
A Preliminaries

A.1 Norms

For a set S , the `1, `2 and `1 norms on RS are given respectively by

kak1 =
X

v2S
|av|, kak2 =

sX

v2S
(av)2, kak1 = max

v2S
|av|.

Given a probability distribution ⇡ on S , we consider the norms k · kL1(⇡) and k · kL2(⇡) on RS , given
by

kakL1(⇡) =
X

v2S
⇡(v)|av|, kakL2(⇡) =

sX

v2S
⇡(v)(av)2.

We also take advantage of a number of matrix norms. For norms k · k⇣ and k · k⇠ on RS0
and RS

respectively, we consider the matrix operator norm of M 2 RS⇥S0
given by

kMk⇣!⇠ = max
a2RS\{0}

kMak⇠
kak⇣

.

For the special case of kMk`s!`t , we will simply write kMks!t. Of particular importance are
kMk1!1 which corresponds to the largest entry of M , kMk1!2, which corresponds to the maximum
`2 norm of a column of M , and kMk2!1, which corresponds to the maximum `2 norm of a row of
M .

The inner product of two matrices M and N in RS⇥S0
is defined by M • N = Tr(M>

N) =P
u2S,v2S0 mu,vnu,v .

The factorization norm known as the �2 norm is given for M 2 RS⇥S0
by

�2(M) = min{kRk2!1kAk1!2 : RA = M}.
The �2 norm is, indeed, a norm, i.e., it is non-negative, �2(M) = 0 if and only if M = 0, for
any real s we have �2(sM) = |s|�2(M), and we also have the triangle inequality �2(M + N) 
�2(M) + �2(N).

The approximate �2 norm is the smallest �2 norm of a matrix that approximates the given matrix
entrywise up to an additive ↵, i.e.,

�2(M,↵) = min{�2(fM) : kfM �Mk1!1  ↵}.

The dual �2 norm of a matrix G in RS⇥S0
is given by

�
⇤
2 (k) = max{M •N : �2(M)  1} = max

f,g

X

u2S,v2S0

nu,vf(u)g(v),

where the second max ranges over functions f : S ! B2 and g : S 0 ! B2 that map the index sets of
the rows and columns of N , respectively, to vectors of `2 norm at most 1.

A.2 Differential privacy

Let X denote the data universe. A generic element from X will be denoted by x. We consider
datasets of the form X = (x1, . . . , xn) 2 Xn, each of which is identified with its histogram h 2 ZX

�0

where, for every x 2 X , hx = | {i : xi = x} |, so that khk1 = n. To refer to a dataset, we use X

and h interchangeably. A pair of datasets X = (x1, . . . , xi, . . . , xn) and X
0 = (x1, . . . , x

0
i
, . . . , xn)

are called adjacent if X 0 is obtained from X by replacing an element xi of X with a new universe
element x0

i
.

For parameters " > 0, an "-differentially private ("-DP) mechanism [Dwork et al., 2006] is a
randomized function M : Xn ! Z which, for all adjacent datasets X and X

0, for all outcomes
S ✓ Z , satisfies

Pr
M

[M(X) 2 S]  e
" Pr
M

[M(X 0) 2 S].
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Of special interest are "-differentially private mechanisms Mi : X ! Y which take a singleton
dataset X = {x} as input. These are referred to as local randomizers. A sequence of "-differentially
private local randomizers M1, . . . ,Mn, together with a post-processing function A : Yn ! Z ,
specify a (non-interactive) locally "-differentially private ("-LDP) mechanism M : Xn ! Z [Ev-
fimievski et al., 2003, Dwork et al., 2006, Kasiviswanathan et al., 2008]. When the local mechanism
M is applied to a dataset X , we refer to TM(X) = (M1(x1), . . . ,Mn(xn)) as the transcript of the
mechanism. Then the output of the mechanism is given by M(X) = A(TM(X)).

A linear query is specified by a bounded function q : X ! R. Abusing notation slightly, its answer
on a dataset X is given by q(X) = 1

n

P
n

i=1 q(xi). We also extend this notation to distributions: if
� is a distribution on X , then we write q(�) for E

x⇠�

[q(x)]. A workload is a set of linear queries

Q = {q1, . . . , qk}, and Q(X) = (q1(X), . . . , qk(X)) is used to denote their answers. The answers
on a distribution � on X are denoted by Q(�) = (q1(�), . . . , qk(�)). We will often represent Q by
its workload matrix W 2 RQ⇥X with entries wq,X = q(X). In this notation, the answers to the
queries are given by 1

n
Wh. We will often use Q and W interchangeably.

