
A Appendix

In the following sections, we provide some additional material to ease the understanding of the
underlying alignment problem as well as computational details of solutions of FUGW and FUGW
barycenters.

We also show some control experiments during which we used different training data to compute
pair-wise alignments and evaluated the proportion of correlation gains that comes from mere signal
smoothing.

Eventually, we give details about the IBC dataset (acquisition, preprocessing, fMRI protocols and
data splitting).

A.1 Illustration of the alignment problem

We provide in Fig. S1 a conceptual illustration of the alignment framework for a pair of subjects.

Figure S1: Alignment of two brains using functional signatures Using multiple maps of compa-
rable features (left column) for the source and target subjects, we seek to derive an alignment (also
referred to as a coupling) P that matches parts of the brain with similar features while preserving the
global geometry of the cortex.

A.2 Detailed description of FUGW estimation algorithm

Estimating the unbalanced Gromov Wasserstein (UGW) loss is numerically sensitive to initialization,
due to the non-convexity of the problem [39]. Therefore FUGW is a priori non-convex as well, and
comparably difficult to estimate. Consequently, following [39], we instead compute a lower bound
which we formulate as a bi-convex problem that relies on the joint estimation of two couplings. We
provide next a detailed derivation of this estimation procedure, using notations introduced in section
2:

FUGW(X s,X t) = inf
P ,Q≥0
P=Q

Lθ(P ,Q) ≥ inf
P ,Q≥0

m(P )=m(Q)

Lθ(P ,Q) ≜ LB-FUGW(X s,X t).

(S1)

where m(P ) =
∑

i,j Pi,j denotes the mass of P .

We give the explicit formulation of Lθ(P ,Q)

Lθ(P ,Q) ≜ (1− α) LW(P ,Q) + α LGW(P ,Q) + ρ LU(P ,Q) + ε E(P ,Q), (S2)

where
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• C ≜
(
||F s

i − F t
j ||22
)
i,j
∈ R2

+ (feature cost matrix)

• G ≜
(
|Ds

i,j −Dt
k,l|
)
i,j,k,l

∈ R4
+ (geometry cost matrix)

• LW(P ,Q) ≜ ⟨C, P+Q
2 ⟩ =

1
2 (
∑

i,j Ci,jPi,j +
∑

i,j Ci,jQi,j) (Wasserstein)

• LGW(P ,Q) ≜ ⟨G,P ⊗Q⟩ =
∑

i,j,k,l Gi,j,k,lPi,jQk,l (Gromov-Wasserstein)

• LU(P ,Q) ≜ KL
(
P#1 ⊗Q#1|ws ⊗ws

)
+ KL

(
P#2 ⊗Q#2|wt ⊗wt

)
(unbalancing)

• E(P ,Q) ≜ KL
(
P ⊗Q|(ws ⊗wt)⊗ (ws ⊗wt)

)
(entropy)

In particular, we have Lθ(P ,P ) = Lθ(P ), which is the objective function of FUGW introduced in
Equation 1.

Solver We provide a Python GPU-based solver for LB-FUGW, using an approach similar to that of
[39], which we recall in algorithm S1. More precisely, we alternatively optimize one coupling while
keeping the other fixed. This results in two entropic unbalanced OT problems in each iteration, which
can be solved using the scaling algorithm [11].

Algorithm S1 Approximation scheme for LB-FUGW

Input: X s,X t, ρ, α, ε.
Output: Pair of optimal couplings (P ,Q).

1: Initialize: P = Q = ws ⊗wt/
√
m(ws)m(wt).

2: while (P ,Q) has not converged do
3: Calculate: cP = Cost(P ,G,C,ws,wt, ρ, α, ε).
4: Update: Q← Scaling(cP ,ws,wt, ρm(P ), εm(P )).

5: Rescale: Q←
√

m(P )
m(Q)Q.

6: Calculate: cQ = Cost(Q,G,C,ws,wt, ρ, α, ε).
7: Update: P ← Scaling(cQ,ws,wt, ρm(Q), εm(Q)).

