A Appendix

A.1 On the ES fairness notion

In this paper, we defined the ES fairness notion as follows,
Pr{Ey,Y =1} =Pr{E;,Y =1}
Similarly, we could define another fairness notion as follows,
Pr{Ey} = Pr{E1} (18)

This definition implies that the probability that a position is filled by an applicant from group A = 0
should be the same as the probability that the position is filled by an applicant from group A = 1.
Consider classifier R = r(X, A). We have,

Pr{R =1,A4 = a}
1-Pr{R =0}

Pr{E,} =Y Pr{R;=1,A; =a}Pr{R;i_1 =0} x --- x Pr{Ry =0} =
i=1
This implies that (T8) is satisfied if and only if
Pr{R=1,A=0}=Pr{R=1A4=1}. (19)

Therefore, if equation (I8) is our fairness notion, we should design a classifier that satisfies (T9). This
implies that all the results in this paper can be easily extended to the fairness notion defined in (T8).

A.2  Deriving the ES constraint in terms of o,
Based on Theoren{I] Z satisfies the ES if the following holds,
Pr{A=0,Z=1Y=1}=Pr{A=12=1Y =1} —
Z Pr{A=0,Z=1Y =1,R=4} = Z Pr{A=1,Z=1Y =1,R=§} =

9€{0,1} 7€{0,1}

> Pr{Z=1Y=1A=0,R=5} xPr{A=0,R=} =
9€{0,1}

Y Pr{Z=1Y=1A=1LR=§} xPr{A=1,R=3j} =
9€{0,1}

> apgPr{Y =1JA=0,R=j} x Pre{A=0,R=§} =
ye€{0,1}

> a1 Pr{y =1J[A=1,R=§} xPr{A=1,R=j} =
y€{0,1}

Z @0, Pry,a(9,1,0) = Z aig - Prya(9,1,1).
9€{0,1} 9€{0,1}

Note that Z and Y are conditionally independent given A and R, and we used this fact in the above
derivation.

A.3  On the solution to optimization problem

In this part, first we show that optimization problem (T3] can be easily turned into an optimization
problem with one variable. If the probability density function of R given A = aand Y = 1 is
non-zero and continuous over interval [0, 1], then Frj; ;(.) and Fgjo 1 (.) are both strictly increasing
and their inverse functions exits. For the notional convenience, Let pq , = P4 y(a,y) and assume
po,1 < p1,1. Then, based on the constraint presented in (13)), 71 can be calculated as a function of 7o,

_ P ,
m=Fg, (1 - ﬁ(l - Fmo,l(fo))) 70 € [0,1]. (20)

Therefore, optimization problem (I3) can be written as a one-variable optimization problem in
interval [0,1] and can be efficiently solved using the Bayesian Optimization algorithm [40Q].
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Now we solve optimization problem (I3)) for a case where R|A = a,Y = 1 follows the uniform
distribution.

Case 1: consider the following scenario,

* RIA=0,Y = 0 follows Uniform(0,bo).
* R|IA=1,Y = 0follows Uniform(0,b;).
* RIA=0,Y =1 follows Uniform(co, 1)
* R|A=1,Y =1 follows Uniform(cy,1).
e cg<by<landc; <by <1.

Since by < 1and by < 1, Pr{Y =1} = 1if 79 € [by, 1] and 7y € [by, 1]. Therefore, the optimal
thresholds satisfies the following,

Po,1 - (1 - FR|0,1(7'0)) = P11 (1 - FR|1,1(7—1))1 (21)
1-— T0 1-— T1
= . 22
Po,l(l_CO) P1,1(1_cl) (22)
For instance, if pg 1 - %:i’g <pia- %:gl, =bpand T =1 — Z‘l)i i 21 are the solution to

1)

Case 2: consider the following scenario,

* R|A=0,Y = 0 follows Uniform(bg, 1).
* R|A=1,Y = 0follows Uniform(by, 1).
* R|A=0,Y =1 follows Uniform(co, 1)
* RIA=1,Y = 1 follows Uniform(ci,1)
e bhy<co<landb; <ec1 <1.

Without loss of generality, assume that pg 1 < p; 1. Using I), we can see that 74 and 7y satisfy the
following,

1—7’0 - 1—7’1
Poxy o L o1
1—7 1—c
! = pOi,l 1,7'0 S [Co,l], T1 € [01,1]. (23)
11— p1,11l—co

Moreover, we can write Pr{f’ = 1} as follows,

pO,l'(i_Zg)‘f'pll o

Pr{y =1} = — =
Po1- 1 T T P10 T4t +p11'1_72
1— T1 1
~ P0,1'7+P11‘ v
Pr{y =1} = E 1

Do T—o c0-*‘2900 = b0+p10 Tol b1+P11 701 o

Since Pr{f’ = 1} is a function of 1 7L, 70 and 7 are optimal if they satisfy @]) For instance,

To=coand 1y =1 — p 2.1 (1 —¢p) are 0pt1mal thresholds.