A.3 PAC learning

A concept c : U ! {±1} from a concept class C identifies each sample a 2 U with a label c(a). The
empirical loss of the concept c on a dataset X = ((a1, b1), . . . , (an, bn)) 2 (U ⇥ {±1})n, denoted
LX(c), is given by

LX(c) =
1

n

nX

i=1

(I[c(ai) 6= bi])

For a distribution � on U ⇥ {±1}, the population loss of c on �, denoted L�(c) is given by L�(c) =
P(a,b)⇠� [c(a) 6= b].

We will say that a mechanism M : (U ⇥ {±1})n ! {±1}U (↵,�)-learns C agnostically with n

samples if, for any distribution � over U ⇥ {±1}, given as input a random dataset X drawn i.i.d.
from �, the mechanism returns some hypothesis h 2 U ! {±1} which satisfies

PX,M


L�(h)  min

c2C
L�(c) + ↵

�
� 1� �.

Realizable learning is an important special case of agnostic learning where the underlying distribution
agrees with some concept. We say that M : (U ⇥ {±1})n ! {±1}U (↵,�)-learns C realizably with
n samples if, whenever � is a distribution over U ⇥ {±1} which satisfies P(a,b)⇠� [c(a) = b] = 1 for
some unknown c 2 C, then, given a random dataset X drawn i.i.d. from �, the mechanism returns a
hypothesis h 2 U ! {±1} which satisfies

PX,M [L�(h)  ↵] � 1� �.

The problem of refutation asks whether the underlying distribution is well approximated by the
concept class. In particular, for ✓ 2 [0, 1], we will say that M✓ : (U ⇥ {±1})n ! {±1} (↵,�)-
refutes C for threshold ✓ if the following two conditions are met:

1. When � is a distribution on U ⇥ {±1} which satisfies L�(c)  ✓ for some c 2 C,

PX,M [M(X) = 1] � 1� �;

2. When � is a distribution on U ⇥ {±1} which, for all h 2 {±1}U , satisfies L�(h) > ✓ + ↵,
then

PX,M [M(X) = �1] � 1� �.

Realizable refutation is a special case of agnostic refutation where the goal is to recognize whether
the underlying distribution is labeled by a concept from the concept class. We say that M✓ :
(U ⇥ {±1})n ! {±1} (↵,�)-refutes C realizably if it (↵,�)-refutes C for threshold 0.

13



B Equivalence of approximate �2 norms of difference and concept matrices

We prove Lemma 6, the equivalence of the approximate �2 norm for matrices W and D, via the
following three Lemmas.
Lemma 16. Let C be a concept class with concept matrix W 2 RC⇥U and difference matrix
D 2 RC2⇥U . Then �2(D,↵)  �2(W,↵).
Lemma 17. Let C be a concept class closed under negation. Let W 2 C ⇥ U be its concept matrix
(Definition 3) and let D 2 RC2⇥U be its difference matrix (Definition 5). Then �2(W,↵)  �2(D,↵).
Lemma 18. Let C be a concept class. Let W 2 RC⇥U be its concept matrix (Definition 3) and let
D 2 RC2⇥U be its difference matrix (Definition 5). Then �2(W,↵)  2�2(D,↵/2) + 1.

Proof of Lemma 16. Let fW 2 C⇥U witness �2(W,↵) so that kW �fWk1!1  ↵ and �2(W,↵) =

�2(fW ).

Let W 0 2 RC2⇥U be the matrix with entries w0
(c,c0),a = ewc,a. Similarly, let W 00 2 RC2⇥U be the

matrix with entries w00
(c,c0),a = ewc0,a. Since W

0 and W
00 are obtained from fW by duplicating rows,

�2(W,↵) = �2(fW ) = �2(W
0) = �2(W

00).

Now consider the matrix eD = 1
2 (W

0 �W
00). By subadditivity and scaling properties,

�2( eD)  1

2
(�2(W

0) + �2(W
00)) = �2(fW ).

Moreover, for all c, c0 2 C, a 2 U , the entry ed(c,c0),a of eD approximates entry d(c,c0),a of D.
Specifically,

��� ed(c,c0),a � d(c,c0),a

��� =
����
ewc,a � ewc0,a

2
� c(a)� c

0(a)

2

����


����
ewc,a � c(a)

2

����+
����
ewc0,a � c

0(a)

2

����

 ↵.