8: Rescale: P ←
√

m(Q)
m(P )P .

9: end while

Algorithm S2 Scaling algorithm [11]

Input: C,ws,wt, ρ, ε.
Output: Optimal coupling P .

1: Initialize dual vectors: f = 0n ∈ Rn, g = 0p ∈ Rp.
2: while (f, g) has not converged do
3: Update: f = − ρ

ρ+ε log
∑

j exp
(
gj + logwt

j −
C·,j
ε

)
.

4: Update: g = − ρ
ρ+ε log

∑
i exp

(
fi + logws

i −
Ci,·
ε

)
.

5: end while
6: Calculate: P = (ws ⊗wt) exp

(
f ⊕ g − C

ε

)
.

Here, the notations ⊗ and ⊕ denote the Kronecker product and sum, respectively. The exponential,
division and logarithm operations are all element-wise. The scalar product is denoted by ⟨·, ·⟩.
In practice, we observe that the two couplings of LB-FUGW are numerically equal, so it is enough to
choose, for example, the first one, as alignment between source and target signals.

A.3 Detailed description of FUGW barycenter estimation

FUGW-barycenter algorithm, described in Algorithm S4, alternates between computing mappings
from subjects to the barycenter, and updating the barycenter. This corresponds to a block coordinate
descent on the barycenter estimation. The first step simply uses the previously introduced solver. The
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Algorithm S3 Cost

Input: P ,G,C,ws,wt, ρ, α, ε.
Output: Local cost c.

1: Calculate: G⊗ P :=
(∑

i,j Gi,j,k,lPi,j

)
k,l

.

2: Calculate:

c := α G⊗ P +
1− α

2
C + ρ ⟨log P#1

ws
,P#1⟩+ ρ ⟨log P#2

wt
,P#2⟩+ ε ⟨log P

ws ⊗wt
,P ⟩

second one takes advantage of the fact that the objective function introduced in S1 is differentiable in
FB and DB , and the two couplings of LB-FUGW are numerically equal. This yields a closed form
for FB and DB , as a function of P s,B and X s. We note that, during the barycenter estimation, the
weight wB is always fixed as uniform distribution.

Algorithm S4 LB-FUGW barycenter

Input: (X s)s∈S , ρ, α, ε.
Output: Individual couplings (P s,B)s∈S , barycenter XB .

1: Initialize: FB = Ik; DB = 0k.
2: while XB = (FB,DB,wB) has not converged do
3: Draw S̃ subset of S.
4: for s ∈ S̃ do ▷ fixed XB

5: Align: P s,B ← LB-FUGW(X s,XB, ρ, α, ε).
6: end for
7: Update FB , DB: ▷ fixed P s,B

FB =
1

|S̃|

∑
s∈S̃

diag

(
1

P s,B
#2

)
(P s,B)⊤F s and DB =

1

|S̃|

∑
s∈S̃

(P s,B)⊤DsP s,B

P s,B
#2 (P s,B

#2 )⊤
.

8: end while

A.4 Implementation details

MSM configuration We use the default configuration of MSM 3 and vary parameter lambda so as
to obtain the best gains in correlation on the test set. We use the same value of lambda at each step of
MSM and eventually set it to 0.1 after a cross validated grid search.

Correlation gain variability when aligning pairs of subjects Figures S2 and S3 show correlation
gains on the validation and test sets respectively when aligning pairs of subjects from the IBC dataset.
Subjects’ data was previously projected onto fsaverage5. These figures provide us with a better
understanding of the standard error and consistency of these gains. Moreover, they show that selection
of the best set of hyper-parameters is robust to changing the validation data.

