
Published as a conference paper at ICLR 2025

DISCOVERYBENCH: TOWARDS DATA-DRIVEN DISCOV-
ERY WITH LARGE LANGUAGE MODELS

Bodhisattwa Prasad Majumder∗α Harshit Surana∗αβ Dhruv Agarwal∗γ
Bhavana Dalvi Mishra∗α Abhijeetsingh Meenaβ Aryan Prakharβ Tirth Voraβ

Tushar Khotα Ashish Sabharwalα Peter Clarkα

αAllen Institute for AI βOpenLocus γUniversity of Massachusetts Amherst
Website: https://github.com/allenai/discoverybench
∗equal contributions

ABSTRACT

Can the rapid advances in code generation, function calling, and data analysis
using large language models (LLMs) help automate the search and verification of
hypotheses purely from a set of provided datasets? To evaluate this question, we
present DISCOVERYBENCH, the first comprehensive benchmark that formalizes
the multi-step process of data-driven discovery. The benchmark is designed to
systematically assess current model capabilities in discovery tasks and provide a
useful resource for improving them. Our benchmark contains 264 tasks collected
across 6 diverse domains, such as sociology and engineering, by manually deriving
discovery workflows from published papers to approximate the real-world chal-
lenges faced by researchers, where each task is defined by a dataset, its metadata,
and a discovery goal in natural language. We additionally provide 903 synthetic
tasks to conduct controlled evaluations on data-driven workflows that are not cov-
ered in the manually collected split. Furthermore, our structured formalism of
data-driven discovery enables a facet-based evaluation that provides useful insights
into different failure modes. We evaluate several popular LLM-based reasoning
frameworks using both open and closed LLMs as baselines on DISCOVERYBENCH
and find that even the best system scores only 25%. Our benchmark, thus, illus-
trates the challenges in autonomous data-driven discovery and serves as a valuable
resource for the community to make progress.

1 INTRODUCTION

Knowledge discovery via the scientific process has been a catalyst for human progress for centuries
but has, thus far, been a predominantly manual pursuit (Glass & Hall, 2008). Recent breakthroughs in
capabilities of large language models (LLMs) to reason and interface with the world using code (Chen
et al., 2021; Roziere et al., 2023), external tools (Schick et al., 2024), and interactive agents (Yao et al.,
2023; Majumder et al., 2023), however, now suggest the possibility of realizing a discovery system
that is fully autonomous. Indeed, recent works (Majumder et al., 2024) provide initial evidence
for this paradigm within the setting of data-driven discovery, where both search and verification
of hypotheses may be carried out using a dataset alone (i.e., after physical experiments and data
collection1), but the extent of this ability remains unclear. We, therefore, aim to systematically
evaluate the following question:

How capable are current state-of-the-art LLMs at automated data-driven discovery?

Answering this question is hard, as data-driven discovery in the wild (real-world) is diverse across
domains and subject areas, which in turn makes it difficult to build a robust evaluation framework to
measure progress. We address this using a pragmatic formalization of data-driven discovery, namely
the search for a relationship that may hold between variables in a context, where (importantly) the
description of those facets may not be in the language of the dataset. A data-driven discovery task

1In practice, experiments and analysis are interleaved, not sequential. Our concern in this work, however, is
systematically studying the data analysis part of the (interleaved) pipeline.
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Figure 1: Each DISCOVERYBENCH task consists of a goal and dataset(s) (left). Solving the task requires both
statistical analysis and scientific semantic reasoning. The realistic requirement of domain-specific tools in some
tasks adds more complexity. An ideal discovery system should implement discovery programs in Python.

then has one of these components missing, e.g., “How did urban land use affect the invasion of
introduced plants in Catalonia?”. Importantly, this formalization allows for systematic, reproducible
evaluation over a wide variety of real-world problems, by leveraging these facets.

Unlike prior datasets for statistical analysis (Liu et al., 2024) or AutoML (Zhang et al., 2023; Gijsbers
et al., 2022), DISCOVERYBENCH tasks also require scientific semantic reasoning, for instance,
deciding which of the many possible analysis techniques are appropriate for the domain (e.g.,
phylogenetic regression for plant invasion, Fig 1), how to clean and/or normalize the data, and how to
map goal terms to dataset terms (e.g., “land use” to “habitat type”). Task solutions typically requires
a multistep workflow (Fig 1, right). In this way, DISCOVERYBENCH is the first large-scale dataset to
address the broader data-driven discovery pipeline, not just the statistical analysis component, and
explore LLMs’ capacity for this.

Given this framework, we created DISCOVERYBENCH by manually extracting 264 discovery tasks,
i.e., goal + dataset(s), from over 20 published papers, as well as creating real-world discovery
workflows that solve each task. We additionally provide 903 synthetic tasks across 48 domains
generated using LLMs to mimic the real-world discovery process. The synthetic benchmark is
complimentary, capturing a diverse range of data-driven workflows that could not be included in the
manually collected split of our benchmark due to lack of reproducibility. Our contributions are thus:

• DISCOVERYBENCH, the first comprehensive benchmark to formalize the multi-step (code-based)
process of data-driven hypothesis search and verification, covering many real-world discovery tasks
plus additional synthetic tasks.

• A pragmatic formalism for data-driven discovery, flexible enough to characterize many real-world
tasks while constrained enough to allow for rigorous, reproducible evaluation.

• A comprehensive evaluation across state-of-the-art LLM-based reasoning methods (“discovery
agents”). We find performance peaks at 25%, demonstrating the challenging nature of our task.

These suggest that DISCOVERYBENCH may be a valuable resource for helping make progress on
autonomous, data-driven discovery.

2 RELATED WORK

Automated data-driven discovery has been a long-standing dream of AI (Majumder et al., 2024;
Kitano, 2016). Although there have been a range of data-driven discovery systems, from early
ones that fit equations to idealized data, e.g., Bacon (Langley, 1981), to more modern ones handling
complex real-world problems, e.g., AlphaFold (Jumper et al., 2021), their associated datasets are task-
specific and customized to a pre-built pipeline. In contrast, DISCOVERYBENCH aims to be general,
including testing whether systems can design appropriate workflows themselves over multiple tasks.

Several datasets and tools are available for AutoML, a related technology aimed at automating
workflows for building optimal machine learning models (Jin et al., 2023; Zhang et al., 2023; LeDell
& Poirier, 2020). AutoML tools include packages like Scikit (Feurer et al., 2015), and embedded
in cloud platforms such as Google Cloud Platform, Microsoft Azure, and Amazon Web Services.
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However, associated datasets for AutoML are primarily used for training models, rather than for
open-ended discovery tasks.