Hence kD � eDk1!1  ↵. Together with �2( eD)  �2(fW ), this implies

�2(D,↵)  �2( eD)  �2(fW ) = �2(W,↵).

Proof of Lemma 17. Row c of W is identical with row (c,�c) of D. Hence, W is obtained from
D by deleting some of its rows. Since the �2 norm is non-increasing under taking submatrices, it
follows that �2(W,↵)  �2(D,↵).

Proof of Lemma 18. Fix an arbitrary concept c0 2 C. Let D0 be the submatrix of D which includes
row (c, c0) of D for each c 2 C. Then D

0 = 1
2

�
W � 1(c0)T

�
where 1 is the all-ones vector of

dimension |C|, and we identify c
0 with a vector in RU . Expressing our concept matrix as W =

2D0 + 1(c0)T , we may apply the scaling and subadditivity properties of the approximate �2 norm to
obtain

�2(W,↵) = �2(2D
0 + 1(c0)T ,↵)

 �2(2D
0
,↵) + �2(1(c

0)T , 0)

 2�2(D
0
,↵/2) + 1.

C Omitted Proofs for the Lower Bound on Agnostic Learning

In proving Lemma 10, we take advantage of the following technical lemma by a standard geometric
binning argument.
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Lemma 19 ([Edmonds et al., 2019]). Suppose that a1, . . . , ak 2 [0, 1] and that ⇡ is a probability
distribution over [k]. Then for any � 2 (0, 1], there exists a set S ✓ [k] such that ⇡(S) ·minv2S av �Pk

v=1 ⇡(v)av��

O(log(1/�)) .

Proof of Lemma 10. Let ⇡, together with �c,c0 and µc,c0 , be defined as in (4), (5) and (6). We will
apply Lemma 19 to the values given, for c, c0 2 C, by

ac,c0 = L�c,c0 (c)� L�c,c0 (c) = Lµc,c0 (c)� Lµc,c0 (c).

Recall that we may assume, that for all c, c0 2 C the following inequality holds
X

a2U
d(c,c0),au(c,c0),a � 0.

Together with (7), this gives ac,c0 � 0 for all c, c0 2 C.

By Lemma 19, there exists some S ⇢ C2 such that

⇡(S)· min
(c,c0)2S

⇣
L�c,c0 (c)� L�c,c0 (c

0)
⌘
�

E
(c,c0)⇠⇡

h
L�c,c0 (c)� L�c,c0 (c

0)
i
� ↵/4

O(log(1/↵))
=

D • U � ↵/4

O(log(1/↵))
.

By applying (8), we get the similar

⇡(S) · min
(c,c0)2S

⇣
Lµc,c0 (c

0)� Lµc,c0 (c)
⌘
� D • U � ↵/4

O(log(1/↵))
.

Let e⇡ be defined by

e⇡(c, c0) =
⇢
⇡(c, c0)/⇡(S), if c, c0 2 S

0, otherwise.

Let also ⌧ = ↵

D•U 2 (0, 1). For (c, c0) 2 S, let e�c,c0 = �c,c0 and
eµc,c0 = (1� ⌧⇡(S))�c,c0 + ⌧⇡(S)µc,c0 .

It holds then, for (c, c0) 2 S, that
e�c,c0 � eµc,c0 = ⌧ · ⇡(S) · (�c,c0 � µc,c0)

Hence, the matrix eU 2 RC2⇥U with entries defined by

euv,a = e⇡(v) · (e�v(a, 1)� eµv(a, 1)) = �e⇡(v) · (e�v(a,�1)� eµv(a,�1))

satisfies

eu(c,c0),a =

⇢
⌧u(c,c0),a, if (c, c0) 2 S

0, otherwise.

It is easy to see from the definition of �⇤
2 that this implies �⇤

2 (eU)  ⌧�
⇤
2 (U) = ↵�

⇤
2 (U)

D•U .

Proof of Lemma 12. The main observation is that, since � and µ share the same marginal on U
but the labels are given by the functions s and �s, for any hypothesis h : C ! {±1} we have
L�(h) + Lµ(h) = 1. Therefore,

(L�(h)� L�(c
0)) + (Lµ(h)� Lµ(c)) = ((L�(h) + Lµ(h))� (1� Lµ(c

0))� Lµ(c)

= Lµ(c
0)� Lµ(c) > ↵.