3MSM default configuration https://github.com/ecr05/MSM_HOCR/blob/master/config/basic_
configs/config_standard_MSMpair
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Figure S2: Detailed correlation gains on the validation set (HCP tasks), in the balanced case
Each line represents a FUGW model trained with different hyper-parameters. Each dot represents
the mean correlation between contrast maps of the HCP protocol for a given pair of IBC subjects.
We compare the average correlation with that of the baseline (top row) where subjects were simply
projected on fsaverage5. Models for the left hemisphere and right hemisphere are shown respectively
on the left and right side.
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Figure S3: Detailed correlation gains on the test set (Mathlang tasks) in the balanced case
Similarly to Figure S2, each line represents a FUGW model trained with different hyper-parameters.
Each dot represents the mean correlation between contrast maps of the Mathlang protocol for a given
pair of IBC subjects. We compare the average correlation with that of the baseline (top row) where
subjects were simply projected on fsaverage5. Models for the left hemisphere and right hemisphere
are shown respectively on the left and right side.

Mesh resolution reduction As mentioned in the core of this paper, aligning meshes with high
resolutions can lead to dealing with matrices which won’t fit on GPUs. This is typically the case when
trying to align two fsaverage7 hemispheres (160k vertices each) instead of fsaverage5 hemispheres
(10k vertices each).

In order to reduce the number n of aligned vertices, we first group them into small clusters using
Ward’s algorithm using a method described in [41]. In essence, this method iteratively groups adjacent
vertices of a given individual based on feature similarity until I clusters have been formed. Then, for
a given cluster ui of the source subject s, we define its functional signal F̂ s

ui
as the mean functional

signal of vertices which belong to this cluster. Moreover, for two given clusters ui and uj of subject s,
we define the anatomical distance D̂s

ui,uj
between ui and uj as the mean geodesic distance between

all pairs of vertices between the two clusters (akin to an Energy distance). Eventually, we derive
analogous objects F̂ t and D̂t for the target subject t, and end up in a configuration comparable to
that of Experiment 1.
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Alignment to individual anatomy We qualitatively control that alignments derived between
individuals on their individual anatomies make sense in Figure S4.

sub-07
(reference subject)

sub-04 sub-05 sub-08 sub-12

z-score

o
ri

g
in

a
l

tr
a
n
sp

o
rt

e
d

Figure S4: Transporting individual maps onto a reference subject FUGW can help bridge the
absence of template anatomies and derive pairs of alignments such that all individuals of the cohort are
comparable. We display a map taken from the test set contrasting areas activated during mathematical
reasoning against areas activated for other stimuli of the protocol.

A.5 Control experiments

Controlling for smoothing effect increasing correlation Alignments computed with FUGW are
not always vertex-to-vertex alignments. Indeed, a single vertex from the source subject s can be
associated with many vertices in the target subject t. In fact, P s,t

i represents the relative importance
of each match. The hyper-parameter ε controls the entropy of P s,t, which is in direct link with the
spread of vertices that we use as a measure for how many target vertices are matched with source
vertices.

Since smoothing signal on the source subject can reduce noise and increase correlation to target data,
we measure the correlation gain induced by applying a gaussian kernel to the source signal. This
allows us to show that only a minor proportion of correlation gains induced by FUGW can come
from this smoothing effect. Figure S5 shows this for kernels of 5mm, 10mm, 15mm and 20mm
of standard deviation respectively. We see that correlation increases significantly less than when
using FUGW (0.03 vs 0.12 correlation gain respectively). Moreover, one notices that even though
correlation increases for pairs of subjects with a low initial correlation, it decreases for pairs with a
high initial correlation. On the contrary, FUGW increases correlation for all pairs of subjects.

Different training sets yield comparable correlation gains While we leverage all IBC maps to
derive our couplings, we show that the presented results hold when using a much smaller training
dataset. In particular, we observe similar correlation gains when using only the 57 maps of the
Archi protocol for training (see Table S3). It takes about one hour per subject to acquire these maps,
which we advocate is a reasonable amount of time to build a training set dedicated to align subjects
within a given cohort (and possibly across cohorts). Finally, we train both FUGW and MSM with
lower-dimensional versions of the previous datasets. To do so, given a pair of subjects (s, t) to be
aligned, we fit a PCA on the left out subjects, project the data of subjects to be aligned on these
components, and keep the first 20 components only. For both models, correlation gains remained
unchanged.