A4 Restating Theorem [5|for the statistical parity (SP) fairness notion

Here we restate Theorem 5] for the statistical parity. The proof is similar to the proof of Theorem 3

Theorem 6. Let Z be the predictor derived by thresholding R € {p1, ..., pn } using thresholds
To, T1. Moreover, assume that accuracy (i.e., Pr{Y = 1|Z = 1}) is increasing in 1o and 1, and
Pr{R = pu|A = a} < ~,Va{0,1}. Then, under ~-SP (i.e., =1A=0}-Pr{Z=1]4A=
1} < =), one of the following pairs of thresholds is fair optimal.

* To > pn and Ty = py (in this case, Pr{R > 19|A =0} = 0).
* 71 > pn and To = py (in this case, Pr{R > 11|A =1} = 0).

*Uni form(p, q) denotes the uniform distribution in interval [p, g].
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A.5 Deriving Pr{Y = 1} in terms of 7, and 7,

Note that (X,Y") and A are conditionally independent given A.

Pr{Z=1Y =1} YaacponyPr{r(X,A)>7%Y=1A=aA=a}
Pr{Z = 1} I

Pr{r(X,A) > 7, Y =1,A=a,A=a} =Pr{A=a} -Pr{r(X,a) > 7, Y =1,A=a|A =a} =

Pr{f’ =1} =

Pr{A=a} -Pr{r(X,a) > 7, Y =1|A=a} - Pr{A=a|A =a} =

F 7..a,1).
1+ e r(X,a),A,Y(T , a, )

Similarly, we have,

Pr{r(X,A) > 7, Y =1,A=1-a,A=0a} = Frxaay(fal —a,1).

1+ec
Pr{r(X, /1) > 7, A=a A= a} = ﬁgeefr(xﬂ)ﬂ(?a, a).
Pr{r(X,A) >7,A=1-a,A=a} = ﬁfr(x’a)ﬁ(%m 1—a).
As a result,
Pr{¥ — 1} = e Y Frixapay(Fa,a ) + 30, Frxapay(fa, 1 —a, D) 24)

ec Za Fr(X,a),A(%aa a) + Za Fr(X,a),A (%av 1- CL)

A.6 Deriving equal opportunity fairness constraint in terms of 3; ;

For the equal opportunity, we have,
Pr{Z=1Y =1,A=0}=Pr{Z =1]Y =1,A = 1}.
Pr{Z=1Y=1,A=0}=> Pr{Z=1|Y =1,A=0,A=a,7(Z,A) = §} Pr{A =a,r(Z, A) = j|Y =1, A =0}
a9
=> Pr{Z=1Y=1,A=0,A=a,7(2,A) = §} Pr{A = a|A = 0} Pr{r(X,a) = g|Y = 1,A = 0}

a,y

e N 1 N
= ;;awm Pr{r(X,0) =§|Y =1,A =0} + ;gwm Pr{r(X,1) =g|Y =1,4 =0}

Similarly, we have,
Pr{Z=1Y=1,A=1}=> Pr{Z=1Y =1,A=1,A=a,7(Z,A) =5} Pr{A=a,r(Z,A) =gy =1,A=1}
a,y
=> Pr{Z=1Y=1,A=1,A=a,7(2,A) =g} Pr{A = a|A = 1} Pr{r(X,a) = g|Y =1,A = 1}

a,y

_Zgoy“r Pr{r(X,0) = g|Y =1, A_1}+Z[7’1y1+ Pr{r(X,1) =g|Y =1,A =1}

Therefore, the equal opportunity fairness notion can be written as follows,

Pr{r(X,1)=glY =1,A=1}

1 )
;Bo7ngr{r(X,0):y|Y:1,A:1}+%:ﬁ1,y1+ -

1 X
— Zgwmpr{r(x, D=9y =1,A=0} + Zﬁo,yH - Pr{r(X,0) =gy =1,A=0}
Yy Yy

A.7 Numerical Experiment

We compared EO and ES fairness notions in Table 2] after adding the following constraints to (T3).
Pr{No one is selected in 100 time steps} = ( Pr{R < 7',4})100

— (Pr{A=0}Pr{R<7|A=0}+Pr{A=1}Pr{R<n|A=1})""<

<v, (25
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(b) Pr{E,,Y = 1} as a function v

Figure 2: Effect of the time constraint on the accuracy and disparity.

where ¢ was equal to 0.5 in that experiment. The above condition makes the experiment more
practical and implies that there is a time limit in selecting an individual/applicant.

In this part, we study the effect of probability > on the selection rate and accuracy. Smaller 1) implies
that the time constraint is more strict. Figure 2a] illustrates the accuracy as a function of 1. As
expected, smaller 1) worsens the accuracy under EO and ES. However, the parameter 1/ has relatively
stronger impact on the accuracy under ES.