This implies that if L�(h)� L�(c0)  ↵

4 , then Lµ(h)� Lµ(c) >
3↵
4 , as required.

Suppose now that M (↵/4,�)-learns C agnostically with n samples. Let A ✓ {±1}U be the set of
hypotheses with loss at most L�(c0) +↵/4 on �

n. As we just showed, every hypothesis in A has loss
larger than Lµ(c) + 3↵/4 under µ. Since

min
c002C

L�(c
00)  L�(c

0), min
c002C

Lµ(c
00)  Lµ(c),

it follows from the definition of agnostic learning that P [M(�n) 2 A] � 1 � �, and
P [M(�n) 2 A]  �. Then, by the definition of total variation,

dTV(M(�n),M(µn)) � P [M(�n) 2 A]� P [M(µn) 2 A] � 1� 2�,

completing the proof of the lemma.

15



D Omitted Proofs for the Realizable Refutation Lower Bound

D.1 Derivation of dual formulation

Proof of Lemma 15. Let LC = {G 2 RC⇥(U⇥{±1}) : �2(G)  t}. Let KC and K
0
C be as defined by

equations (9) and (10). By definition, ⌘(C,↵) > t if and only if LC and K
0
C are disjoint.

Given some U 2 RC⇥(U⇥{±1}), we are interested in the quantities max{U · G : G 2 LC} and
min{U ·G : G 2 K

0
C}. In particular, by the hyperplane separation theorem, since LC and K

0
C are

convex and LC is also compact, they are disjoint exactly when there exists some U 2 RC⇥(U⇥{±1})

such that
max{U ·G : G 2 LC} < min{U ·G : G 2 K

0
C}.

By definition,
max{U ·G : G 2 LC} = t�

⇤
2 (U).

Also,

min{U ·G : G 2 K
0
C}

= min
G2K0

C

X

c2C,a2U
(uc,(a,c(a))gc,(a,c(a)) + uc,(a,�c(a))gc,(a,�c(a)))

= min
G2KC
✓2RC

X

c2C,a2U
(uc,(a,c(a)) · (gc,(a,c(a)) + ✓c) + uc,(a,�c(a)) · (gc,(a,�c(a)) + ✓c))

= min
G2KC

X

c2C,a2U
(uc,(a,c(a)) · gc,(a,c(a)) + uc,(a,�c(a)) · gc,(a,�c(a)))

+ min
✓2RC

X

c2C
✓c ·

X

a2U
(uc,(a,c(a)) + uc,(a,�c(a)))

If, for some c 2 C, it holds that
P

a2U (uc,(a,c(a)) + uc,(a,�c(a))) 6= 0, then

min
✓c2R

✓c ·
X

a2U
(uc,(a,c(a)) + uc,(a,�c(a))) = �1.

Also, if there exist c 2 C and x 2 U such that uc,(a,�c(a)) < 0, then

min
G2KC

uc,(a,�c(a))gc,(a,�c(a)) = �1.

However, in the remaining case where U is in the set SC , then

min{U ·G : G 2 K
0
C} = min

G2KC

X

c2C,a2U
(uc,(a,c(a)) · gc,(a,c(a)) + uc,(a,�c(a)) · gc,(a,�c(a)))

=
X

c2C,a2U
(�↵|uc,(a,c(a))|+ uc,(a,�c(a))).

With these facts at our disposal, we obtain

⌘(C,↵) > t , K
0
C \ LC = ;

, 9U 2 RC⇥(U⇥{±1})
, max{U ·G : G 2 LC} < min{U ·G : G 2 KC}

, 9U 2 SC , t�
⇤
2 (U) <

X

c2C,a2U
(�↵|uc,(a,c(a))|+ uc,(a,�c(a)))

, max
U2SC

P
c2C,a2U (uc,(a,�c(a)) � ↵|uc,(a,c(a))|)

�⇤
2 (U)

> t

Since the equivalence holds for all t 2 R, it follows that

⌘(C,↵) = max
U2SC

P
c2C,a2U (uc,(a,�c(a)) � ↵|uc,(a,c(a))|)

�⇤
2 (U)

.
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D.2 General case of realizable refutation lower bound

Section 3.1.3 proved our lower bound for realizable refutation in the single-concept case. In the
general case, there are two issues to resolve:

1. Instead of equation (12) holding for each concept, it holds on average. In particular,
X

c2C,a2U
uc,(a,�c(a)) >

X

c2C,a2U
↵|uc,(a,c(a))|.