More explicitly, we test the 4 following training sets:

• ALL-MATH: all contrast maps of IBC except contrasts from the Mathlang protocol (369
features per subject)
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Figure S5: Comparison of gains in correlation after Gaussian blurring We compare correlation
between subjects after the source subject’s functional data has been smoothed with a Gaussian kernel
of standard deviation 5mm (top left), 10mm (top right), 15mm (bottom left) and 20mm (bottom right)

• ALL-MATH PCA: principal components fitted on ALL-MATH for all IBC subjects except
s and t (20 features)

• ARCHI: all contrast maps from the Archi protocol of IBC (57 features)

• ARCHI PCA: principal components fitted on ARCHI for all subjects except s and t (20
features)

Training set FUGW MSM
ALL-MATH 0.12 0.01
ALL-MATH PCA 0.11 0.02
ARCHI 0.10 0.02
ARCHI PCA 0.11 0.01

Table S1: Gain in Pearson correlation of aligned contrast maps from the Mathlang protocol
compared to the baseline The original correlation (baseline) is 0.258

Using naturalistic stimuli to derive alignments with FUGW This experiment’s setup is similar
to that of Experiment 1: Using training features to first derive OT couplings, we then use the latter to
assess correlation gains between subjects’s feature maps before and after subjects have been aligned.
Naturalistic stimuli datasets include Raiders of the Lost Ark, short video clips and auditory stimuli
from The Little Prince respectively adapted from [21, 27, 8]. Here, for each naturalistic dataset, we
leverage work from [34] to derive the first m = 20 components of a fitted shared response model.
Share response models seek to find a common dictionary K of activation patterns across subjects
s ∈ S and to derive a mapping W s with m orthogonal components that projects each individual’s
data onto this common space:

argmin
K,W s

s.t. (W s)T ·W s=Im

∑
s∈S

||F s −W sK||2

These W s are then used for alignment.

Results are reported in Table S2 and show that using datasets which are 20 times less time-consuming
than that of Experiment 1 can already yield significant correlation gain on unseen task data.

Transporting myelin maps shows mild effect Leveraging transport plans computed using fMRI
data from Experiment 1, we transport myelin maps – approximated through T1 / T2 ratio maps –
from the source subject to the target subject. We compare the correlation of the unaligned source
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Table S2: Acquisition time (AT) and correlation gain on the left hemisphere (CG) per training set
(baseline correlation = 0.258)

Training set Type AT (min) CG (Pearson)
All-MATH tasks 2000 0.118
Clips movie 100 0.017
Raiders movie 115 0.046
The Little Prince movie 100 0.009

and target maps with the correlation of the transported and target maps. As illustrated in Figure S6,
correlation gain is barely significant.

Figure S6: Comparison of gains in correlation after inter-subject alignment for myelin maps
For each pair of source and target subjects of the IBC dataset, we compute the average Pearson
correlation between myelin maps – approximated using T1/T2 ratios – for the left (left panel) and
right (right panel) hemispheres. Correlation gains are not significant.

Before computing correlation between aforementioned maps, we discarded vertices located in the
cortical wall, as they mostly contain spurious values. To do so, we they their value to the median
of values of vertices which do not belong to the cortical wall. In order to determine which vertices
belong to the wall, we used the Destrieux atlas [13].

Eventually, we advocate that little gain can be obtained when better aligning myelin maps, since they
are already very stable across human subjects as shown in Figure S7.

Figure S7: Myelin maps (approximated using T1/T2 ratio maps) are very consistent across IBC
participants

A.6 Dataset description

The presented experiments rely on the Individual Brain Charting (IBC) dataset. A detailed description
of the preprocessing pipeline of the IBC data is provided in [32]. Raw data were preprocessed using
PyPreprocess 4.