Feature Ours QRData DSBench BLADE

File handling ✓ ✓ ✓ ✓
Statistical tools ✓ ✓ ✓ ✓
Data Semantics ✓ ✗ ✓ ✓
Hypothesis Discovery ✓ ✗ ✗ ✗
Domain Knowledge ✓ ✗ ✗ ✓
Domain-specific Tools ✓ ✗ ✗ ✗
Scientific Hypothesis ✓ ✗ ✗ ✓

Table 1: Comparison with other data-analysis benchmarks

Similarly, there are several datasets that test
statistical analysis in various fields, e.g.,
(Shao et al., 2023; Li et al., 2024; Yang et al.,
2022). Software packages like Tableaux,
SAS, and R also support users in that task.
However, these datasets and tools are de-
signed specifically for data analysis, while
DISCOVERYBENCH aims to automate the
broader pipeline including ideation, semantic
reasoning, and pipeline design, where statistical analysis is just one component.

One recent dataset similar in spirit to ours is QRData (Liu et al., 2024). QRData also explores LLM
capabilities but targets statistical/causal analysis for well-defined (mainly) textbook questions that
have unique, (mainly) numeric gold answers. DSBench (Jing et al., 2024) proposes data science
tasks that require agents to understand multimodal input files, generate complex code, and interpret
and process them to solve a multiple-choice or short direct-answer task. Unlike DISCOVERYBENCH,
these tasks do not require domain knowledge or hypothesis discovery. Recent work, BLADE (Gu
et al., 2024), presents complex hypothesis verification as a multiple-choice QA task. Even though
expected workflows are multi-step, at each step, the space of operations is limited to a small set,
e.g., select, map, group-by, etc. In contrast, DISCOVERYBENCH has no prescribed boundaries on
statistical techniques to apply, uses open-ended questions and answers, and complex tasks drawn from
state-of-the-art published work. Further, DISCOVERYBENCH poses a high-level research question
that requires an agent to do a hypothesis search in addition to verification. Table 1 summarizes a list
of distinguishing features of DISCOVERYBENCH, which promotes a thorough, systematic evaluation
of (LLM-driven) discovery systems in the challenging but realistic task of data-driven discovery.

3 FORMALIZATION

We begin by formalizing what we mean by a data-driven hypothesis and how the structure of a
complex hypothesis may be viewed as a hypothesis semantic tree.

A data-driven hypothesis h in H (the space of such hypotheses) is a declarative sentence about
the state of the world whose truth value may be inferred from a given dataset D using a verification
procedure VD : H → {supported,unsupported}. For our benchmark, the space of valid VD is
potentially any executable Python program.

Inspired by recent work of Thompson & Skau (2023), we additionally introduce a structured formal-
ism that breaks a hypothesis down into three hypothesis dimensions:

• Contexts (c): Boundary conditions that limit the scope of a hypothesis. E.g., “for men over the
age of 30” or “in Asia and Europe” or unbounded/full dataset when not specified.

• Variables (v): Known set of concepts that interact in a meaningful way under a given context to
produce the hypothesis. E.g., gender, age, or income. Note that each hypothesis is associated
with a target variable and a set of independent variables.

• Relationships (r): Interactions between a given set of variables under a given context that produces
the hypothesis. E.g., “quadratic relationship”, “inversely proportional”, or piecewise conditionals.

With slight abuse of notation, we can now equivalently define hypothesis h := ψ(c, v, r), where
ψ(·, ·, ·) is a generative function that returns the declarative sentence “under context c, variables
v have relationship r.” For instance, for the hypothesis from Fig 1, c := “urban land use; plant
type agriforest and gardening”, v := “invasion rate”, and r :=“invasion rate is higher in agriforest
plants than gardening plants.” Note that the hypothesis itself is a sentence, not a tuple.

4 DISCOVERYBENCH

We now introduce a novel benchmark, DISCOVERYBENCH, for discovering data-driven hypotheses.
In this benchmark, a data-driven discovery task is defined as follows: Given one or more task
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Figure 2: Workflow categories in DB-REAL with representative examples.

dataset(s) D and a discovery goal G, derive a hypothesis h addressing G with the highest specificity
for the context c, variables v, and relationship r supported by D. Optionally, a workflow for
deriving a hypothesis can be output to augment information already present in the hypothesis.
DISCOVERYBENCH has two components: DB-REAL encompassing data-driven hypotheses and
workflows derived from published scientific papers and DB-SYNTH capturing systematic variations in
data-driven hypotheses and workflows obtained from synthetically generated datasets. The benchmark
is released at: https://github.com/allenai/discoverybench. The licenses permitting
the re-distribution of datasets collected from past work are provided in Appendix B and Table 3.

4.1 DB-REAL: COLLECTING DATA-DRIVEN HYPOTHESES IN THE WILD

Our goal is to replicate the scientific process undertaken by researchers to search for and validate a
hypothesis from one or more datasets. We focus on six scientific domains where data-driven research
is the cornerstone of scientific progress: sociology, biology, humanities, economics, engineering, and
meta-science. Our gold trajectories to solve a discovery task carefully follow the published papers’
workflows in respective domains. As most of the papers are highly cited, peer-reviewed, and from top
venues from the domains, it is reasonable to assume the published workflows are scientifically valid.

To ensure that we correctly reproduced the methods and code implementations and reached the
correct hypotheses: (a) We restrict ourselves to cases where the complete code was available (e.g., in
GitHub) from the original authors, so we could directly reuse it; (b) For the Economics and Sociology
related hypotheses, we consulted domain experts (Economics PhDs) to verify that our interpretation,
implemented workflows, and replicated hypotheses make sense; (c) For ML engineering, we relied
on our own expertise in the domain. See Appendix B for the original sources of data and workflows.

While validating novel discoveries is incredibly challenging and requires domain experts to verify, the
goal of DISCOVERYBENCH is not to make new discoveries but rather to test if a discovery system can
at least make known, validated discoveries correctly as a first step to the broader goal of automated
discovery—an easier bar, and one which our benchmark can assess systematically. We detail our data
collection process, which follows either a data-first or code-first approach.

For the data-first approach: 1) we filter papers based on open public datasets (D) such as National
Longitudinal Surveys (NLS), Global Biodiversity Information Facility (GBIF), and World Bank Open
Data (WBOD) that have workflow details; 2) we then try to replicate these workflows in Python. For
this data-first approach, replication took up to 90 person-hours per dataset, often (30%) not resulting
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in success. This highlights building data-driven discovery benchmarks from real studies is not only
challenging and time-consuming, but automating discovery can also be key for scientific progress
and reproducibility.

The data-first approach by design is limited to well-known aforementioned public datasets. To
improve diversity in domains, datasets (D), and workflows, we also adopted a code-first approach
to look beyond popular public datasets. In this approach, we 1) search for code repositories based
on scientific papers with available datasets and 2) attempt to replicate them in Python with existing
code or from scratch with interpretation of the associated paper. We looked at 785 data points in
Zenodo, EU’s Open Research Repository, with a filter for computational notebooks. Over 85% of
the repositories either had missing code, code that could not be easily translated to Python, or a
proprietary/non-open dataset. We finalized a candidate list of 14 repositories, but in the end, 3 of
them passed all our checks for their hypotheses to be included in the benchmark2.

