
A Supplementary Material

A.1 Dataset Nutrition Labels

Field Name Definition
id Task ID.
slug_name Task name.
meta_info The field accommodating the task description and submission statistics.
difficulty The difficulty level of the task.
pretty_content The field introduces the task description, examples, and constraints in pure text.
solutions Samples of solutions extracted from actual past submissions.
prompt The prompt of the solution.
entry_point The nominative entry point of the solution.
generator_code A function to generate test cases.
test_cases A collection of generated test cases.
convert_online A function to format test cases for online evaluation.
convert_offline A function to format test cases for offline evaluation.
evaluate_offline A function designed to evaluate solutions in an offline setting.

Table 5: Definitions of the fields within the Mercury dataset.

A.2 Mercury Data Distribution and Customized Data Structures

Except for all built-in Python data structures, Mercury imports another two structures to enhance the
diversity and complexity as shown in Figure 4.

Figure 4: Mercury supports two customized
data structures: TreeNode and ListNode.

Splits Easy Medium Hard Sum
Mercury-train 446 968 219 1,633
Mercury-eval 88 81 87 256

Table 6: Mercury-eval encompasses 256
tasks, the difficulty of which has been bal-
anced for model evaluation. Mercury-train

comprises the remaining 1,633 tasks for
model training.

A.3 Sandbox Details

Time and Memory Limitation. Each executed code within the sandbox is subject to certain
constraints to ensure fair utilization of resources and to prevent any single code from monopolizing
the system resource. Specifically, there are two primary constraints: a time limit and a memory limit.
The time limit restricts how long the code can execute before being forcibly terminated, thereby
ensuring that no infinite loops or excessively long computations negatively impact the availability of
the sandbox. The memory limit caps the amount of RAM that a process can consume. This measure
precludes a single code from exhausting the memory resources, which could lead to a denial of
service for subsequent codes. In our experiment settings, the timeout limit is 30 seconds, and the
memory limit is 2048 MB for each solution execution.

IO Restriction. To mitigate harmful activities such as unauthorized command execution or data
exfiltration, the sandbox imposes strict Input/Output (IO) restrictions. These restrictions include
limitations on reading from or writing to the disk and restrictions on the use of network sockets for
sending or receiving data. By controlling the IO operations, the sandbox can prevent many common
vulnerabilities and ensure that the code runs without interfering with other processes of the host
system.

14

Isolated File System. The sandbox employs an isolated file system to provide a safe execution
environment for the code. This means that the process running in the sandbox has its virtual file
system, which is separated from the host’s file system. The isolated nature of this file system ensures
that even if a process within the sandbox attempts to modify or delete files, these changes will not
affect the host system or other sandboxes. It acts as a security layer, protecting the host from potential
threats and maintaining the integrity of the overall system.

System Libraries Redirection. To maintain a consistent and controlled environment, the sandbox
redirects calls to system libraries to sandbox-specific versions. This is done to prevent code from using
certain functions directly from the host’s system libraries, which could result in unpredictable behavior
or security vulnerabilities. The redirected libraries are often limited to a subset of functionalities
deemed safe and necessary for executing programs within the sandbox, thus enforcing the security
policies and ensuring that the running programs behave as expected.

Single-threaded Evaluation. Single-threaded evaluation refers to executing code using a sole
thread of execution, thereby simplifying resource management and timing assessments, and mitigating
the intricacies linked with multi-threaded execution, such as synchronization issues, race conditions,
and potential deadlocks. This mode of operation is especially important in testing environments
where reproducibility and fairness are paramount, ensuring that each piece of code is evaluated using
identical computational resources.

Code Efficiency Measurement. Figure 5 shows the overview of the code execution pipeline. We
gauge the Solution Instantiation and Test Ease Evaluation time spans as the execution runtime.

Context
Initialization

Solution
Instantiation

Test Cases
Evaluation Clean upTest Case

Generation

Figure 5: Sandbox Execution Pipeline. 1) Test Case Generation. We first employ the corresponding
test case generator for each task to produce a comprehensive set of test cases for the subsequent
evaluation. 2) Context Initialization. To prevent any unexpected code behavior, the sandbox
environment is meticulously reinitialized for each new task. This phase ensures that all the common
libraries required for executing the solution are loaded. 3) Solution Instantiation. The solution
under evaluation will be encapsulated as a solution class. 4) Test Case Evaluation. Each test case
the generator provides will be rigorously executed against the solution. A solution must successfully
pass all the test cases to be deemed valid. 5) Clean up. The final stage involves the sandbox dutifully
clearing the namespace environment and the temporary directory. Mercury records the time consumed
during the stage of Solution instantiation and Test Ease Evaluation as the primary metric for assessing
code efficiency.

