ℓ̄))+(R̄n(h

∗; ℓ̄)−R̄(h∗ℓ̄))

(110)

≤ 0 + 2 sup
g∈G

|R̄(h; ℓ̄)− R̄n(h; ℓ̄)|, (111)

then we complete the proof.

D MORE DETAILS OF THE EXPERIMENTS

D.1 EXPERIMENTAL ENVIRONMENT

The experiments are conducted on an NVIDIA GeForce RTX 3090 GPU with CUDA version 11.4.
Then, we use Python 3.9.15 as the programming language and PyTorch 1.13.0 as the deep learning
framework.

D.2 THE DATASETS

We adopt four widely-used benchmark datasets. MNIST is a benchmark dataset for hand-written digit
recognition 1. Fashion-MNIST (FMNIST) is a clothing image dataset 2. Besides, Kuzushiji-MNIST
(KMNIST) is a Japanese language dataset 3. These datasets are consisting of 10 classes with 60,000
training samples and 10,000 testing samples. Each sample is a 28 × 28 gray-scale image. Their sizes
are similar to MNIST. In addition, CIFAR-10 is an image dataset containing 10 different classes of
objects, including 50,000 training samples and 10,000 testing samples. Each sample is a 32 × 32 × 3
RGB color image 4. SVHN is the street view house numbers dataset, including 73257 samples for
training, 26032 samples for testing and each sample is a 32 × 32 × 3 RGB color image 5.

1http://yann.lecun.com/exdb/mnist/
2https://www.worldlink.com.cn/en/osdir/fashion-mnist.html
3http://codh.rois.ac.jp/char-shape/book/
4http://www.cs.toronto.edu/ kriz/cifar.html
5http://ufldl.stanford.edu/housenumbers/
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Table 4: Classification accuracy on CIFAR-10 under different pre-trained models.

Pre-trained model Accuracy(%)

ResNet18 95.44

ResNet34 95.01

VGG16 93.97

GoogleNet 95.60

Table 5: The KL divergences between complementary label distributions generated by three pre-
trained models and ResNet18.

KL 0 1 2 3 4 5 6 7 8 9

ResNet34 0.0007 0.0018 0.0002 0.0006 0.0007 0.0006 0.0006 0.0004 0.0005 0.0008

VGG16 0.0005 0.0008 0.0002 0.0014 0.0008 0.0006 0.0006 0.0015 0.0011 0.0008

GoogleNet 0.0007 0.0011 0.0009 0.0005 0.0006 0.0006 0.0003 0.0015 0.0009 0.0008

D.3 THE GENERATION OF IDCLL DATASETS

To generate IDCLL datasets, we use MLP as pre-trained model for MNIST, KMNIST, and FMNIST.
For CIFAR-10 and SVHN, RseNet-18 is used. Then, we follow the definitions “Mink” in the main
text, and conduct different CLs selections. Moreover, we conducted multiple experiments by setting
different random seeds and compared the performance of each method on the same generated IDCLL
datasets.

E IDCLS’ CONSISTENCY ACROSS DIFFERENT PRE-TRAINED MODELS

Specifically, our generation process of IDCLs depends on the prediction probabilities of the pre-
trained model, while different pre-trained models tend to provide different prediction probabilities.
Therefore, in order to confirm the consistency of our generation process of IDCLs under different
pre-trained models, we investigate the IDCLs produced by four different pre-trained models on
CIFAR-10, including ResNet18 (He et al., 2016), ResNet34 (He et al., 2016), VGG16 (Simonyan &
Zisserman, 2014), and GoogleNet (Szegedy et al., 2015).

Table 4 shows the classification accuracy of the pre-trained models we used to generate IDCLs for
CIFAR-10. All four pre-trained models achieve high classification accuracy. Figure 4 displays the
complementary label distribution with ground-truth labels of “0”,“1”,“2”, and “3” under “Min3”
setting. In detail, each subfigure represents the result under a pre-trained model, i.e., ResNet18
(upper left) , ResNet34 (upper right) , VGG16 (lower left) , and GoogleNet (bottom right). We
observe that IDCLs generated by different pre-trained models exhibit a similar complementary label
distribution under “Min3” setting. This observation suggests the consistency in the IDCLs across
different pre-trained models, despite the inherent randomness in “Min3”. To further quantify this
consistency, we calculate the KL divergence of the complementary label distribution generated by
ResNet34, VGG16, and GoogleNet to the distribution generated by ResNet18 in Table 5. Remarkably,
we find that all the KL divergences are extremely small, indicating that the complementary label
distributions generated by the four pre-trained models closely resemble to each other.