Upon replication of the result or implementation of the full procedure as described in the paper, we
include the (dataset D, hypothesis h, implementation workflow3) tuple to the benchmark.

During the process, the implementation workflow may lead to other hypotheses that are not directly
reported in the paper but can be supported by the data. We included them in DISCOVERYBENCH,
which leads to a good mix of already reported science-worthy hypotheses as well as novel hypotheses
grounded in datasets. This is particularly useful as our goal is to evaluate LLMs’ ability to solve a
discovery task that is realistic but never reported before.

Finally, the task datasets are supplemented with a dataset description, natural language descriptions
of the columns, and additional background knowledge related to the domain or the datasets. Some of
our tasks, for instance, archaeology, require domain knowledge to derive a particular hypothesis.

Inferring task difficulty. Inferring the hypothesis space given a task dataset alone is impractical
due to incomplete a priori information about unobserved intermediate variables and their association
with observed ones. To infer task difficulty, we, therefore, use the length of the implementation
workflow required to derive a target hypothesis. Each step in the workflow contributes to 1 unit length
to workflow length. In some cases, we derive two tasks: easy and hard from the same hypothesis,
where for easy, we provide the derived variables as observed variables in the dataset (e.g., BMI), and
for hard, it would require deriving intermediate variables (BMI from height and weight) to reach the
target. Intuitively, discovery becomes harder as the hypothesis search space increases. In practice,
this setting is observed when a task requires access to multiple datasets.

Forming discovery goals. By definition, each hypothesis can be fully specified by the declarative
sentence as h := ψ(c, v, r). To systematically construct the discovery goals for the task, we first
mask one of each dimension, context c, variable v, relationship r, and generate a discovery goal to
identify the masked information given the rest of the hypothesis and the task dataset(s). For instance,
for a target hypothesis, “The effect of socioeconomic status on college degree completion is higher
for females (0.4995) than males (0.4467)”, we form a discovery goal as “How does socioeconomic
status impact on college degree completion for females compared to males?” seeking the relationship
r to be discovered from the dataset(s) given the relevant variables v and context c. Additionally, we
ensure each discovery goal leads to only one answer, i.e., the target hypothesis.

4.1.1 FEATURES OF DB-REAL BENCHMARK

Train Test

# tasks 25 239
# unique hypotheses 14 144
# tasks need > 1 dataset 4 110
# domains 3 6

Table 2: Statistics for DB-REAL

DISCOVERYBENCH incorporates a broad landscape of
data-driven discovery. With over 500 instances of data
preparation activities such as cleaning, deduplication, and
integration, captures the complexity of real-world data pre-
processing for discovery. Tasks also demand a spectrum of
statistical methods, from statistical tests to mixture models,
and include domain-specific approaches in econometric
and ecological modeling, as reflected in the Fig 24.

2Some repositories include hypotheses from multiple papers as their background.
3Implementation workflows are descriptions of implementations to reproduce the results from original works.
4A task may require multiple data preparation and analytical activities.
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Table 2 shows the diversity of tasks both in train and test split for DB-REAL. Most importantly,
the benchmark incorporates 114 (4 + 110) tasks that require more than one related datasets to be
analyzed, with a maximum of 6 datasets for a task. Each workflow within the dataset can be viewed
as a composition of unit actions—such as code generation for statistical tests—that LLMs excel at,
showing how our tasks require the chaining of such atomic actions to address complex scenarios for
data-driven discovery. We measure the complexity of these workflows by quantifying the number of
unit actions involved, referring to this as the workflow length, whose distribution can be seen in Fig 5.

4.2 DB-SYNTH: GENERATING DATA-DRIVEN HYPOTHESES USING LLMS

While DB-REAL covers a broad set of domains and workflows, several other types of workflows
(e.g., nonlinear regression, cluster analysis) could not be included in the benchmark due to difficulty
in replication or out-of-scope domains. However, to provide a comprehensive view of data-driven
discovery, we introduce a complimentary split of our benchmark, DB-SYNTH, which captures
synthetic task examples constructed from inspirational workflows from published works (Galbraith
et al., 2010). Note, the workflow categories (e.g., symbolic regression, equation discovery, and
function approximation) in DB-SYNTH are taken from a broader set of papers beyond what we
considered in DB-REAL; hence the difficulty and solutions of the tasks broadly vary from the real
split of our benchmark.

Our goal is to reverse-engineer the process of hypothesis discovery to synthesize datasets and
discovery tasks that require analysis workflows similar to those that are broadly observed in published
works. Our approach leverages the broad pre-trained knowledge of LLMs in four stages:

Domain sampling: First, we prompt the LLM to generate a list of diverse domains along with their
natural language descriptions. E.g., “Ancient architecture” → “Related to architectural marvels,
ancient building and construction techniques.” Note, such a domain is not covered in DB-REAL.
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Figure 3: Hypothesis Semantic Tree

Semantic tree construction: For each domain, we then
build a hypothesis semantic tree Th, which is a tree of
variables depicting the dependencies between the vari-
ables in the dataset (leaf nodes), intermediate variables,
and the target (dependent) variable of a primary hypoth-
esis h (root node). Note, Th is not the hypothesis itself.

Specifically, we prompt the LLM with the domain and a
sampled real-world workflow (e.g., “within-cluster anal-
ysis”) to generate a hypothesis and its target variable.
To encourage diversity in plausible (as per the LLM)
workflows and to increase coverage (by accounting for
uncovered workflows in DB-REAL), we allow LLMs to
combine several real-workflow steps (type of variables,
type of relationships, etc). This significantly improves the
likelihood of generating synthetic workflows that closely
resemble the real ones. Setting the target variable as root (e.g., galaxy_visibility), we then
derive child nodes by generating the independent variables required to verify h using V(·), as seen in
Fig 3. We operationalize this by generating a column name and description for each child node (along
with a data type and range) and a pandas expression5 (Wes McKinney, 2010) over only independent
variables in Th such that its execution results in the target variable. We repeat this with each leaf in Th
as the root of a new semantic sub-tree, generating intermediate hypotheses and a new set of variables
until the desired height of T is reached.6 We also generate a set of distractor columns disjoint from
nodes in T , thus resulting in a synthetic semantic forest F .