All fMRI images, i.e. GE-EPI volumes, were collected twice with reversed phase-encoding directions,
resulting in pairs of images with distortions going in opposite directions. Susceptibility-induced
off-resonance field was estimated from the two Spin-Echo EPI volumes in reversed phase-encoding

4https://github.com/neurospin/pypreprocess
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directions. The images were corrected based on the estimated deformation model. Details about the
method can be found in [3].

Further, the GE-EPI volumes were aligned to each other within every participant. A rigid-body
transformation was employed, in which the average volume of all images was used as reference [17].
The anatomical and motion-corrected fMRI images were given as input to FreeSurfer v6.0.0, in order
to extract meshes of the tissue interfaces and the sampling of functional activation on these meshes,
as described in [42]. The corresponding maps were then resampled to the fsaverage7 (high resolution,
163k nodes per hemisphere) and fsaverage5 (low resolution, 10k nodes per hemisphere) templates of
FreeSurfer [16].

FMRI data were analyzed using the General Linear Model. Regressors of the model were designed
to capture variations in BOLD response strictly following stimulus timing specifications. They
were estimated through the convolution of boxcar functions, that represent per-condition stimulus
occurrences, with the canonical Hemodynamic Response Function (HRF). To build such models,
paradigm descriptors grouped in triplets (i.e. onset time, duration and trial type) according to
BIDS Specification were determined from the log files’ registries generated by the stimulus-delivery
software. To account for small fluctuations in the latency of the HRF peak response, additional
regressors were computed based on the convolution of the same task-conditions profile with the
time derivative of the HRF. Nuisance regressors were also added to the design matrix in order to
minimize the final residual error. To remove signal variance associated with spurious effects arising
from movements, six temporal regressors were defined for the motion parameters. Further, the first
five principal components of the signal, extracted from voxels showing the 5% highest variance, were
also regressed to capture physiological noise [7].

In addition, a discrete-cosine basis was included for high-pass filtering (cutoff = 1
128Hz). Model

specification was implemented using Nilearn v0.8.1 [2], a Python library for statistical learning on
neuroimaging data (https://nilearn.github.io).

In tables S3, S4 and S5, we give the explicit list of contrast and condition maps used for training,
validation and testing respectively.
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Table S3: Training data This dataset comprises a wide variety of tasks: motor, visual, auditory,
relational, linguistic, etc.

Training data
Task Condition / Contrast

ArchiEmotional expression_control
ArchiEmotional expression_gender
ArchiEmotional expression_gender-control
ArchiEmotional expression_intention
ArchiEmotional expression_intention-control
ArchiEmotional expression_intention-gender
ArchiEmotional face_control
ArchiEmotional face_gender
ArchiEmotional face_gender-control
ArchiEmotional face_trusty
ArchiEmotional face_trusty-control
ArchiEmotional face_trusty-gender
ArchiEmotional trusty_and_intention-control
ArchiEmotional trusty_and_intention-gender
ArchiSocial false_belief-mechanistic
ArchiSocial false_belief-mechanistic_audio
ArchiSocial false_belief-mechanistic_video
ArchiSocial false_belief_audio
ArchiSocial false_belief_video
ArchiSocial mechanistic_audio
ArchiSocial mechanistic_video
ArchiSocial non_speech_sound
ArchiSocial speech-non_speech
ArchiSocial speech_sound
ArchiSocial triangle_mental
ArchiSocial triangle_mental-random
ArchiSocial triangle_random
ArchiSpatial grasp-orientation
ArchiSpatial hand-side
ArchiSpatial object_grasp
ArchiSpatial object_orientation
ArchiSpatial rotation_hand
ArchiSpatial rotation_side
ArchiSpatial saccades
ArchiStandard audio_computation
ArchiStandard audio_left_button_press
ArchiStandard audio_right_button_press
ArchiStandard audio_sentence
ArchiStandard cognitive-motor
ArchiStandard computation
ArchiStandard computation-sentences
ArchiStandard horizontal-vertical
ArchiStandard horizontal_checkerboard
ArchiStandard left-right_button_press
ArchiStandard listening-reading
ArchiStandard motor-cognitive
ArchiStandard reading-checkerboard
ArchiStandard reading-listening
ArchiStandard right-left_button_press
ArchiStandard sentences
ArchiStandard sentences-computation
ArchiStandard vertical-horizontal