A.4 DPO Experiment Details

Dataset Construction. For every task problem T
i in Mercury, we randomly selected two solutions

from the task solution set {si
w
, s

i

l
} ⇠ T

i

solution
, to construct the preference dataset D = {P i

, s
i
w
, s

i

l
},

where p
i is the prompt, si

w
has a faster runtime than s

i

l
.

Model Initialization. RLHF [48] typically begins with a reference LLM ⇡ref . Here, we ini-
tialize ⇡ref by maximizing the likelihood of faster code completions (p, sw) ⇠ D, so that
⇡ref = argmax⇡ E(p,sw)⇠D [log ⇡(sw|p)]. This procedure helps mitigate the distribution shift
between the true reference distribution and ⇡ref .

Optimization. We optimize the target LLM ⇡✓ to minimize LDPO for the given ⇡ref and D

and desired hyperparameter �. The gradient with respect to the parameters ✓ can be written as
r✓LDPO(⇡✓;⇡ref).

LDPO(⇡✓;⇡ref) = �E(x,sw,sl)⇠D

log↵(� log

⇡✓(sw|p)
⇡ref (sw|p)

)� log
⇡✓(sl|p)
⇡ref (sl|p)

)

�
(2)

15

r✓LDPO(⇡✓;⇡ref) =

� �E(p,sw,sl)⇠D

2

64↵(r̂✓(p, sl)� r̂✓(p, sw))| {z }
higher weight for wrong estimate

2

64 r✓ log ⇡(sw|p)| {z }
increase likelihood of sw

� r✓ log ⇡(sl|p)| {z }
decrease likelihood of sl

3

75

3

75 (3)

Intuitively, the gradient of the loss function LDPO increases the likelihood of the preferred comple-
tions sw and decreases the likelihood of dis-preferred completions sl, which are weighed by how
much higher the implicit reward model r̂✓ rates the dis-preferred completions, scaled by �, i.e., how
incorrectly the implicit reward model orders the completions, accounting for the strength of the KL
constraint.

A.5 External Libraries Utilized in Mercury

Raw LeetCode solutions typically commence without importing shared libraries. To avoid solution
failure due to absent libraries, we proactively import the libraries listed in Figure 6 during the sandbox
Context Initialization phase. Note that all these libraries are imported in a temporary namespace of
which the sandbox controls code behaviors.

Figure 6: External Libraries Imported in Mercury Evaluate Framework.

A.6 Model Details

Model Name Model Scale Link
deepseek-coder-1.3b-base 1.3B https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
starcoder2-3b 3B https://huggingface.co/bigcode/starcoder2-3b
deepseek-coder-6.7b-base 6.7B https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
starcoder2-7b 7B https://huggingface.co/bigcode/starcoder2-7b
CodeLlama-7b-hf 7B https://huggingface.co/codellama/CodeLlama-7b-hf
CodeQwen1.5-7B 7B https://huggingface.co/Qwen/CodeQwen1.5-7B
CodeLlama-13b-hf 13B https://huggingface.co/codellama/CodeLlama-13b-hf
starcoder2-15b 15B https://huggingface.co/bigcode/starcoder2-15b
deepseek-coder-33b-base 33B https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
CodeLlama-34b-hf 34B https://huggingface.co/codellama/CodeLlama-34b-hf

Table 7: Model Details. We evaluated LLMs ranging from 1.3B to 34B.

16

A.7 A Mercury Example

Given n non-negative integers representing an
elevation map where the width of each bar is 1 ,
compute how much water it can trap after raining.

Example
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array
[0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

3

2

1

class Solution:
 def trap(self, height: List[int]) -> int:
 l,r = 0, len(height) -1

 total = 0
 maxLeft = height[l]
 maxRight = height[r]

 while l < r:
 if maxLeft < maxRight:
 l += 1
 maxLeft = max(maxLeft, height[l])
 total += maxLeft - height[l]
 else:
 r -= 1
 maxRight = max(maxRight, height[r])
 total += maxRight - height[r]

 return total

Runtime: 125 ms
class Solution:
 def trap(self, height: List[int]) -> int:
 prev_greatest = []
 next_greatest = []
 total_tile_area = 0
 greatest = 0
 for i in range(len(height)):
 prev_greatest.append(greatest)
 greatest = max(greatest, height[i])
 greatest=0
 for i in range(len(height)):
 next_greatest.insert(0, greatest)
 greatest = max(greatest, height[len(height)-i-1])
 for i in range(1, len(height)-1):
 if min(next_greatest[i], prev_greatest[i]) > height[i]:
 total_tile_area += (abs(min(

next_greatest[i], prev_greatest[i]) - height[i]
))

 return total_tile_area

Runtime: 600 ms

class Solution:
 def trap(self, height: List[int]) -> int:
 total = 0
 maxLeft, maxRight = [height[0]], []
 currentMaxLeft = height[0]
 currentMaxRight = max(height[1:] or [0])
 for i in range(1, len(height)):
 maxLeft.append(currentMaxLeft)
 maxRight.append(currentMaxRight)
 if(height[i] > currentMaxLeft):
 currentMaxLeft = height[i]
 if(height[i] == currentMaxRight):
 currentMaxRight = max(height[i+1:] or [0])
 maxRight.append(0)
 for i in range(0, len(height)):
 current = min(maxLeft[i], maxRight[i]) - height[i]
 if current > 0: total += current
 return total