Data generation: We then construct a task dataset by generating synthetic data in a bottom-up
manner (i.e., from leaves to root) for each node in F . Starting with various sampling strategies for
leaf nodes (see more in Appendix C), for each subsequent level in F , we create new columns for
nodes by simply executing their pandas expressions. Finally, to mimic real-world challenges in data

5The pandas expression encodes the structured hypothesis ψ(c, v, r).
6In practice, with probability 0.6, we choose whether a node is derived further or marked as a leaf.
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collection, we probabilistically perturb each instance x ∈ xi by adding noise or dropping values to
create missing data7. Note that at this stage, D contains a column for each node in F .

Task generation: For each internal node h in F , we now create multiple task datasets D(l)
h from D,

varying the difficulty of the discovery task based on the path length l between h and the observed
independent variables in F . Finally, we follow the same strategy for goal formulation as DB-REAL.
We generate 903 tasks over 48 diverse domains and assign them to development and test sets using
an 80/20 split, where each task is additionally tagged with a difficulty level from 1-4.

See Appendix D for the compositional details on both real and synthetic splits of DISCOVERYBENCH.
We also list some limitations and ethical considerations around our benchmark in Appendix A.

4.3 EVALUATION

We evaluate task performance by measuring the alignment of the predicted and gold hypotheses
in natural language. We take inspiration from recent works in LLM benchmarking (Shashidhar
et al., 2023; Zeng et al., 2023; Yuan et al., 2023; Fu et al., 2023; Li et al., 2023; Lin et al., 2024)
and design a model-based evaluation strategy using gpt-4-preview-0125 as the evaluator,
conditioned on our structured formalism of data-driven hypotheses. Critically, the evaluator assesses
entailments/equivalences between linguistic elements of a predicted and gold hypothesis pair, folow-
ing from several LM-based language entailment as automatic tools for scientific claim verification
(Wadden et al., 2022; Min et al., 2023; Schlichtkrull et al.).

Recall the declarative form h := ψ(c, v, r) of a hypothesis h that constitutes of three hypothesis
dimensions: context (c), variables (v), and relationships (r). Given this structured representation
of the gold and predicted hypotheses, we then compute a hypothesis match score (HMS), which
measures the degree to which two hypotheses align on each dimension, as follows:
• context: We first use our GPT-4 based evaluator to independently extract the contexts for the gold

(hg) and predicted (hp) hypotheses (prompt in Listing 1). Then, we compute a context alignment
score ctxalign, which takes value 1 if a GPT-4 based evaluator deems the contexts extracted from hg

and hp as semantically equivalent, otherwise 0 (prompt in Listing 2). Note, instead of comparing
the full hypotheses, we employ a much simpler faceted textual entailment (or semantic similarity)
problem between two text segments, which GPT-4 is very strong at (Sanyal et al., 2024).

• variables: Using our LLM evaluator, we extract the set of interacting variables in the gold and
predicted hypotheses using the GPT-4 based evaluator (prompt in Listing 3). We compute the
alignment between these two sets of variables as an F1 score, varF1, capturing how aligned the
variables from hg with the variables from hp.

• relationships: Our GPT-4 evaluator computes a relationship accuracy with reference to the
relationship between the gold variables (relacc) based on evaluator judgments using the following
scoring heuristic: 1 if there is an exact match of the relation, 0.5 when the predicted relationship is
broader than the gold relationship but encompasses it , and 0 otherwise (prompt in Listing 4).

Two authors independently evaluated the step-by-step LLM-based evaluation process on 200 examples.
After resolving disagreements, we find GPT-4 was 97% correct in context extraction, 99% correct
in context matching, 94% correct in variable extraction, and 99% correct in assessing relationship
accuracy, exhibiting sufficiently strong performance in entailment-based evaluation. Finally, we
compute HMS (scaled) ∈ [0, 100] as the alignment of the variable and relationship dimensions over
context-matched hypotheses weighted by the overall context alignment:

HMS(hp, hg) = ctxalign(h
p, hg)× varF1(h

p, hg)× relacc(h
p, hg)

Is the outcome-based evaluation sufficient? Yes. The gold hypotheses, which a discovery agent
does not see at the test time, are intentionally designed to be very specific, making it highly improbable
to arrive at them by chance or via invalid means. E.g., while a discovery agent might guess a positive
correlation via invalid means, it would be unable to compute the precise target correlation coefficient
without using the correct statistical analysis. The HMS metric is designed to ensure that all aspects
of the target discovery are satisfied in order to receive full reward. Most significantly, the very low
evaluation scores (in Fig 4) substantiate this—even the best agents perform poorly, suggesting that
random guess or invalid shortcuts do not lead to the target result.

7Each value is noised independently; therefore, each row has sufficient true data useful for discovery.
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GPT-4o GPT-4p Llama-3

DB-REAL

NoDataGuess 0.0 4.7 11.5
CodeGen 20.9 19.3 18.9
React 24.4 22.4 18.4
DataVoyager 20.8 20.4 11.6
Reflexion (Oracle) 24.6 23.1 22.5

DB-SYNTH

CodeGen 14.1 8.7 10.9
React 11.6 7.4 12.0
DataVoyager 10.1 6.9 11.7
Reflexion (Oracle) 15.7 12.9 23.2

Figure 4: (Left) Hypothesis Matching Scores (HMS) across agent-LLM pairs in DB-REAL and DB-SYNTH.
(Right) Scatter plots for mean ctxalign vs mean varF1 and mean varF1 vs mean relacc. The plots show that
agent-LLM combinations that are capable of identifying the correct context have a higher likelihood of obtaining
the right set of interacting variables. Similarly, identifying correct variables leads to better identification of
relationships between them.

DB-Real DB-Synth

(a) (b) (c)

Figure 5: Best non-oracle agent’s performance (HMS) (a) across domains, (b) for goal types (dimen-
sion to be discovered), and (c) for different workflow lengths. In (c) workflow length categories for
DB-REAL are s: < 10, m: > 10, < 20, l: > 20. For DB-SYNTH, it is the semantic tree height.

Human alignment with HMS. To assess the robustness of the HMS metric, we ask 3 annotators
to provide a preference ranking over 2 predicted hypotheses for 100 such random pairs (from DB-
REALtest set) when compared to their respective gold hypotheses of each task. We then compute the
corresponding preference ranking using our HMS metric and compare the two lists of preference
rankings. We find human annotators agree with the HMS-based ranking 95% of the time. Each pair
is evaluated by three annotators (and a majority alignment verdict is taken), with a Fleiss kappa of
0.91, showing a very good strength of agreement among annotators. For the null hypothesis, “there
is a difference between human and HMS rankings,” the power of the test with 100 sample pairs is
< 0.05. Upon testing, we reject the null hypothesis, i.e., we find the rankings obtained by HMS are
statistically the same (p < 0.001) as the rankings provided by human annotators. Our finding here
supports the evidence in literature on human alignment in LM-based evaluation for scientific claim
verification (Wadden et al., 2022; Schlichtkrull et al.).