23



Training data (next)
Task Condition / Contrast

ArchiStandard vertical_checkerboard
ArchiStandard video_computation
ArchiStandard video_left_button_press
ArchiStandard video_right_button_press
ArchiStandard video_sentence
Attention double_congruent
Attention double_cue
Attention double_incongruent
Attention double_incongruent-double_congruent
Attention incongruent-congruent
Attention spatial_congruent
Attention spatial_cue
Attention spatial_cue-double_cue
Attention spatial_incongruent
Attention spatial_incongruent-spatial_congruent
Audi alphabet
Audi alphabet-silence
Audi animals
Audi animals-silence
Audi cough
Audi cough-silence
Audi environment
Audi environment-silence
Audi human
Audi human-silence
Audi laugh
Audi laugh-silence
Audi music
Audi music-silence
Audi reverse
Audi reverse-silence
Audi silence
Audi speech
Audi speech-silence
Audi suomi
Audi suomi-silence
Audi tear
Audi tear-silence
Audi yawn
Audi yawn-silence
Audio animal
Audio animal-others
Audio animal-silence
Audio mean-silence
Audio music
Audio music-others
Audio music-silence
Audio nature
Audio nature-others
Audio nature-silence
Audio speech
Audio speech-others
Audio speech-silence
Audio tool
Audio tool-others
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Training data (next)
Task Condition / Contrast

Audio tool-silence
Audio voice
Audio voice-others
Audio voice-silence
Bang no_talk
Bang talk
Bang talk-no_talk
ColumbiaCards gain
ColumbiaCards loss
ColumbiaCards num_loss_cards
Discount amount
Discount delay
DotPatterns correct_cue-incorrect_cue
DotPatterns correct_cue_correct_probe
DotPatterns correct_cue_incorrect_probe
DotPatterns correct_cue_incorrect_probe-correct_cue_correct_probe
DotPatterns correct_cue_incorrect_probe-incorrect_cue_correct_probe
DotPatterns cue
DotPatterns incorrect_cue_correct_probe
DotPatterns incorrect_cue_incorrect_probe
DotPatterns incorrect_cue_incorrect_probe-correct_cue_incorrect_probe
DotPatterns incorrect_cue_incorrect_probe-incorrect_cue_correct_probe
DotPatterns incorrect_probe-correct_probe
EmotionalPain emotional-physical_pain
EmotionalPain emotional_pain
EmotionalPain physical_pain
Enumeration enumeration_constant
Enumeration enumeration_linear
Enumeration enumeration_quadratic
Lec1 pseudoword
Lec1 pseudoword-random_string
Lec1 random_string
Lec1 word
Lec1 word-pseudoword
Lec1 word-random_string
Lec2 attend
Lec2 attend-unattend
Lec2 unattend
MCSE high-low_salience
MCSE high_salience_left
MCSE high_salience_right
MCSE low+high_salience
MCSE low-high_salience
MCSE low_salience_left
MCSE low_salience_right
MCSE salience_left-right
MCSE salience_right-left
MTTNS northside-southside_event
MTTNS sn_after-before_event
MTTNS sn_after_event
MTTNS sn_all_event_response
MTTNS sn_all_space-time_cue
MTTNS sn_all_space_cue
MTTNS sn_all_time-space_cue
MTTNS sn_all_time_cue
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Training data (next)
Task Condition / Contrast