F EXPERIMENTS UNDER “MINk” SETTINGS

To validate the performance of COVR loss, we conduct experiments under different “Mink” settings.
Table 6 presents the classification accuracy of each approach on benchmark datasets under “Mink”
settings. Several key observations can be made from the table. First, as k decreases, the accuracy of
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(a) ground truth: “0” (b) ground truth: “1”

(c) ground truth: “2” (d) ground truth: “3”

Figure 4: Complementary label distributions when the true labels are “0”, “1”, “2”, and “3” under
different pre-trained models. In each subfigure, the four distributions are similar to each other.

all methods gradually decreases. However, the PC loss and our COVR loss still maintain a relatively
higher accuracy. Second, COVR loss continues to achieve high accuracy even under the uniform
setting, surpassing the performance of PC loss, which suggests that our approach enjoys a better
balance between the uniform and instance-dependent situations. Third, Figure 5a, 5b, and 5c illustrate
the classification accuracy under different “Mink” settings for three benchmark dataset. It is evident
that COVR loss outperforms other methods overall, which further reinforces the superior performance
of COVR loss compared to other approaches.

(a) MNIST (b) KMNIST (c) FMNIST

Figure 5: (a) (b) (c) Radar charts of the classification accuracy of different methods on three
benchmark datasets under various “Mink” settings.
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Table 6: Classification accuracy (mean±std) of each approach on benchmark datasets under “Mink”
settings, respectively.

Dataset Method Min1 Min3 Min5 Min7 Min9

MNIST

Forward 23.96 ± 0.27 51.82 ± 6.81 81.07 ± 0.97 96.19 ± 0.34 98.00 ± 0.07

SCL_NL 23.55 ± 1.18 55.56 ± 6.91 81.45 ± 0.88 96.06 ± 0.37 98.06 ± 0.11

SCL_EXP 22.07 ± 2.63 33.78 ± 4.03 66.59 ± 3.76 95.56 ± 0.13 97.73 ± 0.15

PC 79.51 ± 1.96 83.94 ± 2.20 83.02 ± 1.73 89.60 ± 0.78 92.72 ± 0.05

COVR (ours) 67.51 ± 2.53 87.52 ± 0.02 92.47 ± 0.11 94.29 ± 0.47 97.49 ± 0.21

Kuzushiji-MNIST

Forward 33.83 ± 2.30 53.69 ± 4.51 71.29 ± 0.96 73.03 ± 2.36 78.05 ± 0.74

SCL_NL 32.81 ± 3.24 51.33 ± 1.76 72.06 ± 0.31 74.70 ± 3.30 78.21 ± 0.35

SCL_EXP 24.06 ± 0.52 42.78 ± 4.20 59.76 ± 4.07 66.70 ± 3.04 76.86 ± 0.36

PC 52.37 ± 0.94 64.99 ± 1.44 63.97 ± 0.22 65.10 ± 1.01 67.07 ± 0.97

COVR (ours) 54.40 ± 0.32 67.31 ± 1.53 70.22 ± 1.12 74.91 ± 1.01 76.79 ± 0.79

Fashion-MNIST

Forward 28.17 ± 0.80 39.54 ± 0.16 50.80 ± 1.17 71.22 ± 3.66 85.16 ± 0.32

SCL_NL 27.07 ± 0.33 39.53 ± 0.10 55.53 ± 0.30 68.70 ± 0.46 85.18 ± 0.31

SCL_EXP 27.17 ± 0.32 37.07 ± 1.96 38.00 ± 1.85 56.73 ± 3.82 84.70 ± 0.13

PC 40.61 ± 0.46 39.96 ± 0.29 44.72 ± 0.64 62.63 ± 0.16 75.38 ± 0.60

COVR (ours) 39.94 ± 2.09 47.41 ± 0.60 61.29 ± 1.61 75.86 ± 1.20 84.34 ± 0.18

G THE DIFFERENCE BETWEEN BIASED CL AND IDCL

In this section, we discuss the difference between biased CL and our IDCL. To this end, firstly,
we applied the “Min3” method to generate complementary labels for each instance, thus forming
the IDCL dataset. Subsequently, we calculated the true transition matrix based on the generated
IDCL dataset, as illustrated in Figure 6, which presented the transition matrix for three different
benchmark datasets. Furthermore, we generated the biased CL dataset using this transition matrix.
Third, we compared various CLL methods under both “Biased” and our “Min3” settings. From Table
7, compared to the “Min3” setting, the CLL methods perform significantly better under the biased
setting. This observation suggests that our instance-dependent setting poses a much more challenging
CLL task than the biased setting, despite both settings having the same class-level transition matrix.

Moreover, we calculate the ISE during the training process for various CLL methods under both the
“Min3” setting and the biased setting. Figure 7 reveals a substantial decrease in ISE for the existing
CLL methods under the “Min3” setting, when compared to that of the biased setting. This result
further illustrates that our IDCLL is a more challenging CLL task than the biased setting.