5 EXPERIMENTS

5.1 DISCOVERY AGENTS

We benchmark state-of-the-art LLM-based few-shot reasoning methods as discovery agents with
two closed models, GPT-4o and GPT-4-0125-preview (GPT-4p), and one open, Llama-3-70B, model
powering the reasoning methods. A discovery agent takes the task description, paths to the task
dataset(s) D, metadata about the datasets (description, column descriptions), and the goal, G, to
produce a natural language (NL) hypothesis specified by context, variables, and relationship.

• CodeGen generates the entire code at one go to solve the task, where we provide a demonstration
of a solution code in the context. After code execution and based on the result, it generates the NL
hypothesis and summarizes the workflow.
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Figure 6: Breakdown of performance (HMS) of the best non-oracle agent in several workflow
categories in their decreasing order of appearance in the benchmark.

• ReAct (Yao et al., 2023) solves the task by generating thought and subsequent codes in a multi-turn
fashion based on the past thought-action-observation trace.

• DataVoyager is a multi-component data-driven discovery agent from (Majumder et al., 2024).
It has four components, planner, code generator, data analyzer, and critic, that orchestrate the
discovery process.

• Reflexion (Oracle) (Shinn et al., 2023) is an extension of CodeGen agent, where at the end of one
trial, we provide the “oracle” HMS score as an evaluation signal, and it generates a reflection to
improve (when HMS < 1) in the next trial till it solves the task, or maximum trials (3) are reached.

• NoDataGuess guesses the hypothesis (in DB-REAL) just from the dataset description and the goal
without accessing the datasets where we measure LLM’s memorization of already published works.

5.2 MAIN RESULTS

Fig 4(left) shows that overall performance for all framework-LLM pairs is low for both DB-REAL and
DB-SYNTH, highlighting the challenging nature of the task and the benchmark. Most importantly,
effective reasoning prompts such as React and planning with a self-critic (DataVoyager) do not
help improve the simple CodeGen agent. But with oracle feedback, Reflexion (Oracle) significantly
improves over CodeGen (base) performance. Analysis reveals that almost all non-reflexion agents
solve the easiest (in terms of workflow category and length) instances from the benchmark. GPT-4o
refuses to hallucinate in the NoDataGuess baseline, whereas surprisingly, Llama-3 performs similarly
in both data and no-data modes. We additionally observe that agents that perform well on DB-REAL
may not perform equally (well) in DB-SYNTH, possibly due to the differentiating nature of underlying
workflows. For e.g., while it is easier to perform linear regression for discovery agents, performing
non-linear regression embedded in DB-SYNTH is hard.

5.3 DISCUSSION

Context is important. Fig 4(right) shows score trends in the three-pronged discovery process. A
positive trend between ctxalign and varF1 signifies that to predict variables accurately, accurate
context prediction is necessary. However, correct identification of context is an important first step,
although it does not guarantee success. Similarly, predicting the variables correctly increases the
chance of predicting relationships among them. Additionally, we find clusters (e.g., Llama-3 has
consistently lower scores) in terms of dimension-level performance around LLMs-agent frameworks.
Also, across LLMs, a very similar trend is observed as they operate from different agent frameworks.

Performance across domains and goal types. Fig 5(a) depicts that biology (0%) and engineering
(7%) perform the worst due to their higher dependence on advanced statistical methods, while
economics (25%) and sociology (23%) perform better. Additionally, Fig 5(b) shows goals related to
discovering a relationship given context and variables are more easily solved than the other two types
of goals, finding context and variables. This is explained by the complexity of the hypothesis search,
which is broader for finding the right context or a set of variables given a fixed relationship, whereas
finding the relationship given context and variables is easier.
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Goal: In which century did house sizes and 
daggers significantly decrease 
simultaneously for the second time since the 
start of the observational data? 

Gold: Around 1000 BCE, house sizes and 
daggers significantly decreased 
simultaneously the second time.

Workflow categories: 
Data Semantics: ✅ 
Data cleaning: ✅ 
Time series segmentation: ✅ 

HMS: 100

Predicted: The second occurrence of a 
significant simultaneous decrease in house 
sizes and daggers happened in the 10th 
century BCE.

Goal: Which documentation format is the 
most frequently used for requirements in ML-
enabled system projects after bootstrapping? 

Gold: Notebooks (46.504% subjects, 95% CI 
[46.129, 46.879], for significance with 
bootstrapping) are the most frequently used 
documentation format for requirements in 
ML-enabled system projects.

Workflow categories: 
Data selection: ✅ 
Summary statistics: ✅ 
Bootstrapping for statistical test: ❌ 

HMS: 50            (% with significance not reported)

Predicted: Notebooks are the most 
frequently used format for documenting 
requirements in ML-enabled system projects.

Goal: What is the nature of the relationship 
between the rate of body elongation 
evolution and speciation rates? 

Gold: Rate of body elongation evolution has 
no significant relation with speciation rates.

Workflow categories: 
Data Semantics: ✅ 
Multivariate regression: ❌ 

HMS: 0                       (wrong relationship reported)

Predicted: There is a statistically significant 
positive relationship between the rate of 
body elongation evolution and speciation 
rates, with a p-value of approximately 
3.09e-21 and the rate of body elongation 
evolution explains roughly 17.8% of the 
variability in speciation rates.

Figure 7: Representative examples of tasks where we qualitatively evaluate non-oracle best agent’s
trajectories along with their performance indicated by HMS.

Domain knowledge dependency. To check if additional domain knowledge helps agents perform
better, we collect targeted domain knowledge for the archaeology-related tasks that needed significant
domain knowledge during data collection. When added as additional hints, we find that DataVoyager’s
(GPT-4p) performance jumps from 9.9% (w/o domain knowledge) to 25.4% (w domain knowledge)
for archaeology tasks.

Workflow complexity barrier. Almost all agents struggle more with tasks involving complex statisti-
cal techniques, complex data preparation methods, or domain-specific models. The top three workflow
categories where the best non-oracle model was highly performant are correlation analysis, time
series analysis, and social-science-related analysis, whereas the lowest three workflow categories are
spatial analysis, pollen modeling, and ecological modeling. Fig. 6 shows overlayed HMS on several
workflow categories with several informative spikes and drops. Simpler, common workflow categories
(e.g., correlation, regression, data cleaning) see performance spikes, whereas long-tail workflow
categories pose a great challenge even to the best discovery agent. The richness and the requirement of
long-tail analysis distinguish our benchmark from the traditional data-analysis benchmarks, providing
a systematic way to evaluate LLMs’ capability in realistic data-driven discovery.

Impact of workflow length. Inherently, the difficulty of the tasks is measured by the gold workflow
length (DB-REAL) or the height of the semantic tree (DB-SYNTH). Figure 5(c) shows a decreasing
trend in performance as workflow length (hence, complexity) increases. The performance drops
significantly even for medium-length workflows, highlighting current agents’ limitations.