Equivalently,

Ec⇠⇡ [L�(c)] >
2↵

1 + ↵
. (14)

2. Even if we can guarantee for a concept c 2 C that

L�c(c) >
2↵

1 + ↵
,

it may hold, for some other h : U ! {±1}, that L�c(h) is small. We need to rule out this
possibility in order to give a lower bound against refutation.

The first issue is resolved in Lemma 20 by applying the binning result of Lemma 19. The second
issue will be resolved in Lemma 21.
Lemma 20. Suppose there exist families {�c}c2C and {µc}c2C of distributions over U , together with
a parameter distribution ⇡ over C, such that

� = Ec⇠⇡ [L�c(c)] >
2↵

1 + ↵

while, for all c 2 C, Lµc(c) = 0. Let, further, U 2 RC⇥U be the matrix with entries uc,a =
⇡(c)(�c(a)� µc(a)).

Then there exist families {e�c}c2C and {eµc}c2C of distributions over U ⇥ {±1}, together with a
parameter distribution e⇡ over C, such that, for all c in the support of e⇡,

Le�c
(c) � ⌦

✓
↵

1 + ↵

�
log

✓
1 + ↵

↵

◆◆
,

while still Leµc(c) = 0 for all c 2 C. Moreover, the matrix eU 2 RC⇥U with entries euc,a =

e⇡(c)(e�c(a)� eµc(a)) satisfies

�
⇤
2 (eU)  2↵�⇤

2 (U)

(1 + ↵)�
.

Proof. Apply Lemma 19, with ac = L�c(c) for all c 2 C, and � = ↵

1+↵
<

�
2 , to obtain S ✓ C such

that
⇡(S) ·min

c2S

ac �
�� �

O(log(1/�)
� �

O(log((1 + ↵)/↵)
.

Let e⇡ be ⇡ conditional on membership in S. Thus,

e⇡(v) =
⇢
⇡(v)/⇡(S), if v 2 S

0, otherwise.

Let ⌧ = 2↵
(1+↵)� 2 (0, 1). For all c 2 C, define eµc = µc and e�c = ⌧⇡(S)�c + (1� ⌧⇡(S))µc. Then,

for all c in the support of e⇡,
Leµc(c) = Lµc(c) = 0

Le�c
(c) = ⌧ · ⇡(S) · L�c(c) �

↵

1+↵

O(
�
log
�
1+↵

↵

�� .

Moreover, the matrix eU 2 RC⇥U with entries euc,a = e⇡(v)(e�v(a) � eµv(a)) is obtained from
the matrix ⌧U by replacing some of its rows with the zero-vector. It follows immediately that
�
⇤
2 (eU)  ⌧�

⇤
2 (U) = 2↵�⇤

2 (U)
(1+↵)� .
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Lemma 21. Suppose we have distributions �c and µc on U ⇥ {±1} for each c 2 C where:

(a) Lµc(c) = 0;

(b) L�c(c) > ↵.

Then there exist distributions e�c and eµc for each c 2 C such that:

(c) Leµc(c) = 0;

(d) 8h : U ! {±1}, Le�c
(h) > ↵

2 ;

(e) e�c � eµc =
1
2 (�c � µc).

Proof. For c 2 C, let �c be the distribution on U ⇥ {±1} which has the same marginal on U as does
�c, and which satisfies c(a) = b for all (a, b) in the support of �c. Also, let e�c = 1

2�c +
1
2�c and

eµc =
1
2µc +

1
2�c. Properties (c) and (e) follow immediately.

To establish property (d), notice first that, for any a 2 U in the support of �c, Pe�c
[b = c(a) | a] � 1

2 ,
and also Pe�c

[b 6= c(a) | a] = 1
2 · P�c [b 6= c(a) | a]. Then, for any function h : U ! {±1}.

Le�c
(h) = Pe�c

[h(a) 6= b]

=
X

(a,b)2U⇥{±1}

Pe�c
[a] · Pe�c

[h(a) 6= b | a]

�
X

(a,b)2U⇥{±1}

Pe�c
[a] ·min

n
Pe�c

[b = c(a) | a],Pe�c
[b 6= c(a) | a]

o

�
X

(a,b)2U⇥{±1}

P�c [a] ·min

⇢
1

2
,
1

2
· P�c [b 6= c(a) | a]

�

=
1

2
·

X

(a,b)2U⇥{±1}

P�c [a] · P�c [b 6= c(a) | a]

=
1

2
· L�c(c)

>
↵

2
.