MTTNS sn_average_event
MTTNS sn_average_reference
MTTNS sn_before-after_event
MTTNS sn_before_event
MTTNS sn_northside_event
MTTNS sn_southside_event
MTTNS sn_space-time_event
MTTNS sn_space_event
MTTNS sn_time-space_event
MTTNS sn_time_event
MTTNS southside-northside_event
MTTWE eastside-westside_event
MTTWE we_after-before_event
MTTWE we_after_event
MTTWE we_all_event_response
MTTWE we_all_space-time_cue
MTTWE we_all_space_cue
MTTWE we_all_time-space_cue
MTTWE we_all_time_cue
MTTWE we_average_event
MTTWE we_average_reference
MTTWE we_before-after_event
MTTWE we_before_event
MTTWE we_eastside_event
MTTWE we_space-time_event
MTTWE we_space_event
MTTWE we_time-space_event
MTTWE we_time_event
MTTWE we_westside_event
MTTWE westside-eastside_event
MVEB 2_letters_different
MVEB 2_letters_different-same
MVEB 2_letters_same
MVEB 4_letters_different
MVEB 4_letters_different-same
MVEB 4_letters_same
MVEB 6_letters_different
MVEB 6_letters_different-2_letters_different
MVEB 6_letters_different-same
MVEB 6_letters_same
MVEB letter_occurrence_response
MVIS 2_dots-2_dots_control
MVIS 4_dots-4_dots_control
MVIS 6_dots-2_dots
MVIS 6_dots-6_dots_control
MVIS dot_displacement_response
MVIS dots-control
Moto finger_left-fixation
Moto finger_right-fixation
Moto foot_left-fixation
Moto foot_right-fixation
Moto hand_left-fixation
Moto hand_right-fixation
Moto instructions
Moto saccade-fixation
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Training data (next)
Task Condition / Contrast

Moto tongue-fixation
PainMovie movie_mental
PainMovie movie_mental-pain
PainMovie movie_pain
Preference face-others
Preference food-others
Preference house-others
Preference painting-others
Preference preference_constant
Preference preference_linear
Preference preference_quadratic
PreferenceFaces face_constant
PreferenceFaces face_linear
PreferenceFaces face_quadratic
PreferenceFood food_constant
PreferenceFood food_linear
PreferenceFood food_quadratic
PreferenceHouses house_constant
PreferenceHouses house_linear
PreferenceHouses house_quadratic
PreferencePaintings painting_constant
PreferencePaintings painting_linear
PreferencePaintings painting_quadratic
RSVPLanguage complex
RSVPLanguage complex-consonant_string
RSVPLanguage complex-simple
RSVPLanguage consonant_string
RSVPLanguage jabberwocky
RSVPLanguage jabberwocky-consonant_string
RSVPLanguage jabberwocky-pseudo
RSVPLanguage probe
RSVPLanguage pseudo-consonant_string
RSVPLanguage pseudoword_list
RSVPLanguage sentence-consonant_string
RSVPLanguage sentence-jabberwocky
RSVPLanguage sentence-pseudo
RSVPLanguage sentence-word
RSVPLanguage simple
RSVPLanguage simple-consonant_string
RSVPLanguage word-consonant_string
RSVPLanguage word-pseudo
RSVPLanguage word_list
SelectiveStopSignal go_critical
SelectiveStopSignal go_critical-stop
SelectiveStopSignal go_noncritical
SelectiveStopSignal go_noncritical-ignore
SelectiveStopSignal ignore
SelectiveStopSignal ignore-stop
SelectiveStopSignal stop
SelectiveStopSignal stop-ignore
Self correct_rejection
Self encode_other
Self encode_self
Self encode_self-other
Self false_alarm
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Training data (next)
Task Condition / Contrast