Qualitative (error) analysis. Fig. 7 depicts three examples where the best non-oracle agent shows
varied performance. While the common tendency of LLMs is to arrive at an answer to a goal as
soon as possible, this behavior appears to be costly for our benchmark. For example, when asked to
perform additional significance tests to verify the importance of summary statistics, the agent does
not pursue it consistently, resulting in low scores. Very often, most discovery agents will not perform
thorough reasoning while solving a task from the benchmark. For example, when several predictive
factors coexist, the relation between two variables should be validated by taking all of them into
account (e.g., via a multivariate regression). However, the impatient discovery agents register simpler
analysis, which (in Fig. 7 example) yield either underspecified or wrong answers.

6 CONCLUSION

We present DISCOVERYBENCH, the first data-driven discovery benchmark consisting of 264 discovery
tasks that capture real scientific workflows extracted from published works. We supplement this with
903 structurally generated synthetic tasks, tailored to evaluate discovery agents for complimentary
workflows. We benchmark state-of-the-art reasoning frameworks with the most advanced LLMs, but
the best agent’s performance only peaks at 25% underscoring the challenging nature of the task and
the benchmark. We hope our timely contribution can increase interest and efforts in making progress
on reliable and reproducible autonomous scientific discovery using large generative models.
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A APPENDIX

A LIMITATIONS

We currently filtered domains and tasks that required forecasting, simulation, or very specific modeling
(species distribution, infection spread, astrophysics equations for exoplanets) in the DB-REAL
benchmark as they were very time-consuming to replicate as well as discover hypotheses. As a result,
we discarded more papers focused on natural and physical sciences compared to social sciences,
which we plan to include in future benchmarks.

We currently do not tackle the challenge of understanding and processing massive datasets, such as
the 8.92 petabytes data from the Cancer Genome Atlas (https://portal.gdc.cancer.gov).
While the potential to discover new insights from such vast data volumes is significant, ensuring these
findings are robust and not subject to p-hacking remains unaddressed by our current methods.

We currently do not handle multi-modal data and complex pipelines, such as those needed for
analyzing satellite and other geospatial data relevant to climate science and astronomy data. This
would involve multiple stages of data processing, the use of various tools, and managing workflow
complexities, for example, analyzing thousands of species patterns combined with satellite data to
study habitats.

Ethical Considerations There could be many potential societal consequences of systems tuned on
our proposed benchmark since it involves using LLMs, such as policy misuse, legal ramifications,
and false discovery. On the positive side, our proposed benchmark can advance the rate of discovery,
leading to an improved standard of living and social well-being.

B DATA COLLECTION FOR DB-REAL

For data-first approach, replication took 15 to 40 person-hours for each NLS-related paper and up to
90 person-hours for the GBIF dataset, where specialized domain knowledge and tools led to higher
complexity. All papers replicated in the NLS dataset were included, while less than half of the papers
in specialized datasets like GBIF and WBOD were added to DISCOVERYBENCH.

Citation/Repositories for DB-REAL: List of scientific works from where we have replicated our
gold workflows and hypotheses:

1. Sociology: (Zaw et al., 2016; Apel & Sweeten, 2010; Alexander et al., 1982; Smith et al.,
2005; Dougherty, 2003)

2. Biology: (Cerezer et al., 2023; Riera et al., 2024)

3. Economics: (Pal, 2023; Appiah, 2017; Weatherly et al., 2022; Rambeli et al., 2021; Ottaviano
et al., 2013)

4. Engineering: (Alves et al., 2023)

5. Meta-science: (Heyard & Held, 2024)

6. Humanities: (Brozio et al., 2024; 2019; Lorenz, 2018; Maida et al., 2023; Sommerfeld,
2013; Feeser et al., 2019; Parkinson et al., 2021; Kneisel, 2021; Kaiser & Schier, 2021;
Brinkmann, 2019; Dal Corso et al., 2019; Palmisano et al., 2021; Parkinson et al., 2021)

Distribution: All assets come under CC license or open licenses (Table 3). All NLS-related
datasets are licensed under CCZero, and the rest of the datasets are licensed under CC by 4.0,
which allows them to be freely used/distributed as long as they are properly cited. In NLS and ML
engineering datasets, where there are human subjects, datasets are anonymized to protect respondent
confidentiality.

C DATA GENERATION FOR DB-SYNTH

For leaves, we use different sampling strategies based on the data type. Specifically, for categorical
nodes, we sample instances with replacement from the range of allowed values, whereas for numeric,
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Dataset Paper/Citation License Source
nls_raw, nls_bmi_raw,
nls_bmi, nls_ses, nls_
incarceration

National Longitudinal Surveys
(Moore et al., 2000)

Creative
Commons
CCZero

Link

introduction_
pathways_non-native_
plants

Effect of introduction pathways on
the invasion success of non-native
plants along environmental gradients
(Riera et al., 2024)

CC by 4.0 Link

worldbank_education_
gdp, worldbank_
education_gdp_
indicators

WorldBank Data
https://databank.worldbank.
org/source/
world-development-indicators

CC by 4.0 Link

archaeology Patterns of Socio-economic and
Cultural Transformations in Neolithic
and Bronze Age Societies in the
Central Northern European Plain
(Brozio et al., 2024)

CC by 4.0 Link

meta_regression_raw,
meta_regression

Meta-regression to explain shrinkage
and heterogeneity in large-scale
replication projects (Heyard & Held,
2024)

CC by 4.0 Link

immigration_
offshoring_effect_on_
employment

Immigration, Offshoring, and
American Jobs (Ottaviano et al.,
2013)

CC by 4.0 Link

evolution_freshwater_
fish

Accelerated body size evolution in
upland environments is correlated
with recent speciation in South
American freshwater fishes (Cerezer
et al., 2023)

CC by 4.0 Link

requirements_
engineering_for_ML_
enabled_systems

Industrial Practices of Requirements
Engineering for ML-Enabled
Systems in Brazil (Alves et al., 2024)

CC by 4.0 Link

Table 3: Licenses for original data sources. The Creative Commons Attribution license allows the
re-distribution and re-use of a licensed work on the condition that the creator is appropriately credited.

we first select a distribution (e.g., normal) and its parameters based on the specified range and then
perform sampling. For each subsequent level in F , we create new columns for nodes by simply
executing their pandas expressions8. To recover from any execution errors, we additionally use a
self-refine (Madaan et al., 2023) approach to generate new pandas expressions guided by the execution
error logs. Finally, to mimic real-world challenges in data collection, we probabilistically perturb
each instance x ∈ xi by adding noise or dropping values to create missing data9. After generation, D
contains a column for each node in F .