Equipped with Lemmas 20 and 21, we are ready to prove our lower bound against realizable refutation.

Proof of Theorem 2. We define the parameter distribution ⇡ over C, and the distribution families
{�c}c2C and {µc}c2C over U ⇥ {±1}, as in Section 3.1.2. We denote � = Ec⇠⇡ [L�c(c)] . By
equation (14), together with Lemmas 20 and 21, we obtain modified families of distributions {e�c}c2C
and {eµc}c2C , together with a parameter distribution e⇡ over C, such that, for all c in the support of e⇡,
and for all functions h : U ! {±1},

Le�c
(h) = ⌦

✓
↵

1 + ↵

�
log

✓
1 + ↵

↵

◆◆

while Leµc(c) = 0 for all c 2 C. By Lemmas 11, 20 and 21, we may assume further that the matrix
fM 2 RC⇥(U⇥{±1}) with entries mc,(a,b) = e�c(a, b)� eµc(a, b) satisfies

kfMk`1!L2(e⇡) 
4↵�⇤

2 (U)

(1 + ↵)�
.

Now let M be an "-LDP protocol which is able to distinguish a labeling by some c 2 C from a
distribution with which every function h : U ! {±1} disagrees with the labels with probability
⌦
⇣

↵

1+↵

.
log
�
1+↵

↵

�⌘
. If this is true, then, for every c 2 C in the support of e⇡,

DKL(TM(e�n

c
)kTM(eµn

c
)) = ⌦(1).
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Meanwhile, Lemma 8 guarantees

E
c⇠e⇡

h
DKL(TM(e�n

c
)kTM(eµn

c
))
i
 O(n"2) · kfMk2

`1!L2(⇡)
,

whereby we obtain

n = ⌦

 
1

"2 · kfMk2
`1!L2(⇡)

!
= ⌦

✓
(1 + ↵)2�2

"2↵2�⇤
2 (U)2

◆
. (15)

Now we may use

�
⇤
2 (U) =

P
c2C,a2U (uc,(a,�c(a)) � ↵|uc,(a,c(a))|)

⌘(C,↵) . (16)

Note that, for any c 2 C, since Lµc(c) = 0,

1

⇡(c)

X

a2U
uc,(a,�c(a)) � ↵|uc,(a,c(a))|

= P(a,b)⇠�c
[c(a) 6= b]� P(a,b)⇠µc

[c(a) 6= b]

� ↵ ·
�
P(a,b)⇠�c

[c(a) = b] + P(a,b)⇠µc
[c(a) = b]

�

= (1 + ↵) · P(a,b)⇠�c
[c(a) 6= b]� 2↵

= (1 + ↵) · L�c(c)� 2↵.

Taking expectations over c ⇠ ⇡, we have
X

c2C,a2U
uc,(a,�c(a)) � ↵|uc,(a,c(a))| = (1 + ↵) · E

c⇠⇡
[L�c(c)]� 2↵

= (1 + ↵) ·�� 2↵. (17)

Putting equations (15), (16), and (17) together, we have

n = ⌦

✓
(1 + ↵)2�2

⌘(C,↵)2

"2↵2((1 + ↵)�� 2↵)2

◆
= ⌦

✓
⌘(C,↵)2

"2↵2

◆
.

E Open problems

This work, together with Edmonds et al. [2019], largely completes the picture of agnostic refutability
and learnability under non-interactive LDP. In the realizable setting, we have shown that refutation
implies learning for non-interactive LDP. It is an interesting open problem to determine the converse
– whether realizable learning implies refutation. Secondly, for an arbitrary concept class C, can
we obtain a characterization of realizable learnability in terms of a quantity which is efficiently
computable from the definition of C? Furthermore, for both the realizable and agnostic versions, the
relationships obtained between the sample complexities of refutability and learnability in this work
are indirect, via characterizations of these tasks by the approximate �2 norm. For example, although
realizable refutability implies realizable learnability under non-interactive LDP, it remains open how
one might obtain a non-interactive LDP protocol for learnability directly from one for refutability.

19