(a) MNIST (b) KMNIST (c) FMNIST

Figure 6: The transition matrix generated by calculating the probabilities of each class label under
“Min3” on three datasets, which was utilized to create the biased datasets.

We additionally illustrated this with an experiment by separately considering the confident and
unconfident samples. To be specific, we selected all instances with ground-truth label “0”, and

22



Under review as a conference paper at ICLR 2024

Table 7: Classification accuracy (mean±std) of each baseline approach on benchmark datasets under
“Biased” and “Min3” settings, respectively. The symbol ↑ indicates an increase in classification
accuracy for these approaches under the Biased setting compared to the “Min3” setting.

MNIST Kuzushiji-MNIST Fashion-MNIST

Min3 Biased Min3 Biased Min3 Biased
Forward 51.82 ± 6.81 70.70 ± 4.55 ↑ 53.69 ± 4.51 76.57 ± 0.14 ↑ 39.54 ± 0.13 71.83 ± 0.96 ↑
SCL_NL 55.56 ± 6.91 71.10 ± 4.71 ↑ 51.33 ± 1.76 76.89 ± 0.23 ↑ 39.53 ± 0.08 72.25 ± 1.59 ↑

SCL_EXP 33.78 ± 4.03 40.27 ± 4.25 ↑ 42.78 ± 4.20 51.91 ± 4.36 ↑ 37.06 ± 1.60 52.22 ± 4.95 ↑
PC 83.94 ± 2.20 92.44 ± 2.71 ↑ 64.99 ± 1.44 95.09 ± 0.44 ↑ 45.10 ± 1.15 71.78 ± 3.44 ↑

COVR 87.52 ± 0.02 95.37 ± 0.46 ↑ 67.31 ± 1.53 72.83 ± 0.47 ↑ 47.41 ± 0.60 48.71 ± 2.13 ↑

(a) MNIST (b) KMNIST (c) FMNIST

Figure 7: Implicit sharing efficiency for various methods on MNIST,KMNIST and FMNIST datasets
under both biased and “Min3” settings. Different colors denote different CLL methods, with the
dotted line representing ISE under the “Min3” setting and the solid line representing the biased
setting. It is evident that the solid line is higher than the dotted one with the same color, which means
the CLL methods can share the complementary labels more efficiently under the biased setting than
the “Min3” setting.

calculated the cross-entropy loss of all instances through a pre-trained model as a criterion for
distinguishing whether the instances are confident: CE loss of the confident one should be small. We
believe that the confident instances are easy to be classified, while the unconfident one are difficult
to be classified. Then, we calculated the complementary label distribution for both confident and
unconfident instances under the “Min3” and biased settings, respectively. The results are shown
in Figure 8, denoted by confidence/unconfidence. It is evident that under the biased setting, both
confident and unconfident instances share the same distribution. Conversely, when considering “Min3”
setting, substantial disparities arise in the complementary label distributions. This inconsistency in
complementary label distributions further increases the difficulty for the following CLL.

Figure 8: The complementary label distribution
of confidence and unconfidence instances under
“Min3” and “Biased” setting.

Figure 9: The distributions of CLCIFAR10
and IDCL when the ture labels are “ship” and
“trunk”. CLCIFAR10 contains noise because
when annotating, the true label is not excluded
from the randomly assigned four labels.
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H EXPERIMENTS ON CLCIFAR10

CLCIFAR10 is considered as one of the earliest real-world datasets for CLL (Wang et al., 2023). To
collect the complementary labels of instances in CIFAR10 annotated by human annotators, they first
randomly sample four distinct labels for each instance (may contain the ground-truth label) and ask
the human annotators to select any of the incorrect one from them as the complementary label of the
instance. Each image in the dataset was labeled by three different annotators, and subsequently, one
of the three selected complementary labels was randomly chosen as the final complementary label for
each instance. This approach ensured the generation of reliable and diverse complementary labels for
the instances in CLCIFAR10, and the resulting CLs can be regarded as the instance-dependent ones.

To further provide empirical support for our instance-dependent assumption, we conducted an analysis
of the complementary label distribution within the real-world human-annotated CLCIFAR10 dataset.
Figure 9 illustrates the complementary label distribution for two distinct classes in CLCIFAR10,
namely “ship” and “trunk”, along with the proposed IDCL (“Min3”) method. From Figure 9, it
becomes apparent that the complementary labels generated by “Min3” method closely resemble the
complementary labels manually assigned by human annotators, regardless the noise in CLCIFAR10.
This observation suggests that human annotators tend to select labels that are entirely unrelated to the
actual instances as complementary labels. This alignment between the two distributions empirically
validates our instance-dependent assumption and reveals the significance of the proposed approach.
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