The expressions associated with the hypothesis themselves are generated by prompting the model
with natural-language workflow steps, e.g., “within-cluster analysis” and “temporal analysis.” We
first curate a pool of real workflow steps from DB-Real workflows. Then to encourage diversity in
plausible (according to the LLM) workflows and to increase coverage (by accounting for workflows
that we could not cover in DB-Real for practical/reproducibility reasons), we allow LLMs to combine
several real-workflow steps (type or variable derivation, type of relationship derivation, etc) plausibly
through drawing from the real workflow pool. This significantly improves the likelihood of testing

8The expression is guaranteed to only have variables already generated due to the bottom-up construction.
9Each value is noised independently; therefore, each row has sufficient true data useful for discovery.
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synthetic workflows that connect well with the real ones. Moreover, we also use self-refine and
human filtering to monitor the quality of the expressions and the variable metadata therein after tree
and data generation. E.g., we saw a substantial improvement in quality when generating variable
values from a specified range rather than a random range.

D COMPOSITION OF DISCOVERYBENCH

D.1 METADATA STRUCTURE

• id: An identifier for the metadata.

• domain: The broad field of study or area of research.

• workflow_tags: A set of keywords summarizing the main processes or techniques used in
the replication implementation. They provide an overview of the methodological approach
and facilitating the identification of relevant analytical techniques.

• domain_knowledge:

– Contextual information or insights related to the dataset, explaining how certain behav-
iors or variables can be interpreted within the field of study.

– It helps open avenues to think in directions that LLM might not have considered
otherwise, broadening the understanding of the field.

• datasets: Contains detailed information about the datasets used, including:

– name: The name or filename of the dataset.
– description: A summary of the dataset’s contents and the type of data it includes.
– max_depth: The maximum hierarchical level of nested data structures within the

dataset, indicating the complexity of the data.
– columns: Detailed descriptions of each column in the dataset, including:

* name: The column’s name or header.
* description: Explanation of the data contained in the column and its significance.
* depth: The hierarchical level of the column within the dataset, indicating its

structural position.

• hypotheses: Statements or predictions being tested, divided into:

– main: Primary hypotheses that are central to the discovery task.

• workflow: A step-by-step description of the replication process followed to validate the
hypotheses, outlining the methods and procedures used from data preparation to final
analysis. Some of the workflows and sub-workflows are high-level and thus the same for
different queries as they follow the same implementation leading to a range of hypotheses.

• queries: Goals related to each hypothesis, each including:

– qid: A unique identifier for the goal for a given true/gold hypothesis.
– difficulty: Categorization of the difficulty. Structurally defined for DB-SYNTH using

the semantic tree definition.
– true_hypothesis: The hypothesis being tested through the goal. This defines the

primary statement or prediction under investigation.
– relevant_cols: Columns from the dataset that are relevant to answering the query,

indicating the specific data points that can be used in the analysis. Only appears for
DB-SYNTH.

– target_col: The column being predicted or the dependent variable in the analysis. Only
appears for DB-SYNTH.

– question_type: The type of question being asked categorizing the nature of the inquiry.
– question: The discovery goal.
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D.2 DIRECTORY STRUCTURE FOR DB-REAL

There may be more than one query per metadata. The train split contains 14 metadata files and 25
queries. The test split contains 144 metadata files and 239 queries. Metadata folders with the same
prefixes use the same underlying dataset with either a subset or a preprocessed version. When dealing
with a full dataset (i.e., nls_raw), the task becomes substantially harder due to the data preparation
required.

|-test
|---archaeology
|---introduction_pathways_non-native_plants
|---meta_regression
|---meta_regression_raw
|---nls_incarceration
|---nls_raw
|---nls_ses
|---requirements_engineering_for_ML_enabled_systems
|---worldbank_education_gdp
|---worldbank_education_gdp_indicators
|-train
|---evolution_freshwater_fish
|---immigration_offshoring_effect_on_employment
|---nls_bmi
|---nls_bmi_raw

D.3 DIRECTORY STRUCTURE FOR DB-SYNTH

There is one query per metadata. The train split contains 551 metadata files (queries), the dev split
contains 153 metadata files (queries), and the test split contains 200 metadata files (queries).

|-test
|---ancient-languages_*_*
|---artificial-ecosystems_*_*
|---astronomy_*_*
|---board-games_*_*
|---coding-competitions_*_*
|---digital-artistry_*_*
|---futuristic-technology_*_*
|---impressionist-art_*_*
|---machine-learning_*_*
|---molecular-gastronomy_*_*
|---neuroscience_*_*
|---philosophical-debates_*_*
|---robotics_*_*
|-train
|---adventure-travel_*_*
|---ancient-architecture_*_*
|---ancient-astronomy_*_*
|---aviation_*_*
|---biodiversity-conservation_*_*
|---cryptic-puzzles_*_*
|---cryptocurrency_*_*
|---culinary-arts_*_*
|---cybersecurity_*_*
|---environmental-activism_*_*
|---fashion-design_*_*
|---fine-arts_*_*
|---literary-classics_*_*
|---marine-biology_*_*
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|---marine-conservation_*_*
|---medieval-literature_*_*
|---musical-therapy_*_*
|---photography_*_*
|---robotic-explorers_*_*
|---solar-power_*_*
|---space-tourism_*_*
|---steampunk-culture_*_*
|---theater-productions_*_*
|---underwater-archaeology_*_*
|---urban-gardening_*_*
|---vintage-automobiles_*_*
|---virtual-reality_*_*

E EXPERIMENTS

For GPT-based models, we use OpenAI API (https://platform.openai.com/docs/
models), and for Llama3, we used Together API (https://docs.together.ai/docs/
inference-models)

E.1 DISCOVERY AGENT

The command discovery_agent.py is used with various options to customize its behavior for
discovery tasks. Below are the options explained:

• Usage: discovery_agent.py [OPTIONS] QUERY – Executes the discovery agent with
specified options.

• Options:
– -agent_type [coder|react]: Specifies the type of agent to use for discovery. The

default type is coder. Options include coder for code-related tasks and react for reactive
tasks.

– -model_name TEXT: Sets the model to be used. The default is gpt-4o. Available models
include gpt-4-turbo, llama-3-70b-chat, claude-3-opus, and gemini-pro.
An exhaustive list is available in config/model_config.json.

– -api_config TEXT: Path to the API configuration file. The default path is
config/api_config.json.

– -log_file TEXT: Specifies the path to the log file where operations details are stored.
– -metadata_path TEXT: Path to the metadata file. This option is required.
– -metadata_type [real|synth]: Specifies the type of metadata, where real stands

for actual metadata and synth for synthetic. This option is required.
– -add_domain_knowledge: Includes domain-specific knowledge in the query processing.
– -add_workflow_tags: Includes workflow tags in the query to enhance context.
– -help: Displays the help message and exits, showing all available command options.

E.2 EVALUATION

Explain about evaluation in a line and then explain the CLI usage here.