Self instructions
Self recognition_hit
Self recognition_hit-correct_rejection
Self recognition_other_hit
Self recognition_self-other
Self recognition_self_hit
StopSignal go
StopSignal stop
StopSignal stop-go
Stroop congruent
Stroop incongruent
Stroop incongruent-congruent
TheoryOfMind belief
TheoryOfMind belief-photo
TheoryOfMind photo
TwoByTwo cue_switch-stay
TwoByTwo cue_taskstay_cuestay
TwoByTwo cue_taskstay_cueswitch
TwoByTwo cue_taskswitch_cuestay
TwoByTwo cue_taskswitch_cueswitch
TwoByTwo stim_taskstay_cuestay
TwoByTwo stim_taskstay_cueswitch
TwoByTwo stim_taskswitch_cuestay
TwoByTwo stim_taskswitch_cueswitch
TwoByTwo task_switch-stay
VSTM vstm_constant
VSTM vstm_linear
VSTM vstm_quadratic
Visu animal
Visu animal-scrambled
Visu characters
Visu characters-scrambled
Visu face
Visu face-scrambled
Visu house
Visu house-scrambled
Visu pseudoword
Visu pseudoword-scrambled
Visu scene
Visu scene-scrambled
Visu scrambled
Visu target_fruit
Visu tool
Visu tool-scrambled
WardAndAllport ambiguous-unambiguous
WardAndAllport intermediate-direct
WardAndAllport move_ambiguous_direct
WardAndAllport move_ambiguous_intermediate
WardAndAllport move_unambiguous_direct
WardAndAllport move_unambiguous_intermediate
WardAndAllport planning_ambiguous_direct
WardAndAllport planning_ambiguous_intermediate
WardAndAllport planning_unambiguous_direct
WardAndAllport planning_unambiguous_intermediate
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Table S4: Validation data

Validation data
Task Condition / Contrast

HcpEmotion face
HcpEmotion face-shape
HcpEmotion shape
HcpEmotion shape-face
HcpGambling punishment
HcpGambling punishment-reward
HcpGambling reward
HcpGambling reward-punishment
HcpLanguage math
HcpLanguage math-story
HcpLanguage story
HcpLanguage story-math
HcpMotor cue
HcpMotor left_foot
HcpMotor left_foot-avg
HcpMotor left_hand
HcpMotor left_hand-avg
HcpMotor right_foot
HcpMotor right_foot-avg
HcpMotor right_hand
HcpMotor right_hand-avg
HcpMotor tongue
HcpMotor tongue-avg
HcpRelational match
HcpRelational relational
HcpRelational relational-match
HcpSocial mental
HcpSocial mental-random
HcpSocial random
HcpWm 0back-2back
HcpWm 0back_body
HcpWm 0back_face
HcpWm 0back_place
HcpWm 0back_tools
HcpWm 2back-0back
HcpWm 2back_body
HcpWm 2back_face
HcpWm 2back_place
HcpWm 2back_tools
HcpWm body-avg
HcpWm face-avg
HcpWm place-avg
HcpWm tools-avg
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Table S5: Test data

Test data
Task Condition / Contrast

MathLanguage arithmetic_fact-othermath
MathLanguage arithmetic_fact_auditory
MathLanguage arithmetic_fact_visual
MathLanguage arithmetic_principle-othermath
MathLanguage arithmetic_principle_auditory
MathLanguage arithmetic_principle_visual
MathLanguage auditory-visual
MathLanguage colorlessg-wordlist
MathLanguage colorlessg_auditory
MathLanguage colorlessg_visual
MathLanguage context-general
MathLanguage context-theory_of_mind
MathLanguage context_auditory
MathLanguage context_visual
MathLanguage general-colorlessg
MathLanguage general_auditory
MathLanguage general_visual
MathLanguage geometry-othermath
MathLanguage geometry_fact_auditory
MathLanguage geometry_fact_visual
MathLanguage math-nonmath
MathLanguage nonmath-math
MathLanguage theory_of_mind-context
MathLanguage theory_of_mind-general
MathLanguage theory_of_mind_and_context-general
MathLanguage theory_of_mind_auditory
MathLanguage theory_of_mind_visual
MathLanguage visual-auditory
MathLanguage wordlist_auditory
MathLanguage wordlist_visual
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