Runtime: 2200 ms
class Solution:
 def trap(self, height: List[int]) -> int:
 if len(height) == 0 or len(height) == 1:
 return 0

left_bound = height[0]
 right_bound = max(height[1:])
 water = 0

 for i in range(1, len(height)-1):
 right_bound = max(height[i+1:])

 if height[i] < left_bound and height[i]<right_bound:
 water += min(left_bound, right_bound) - height[i]
 elif height[i] >= left_bound:
 left_bound = height[i]

return water

Runtime: 4500 ms

Figure 7: This case is drawn from the Mercury-eval benchmark. The upper block presents the
problem statement with its example, while the subsequent portion exhibits the corresponding solutions.
Although all solutions are functionally correct, they exhibit significant differences in runtimes.

A.8 A HumanEval Example

1

8

12

1 1

21 21

144 144

36 Timeout 14930352

Input Output Expected

Figure 8: An HumanEval example of insufficient test cases. Even though the code passed all test
cases in the dashed-line box, it remains vulnerable to timeout or stack overflow when subjected to a
larger input.

17

A.9 Prompts for Code Generation

To guarantee a fair comparison, we apply a unified one-shot prompt template for each pre-trained
Code LLM. As displayed in Figure 9, the prompt template contains one shot example as well as three
placeholders: <task_content>, <code_starter>, and <code_completion>.

Figure 9: Code Generation Prompts. Lines 1 to 40 are the one-shot example. In Mercury experiments,
we feed the pretty_content field to the placeholder <task_content>, the prompt field to the placeholder
<code_starter>, and the solution field to the placeholder <code_completion>

18

A.10 Hardware-agnostic Evaluation

Figure 10: Beyond scores of ‘deepseek-coder-33b’ (solid line) and ‘deepseek-coder-6.7b’ (dashed
line) across varied Intel Skylake CPU configurations. The results show that Beyond can remain
consistent across different hardware configurations.

A.11 Distribution of Bootstrapped Beyond Scores

Figure 11: Bootstrapped Beyond Distribution. We evaluate 3B, 7B, and 15B Starcoder2[24] models
using the Mercury benchmark. Each model was executed 50 times to ensure score robustness. The
y-axis in the resulting histogram represents the frequency of observations within each bin.

A.12 Dataset Metadata
The Mercury dataset is hosted on Huggingface: https://huggingface.co/datasets/Elfsong/
Mercury. The Croissant Metadata can be found at https://huggingface.co/api/datasets/
Elfsong/Mercury/croissant.

A.13 Legal Compliance
In this study, we have curated a comprehensive dataset by gathering publicly accessible task de-
scriptions and archived solutions from LeetCode (https://leetcode.com/problemset/). We
have ensured that our collection process is strictly limited to tasks available in the free domain,
intentionally excluding any content that falls under the paid services of the platform. We abide by
Fair Use [33] (Section 107): “the fair use of a copyrighted work, including such use by ... scholarship,

or research, is not an infringement of copyright”, where fair use is determined by “the purpose

and character of the use, including whether such use is of a commercial nature or is for nonprofit

educational purposes”. With the Mercury dataset, we emphasize its strictly non-commercial nature
and underscore its purpose: to facilitate and advance academic research. The Mercury dataset is
released under Creative Commons Attribution Non Commercial 4.0 [10].

19

https://huggingface.co/datasets/Elfsong/Mercury
https://huggingface.co/datasets/Elfsong/Mercury
https://huggingface.co/api/datasets/Elfsong/Mercury/croissant
https://huggingface.co/api/datasets/Elfsong/Mercury/croissant
https://leetcode.com/problemset/

	Introduction
	Mercury Datasets
	Code Efficiency Metric
	Experiments
	Baselines
	Functional Correctness Benchmarks
	Experimental Setups
	Empirical Results
	Failure Analysis

	Related Work
	Limitations
	Conclusion
	Supplementary Material
	Dataset Nutrition Labels
	Mercury Data Distribution and Customized Data Structures
	Sandbox Details
	DPO Experiment Details
	External Libraries Utilized in Mercury
	Model Details
	A Mercury Example
	A HumanEval Example
	Prompts for Code Generation
	Hardware-agnostic Evaluation
	Distribution of Bootstrapped Beyond Scores
	Dataset Metadata
	Legal Compliance