The command discovery_eval.py is used to evaluate the outputs generated by the discovery
agent. Below are the detailed descriptions of the command options:

• Usage: discovery_eval.py [OPTIONS] QUERY – Executes the evaluation agent with
specified options and a query.

• Options:
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– -gold_hypo TEXT: Specifies the gold standard hypothesis for comparison. This field is
required.

– -gold_workflow TEXT: Specifies the gold standard workflow to be used as a reference
during evaluation.

– -pred_hypo TEXT: Specifies the predicted hypothesis generated by the discovery agent.
This field is required.

– -pred_workflow TEXT: Specifies the predicted workflow generated by the discovery
agent.

– -metadata_path TEXT: Specifies the path to the metadata file that is utilized during
evaluation. This field is required.

– -metadata_type [real|synth]: Determines the type of metadata used in the evalua-
tion, where real indicates actual metadata and synth indicates synthetic metadata. This
field is required.

– -eval_output_path TEXT: Specifies where the evaluation results should be saved.
– -help: Displays the help message and exits, detailing all available command options.
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F EVALUATOR PROMPTS

We provide below the exact prompts used for our GPT-4 based evaluation of the generated hypothesis
against the gold hypothesis.

Listing 1 Decomposition Prompt to obtain context from a hypothesis.

decomposition_prompt = f"""\
Given a set of dataset columns, a ground-truth hypothesis, and
the analysis workflow used, your task is to extract the context
present in the hypothesis.

Here are the definitions for context:

- Contexts: Boundary conditions that limit the scope of a
sub-hypothesis. E.g., “for men over the age of 30”, “in Asia and
Europe”, or "None" if there is no boundary condition specified.

Make sure to only use the information present in the hypothesis
and the workflow. Do not add any new information.
If no context can be extracted, return an empty list.

Here is the metadata for the task:
```json
{{

"datasets": {dataset_metadata},
"hypothesis": "{hypothesis}",
"workflow": "{workflow}"

}}
```

Return your answer as a JSON object in the following format:
```json
{{
"hypothesis":

{{
"text": the hypothesis in natural language,
"context": a short text description of the context of
the hypothesis,
"explanation": a short text explanation for the
breakdown of the sub-hypothesis

}}
}}```
"""
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Listing 2 Matching prompt to match contexts of two sub-hypotheses.

matching_prompt = f"""
Given a gold hypothesis, a gold context, a predicted hypothesis,
and a predicted context, your task is
to determine if the predicted context semantically matches the
ground-truth context.

Here is the definition for Context: Boundary conditions that
limit the scope of a sub-hypothesis. E.g., “for men over the age
of 30”, “in Asia and Europe”, or "None" if there is no boundary
condition specified.

If the predicted context matches the gold context, return true,
otherwise return false.

Here is the metadata for the task:
```json
{{

"gold_hypothesis": "{gold_hypotheis}",
"gold_context": "{gold_context}",
"predicted_hypothesis": "{pred_hypothesis}",
"predicted_context": "{pred_context}"

}}
```

Return your answer as a JSON object in the following format:
```json
{{

"match": true or false
}}
```"""
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Listing 3 Prompt for variable alignment between two sub-hypotheses.

main_context = f"""
You are going to compare two natural-language hypotheses HypoA
and HypoB accompanied with optional workflows: WorkflowA for
HypoA and WorkflowB for HypoB.
Both the hypotheses answer the natural language query "QUERY"
over the dataset(s) described by dataset description(s) and
column description(s) below.
Compare HypoA and HypoB in terms of three aspects: Contexts,
Variables, and Relations.
E.g., for the hypothesis "From 1995 to 2009, the number of
sandhill cranes around the tundra (Indigilka River) surged by an
astounding ~10X":
* Contexts refer to the stratification of the data under which
the given hypothesis is True. E.g., "For all women", "From 1995
to 2009".
* Variables refer to the set of variables (either dependent or
independent) that are mentioned in the hypothesis. E.g., number
of sandhill cranes, location.
* Relations refer to the form of relation between the variables.
E.g., "surged by ~10x".

Answer the following questions for a given pair of hypotheses,
HypoA and HypoB, along with an explanation grounded on the QUERY
and the DATASET(S).

Here is the metadata for the task:
```json
{{
"datasets": {datasets_json},
"query": {query},
"HypoA": {gold_hypo},
"WorkflowA": {gold_workflow},
"HypoB": {gen_hypo},
"WorkflowB": {gen_workflow}
}}
```

{variable_question}"""
variable_question = """\

Question: For both HypoA and HypoB, what are the different
variables found in the hypotheses? \
Return your answer as a JSON object in the following format:
```json
{{
"sizeA": num of variables used in HypoA
"sizeB": num of variables used in HypoB
"intersection": num of variables common in HypoA and HypoB. Use
*fuzzy matching* to determine intersection, accounting for
paraphrases or slightly different surface forms
"explanation": a short text explanation about the variables
}}```
Answer:"""
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Listing 4 Prompt for relationship alignment between two sub-hypotheses.

main_context = f"""
You are going to compare two natural-language hypotheses HypoA
and HypoB accompanied with optional workflows: WorkflowA for
HypoA and WorkflowB for HypoB.
Both the hypotheses answer the natural language query "QUERY"
over the dataset(s) described by dataset description(s) and
column description(s) below.
Compare HypoA and HypoB in terms of three aspects: Contexts,
Variables, and Relations.
E.g., for the hypothesis "From 1995 to 2009, the number of
sandhill cranes around the tundra (Indigilka River) surged by an
astounding ~10X":
* Contexts refer to the stratification of the data under which
the given hypothesis is True. E.g., "For all women", "From 1995
to 2009".
* Variables refer to the set of variables (either dependent or
independent) that are mentioned in the hypothesis. E.g., number
of sandhill cranes, location.
* Relations refer to the form of relation between the variables.
E.g., "surged by ~10x".

Answer the following questions for a given pair of hypotheses,
HypoA and HypoB, along with an explanation grounded on the QUERY
and the DATASET(S).

Here is the metadata for the task:
```json
{{
"datasets": {datasets_json},
"query": {query},
"HypoA": {gold_hypo},
"WorkflowA": {gold_workflow},
"HypoB": {gen_hypo},
"WorkflowB": {gen_workflow}
}}
```

{variable_question}"""
dimension_question = """

Question: Does HypoB exhibit the same relation as HypoA?
Compare using the following example hierarchy of relationships
(based on specificity): \
"there exists a relationship" > "positive relationship" >
"positive AND (linear OR quadratic)" > "positive AND linear."
Options: A) very similar B) similar but general than HypoA C)
different
Return your answer as a JSON object in the following format:
```json
{{
"answer": one of the options from A) very similar B) similar but
general than HypoA C) different
"explanation": a short text explanation about the relationship
comparison
}}```
Answer:"""
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