Figureillustrates Pr{E,, Y = 1} as a function of 1. It shows that smaller 1) is able to improve
the disparity (i.e., v = |Pr{Y =1, Eq} — Pr{Y = 1, E1 }|) under EO.

A.8 Proofs

Theorentll

Pr{E,, Y =1}

> Pr{4;=a,R;=1Y; =1} x Pr{R;_y = 0} x - - x Pr{R; = 0}

i=1
PriA=qa,R=1,Y =1}
1-Pr{R=0}

To ensure that Pr{Ey,Y = 1} = Pr{E},Y = 1}, we must have,

Pr{E,,Y =1} =Pr{E,,Y =1}

Pr{A=0,R=1,Y=1} Pr{A=1,R=1Y =1}

1-Pr{R =0}

1-Pr{R=0}
& P{A=0R=1Y=1}=Pr{A=1,R=1Y =1}.

O

Corollary[I] Suppose the binary classifier (-, -) satisfies equal opportunity fairness, i.e., R satisfies

the following constraint,

Pr{R=1A=0Y =1} =Pr{R=1|A=1,Y = 1}.

Based on Theorem|T] equation (26)) implies equation (@) if and only if

Pr{A=0,Y =1} =Pr{A=1,Y =1}.
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Theorem[2] Let &g be the solution to () and 37, , := 3,11} aeo,1)- Note that &, g is also a
feasible point for (#). We prove the theorem by contradiction. Assume that &, ; is not the optimal
solution for (@). Therefore, there exists @, 4,a € {0,1},9 € {0, 1} such that,

Y galag Pr{R=9Y =1 A=a} - Ygabag Pr{R=9Y=1A=a}
> j.afag Pr{A=0a R=g} Ygatay-Pr{A=a,R=7}

Let oupax = max, gy 0lq,5. We define ay, g as follows,

Gy [ ming’ahPr{A =a,R=79} ' 27
Omax Z —=y . PI‘{A =a, R= Z}}

Y,@ dmax

It is easy to see that &, 5 € [0,1],a € {0,1},9 € {0,1}, and it is a feasible point for optimization
problem @) Moreover, we have,

250 Qg Pr{R=9Y =1,A=a} Y gatag Pr{R=9Y =1, A=a}
> g0 Qayg - Pr{Ad=0a, R=7} > gatag Pr{A=a,R=7}
Yooy Pr{R=79Y =1, A=a}
> j.atag Pr{A=a,R =3}

Note that since &, 5 and &, 5,a € {0,1},9 € {0, 1} are feasible for problem (3)), we conclude that,

> oy Pr{R=§Y=1A=a}>> day Pr{R=4Y =1A=al}.

g,a U,a

>

This implies that &, 4,a € {0,1},9 € {0,1} is not optimal for (3). This is a contradiction, and
Qa,g,a € {0,1},9 € {0, 1} is the solution for both (@) and (3).

Next, we prove the second part of the theorem.

Proof by contradiction. Assume that optimization problem (3)) does not have a solution, and @, 4 €
[0,1],a € {0,1},9 € {0, 1} is the solution to (@). It is easy to see that &, ; define in (27) is a feasible
point for (3)). This is a contradiction because a linear optimization with a closed and bounded and
non-empty feasible set has an optimal solution. This concludes the proof. O

Theorem[3] Let predictor Z be the solution to optimization problem (@). Without loss of generality,
suppose Pr{R=1,Y =1, A =0} <Pr{R=1,Y =1, A = 1}. Consider the following feasible
point of optimization problem (@):

Pr{R=1,Y =1,A=0}
Pr{R=1Y=1,A=1}

ago = 0,&10 = 0,801 = 1,011 =

Using these parameters, we can derive a new predictor noted as Z. Note that Pr{R = 1|Z =1}=1

holds. Moreover, Since Z is a suboptimal solution to optimization problem @), Pr{Y = 1|Z =
1} < Pr{Y = 1|Z = 1} and we have,

|Pr{Y =1|Z* =1} —Pr{Y =1|Z =1}| < |Pr{Y = 1|Z" =1} - Pr{Y = 1|Z = 1}| <
|Pr{Y =1|Z2" =1} = Pr{Y =1|R=1}| + |Pr{Y =1|Z =1} - Pr{Y = 1|R=1}| <
e+|Pr{Y =1|Z=1} —Pr{Y =1|R=1}|.

Moreover, we have,
_ Pr{Y =1R=1}

= Pr{Z =1y =1,R=1},
Pr{Z =1|R =1}

Pr{Y =1Z=1}=Pr{Y =1|Z=1,R=1}Pr{R=1|Z

1

1}

Pr{Z=1R=1}=P(A=0R=1)+ P(A=1|R = 1)&1,
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Pr{Z=1Y =1,R=1}=Pr{A=0Y =1,R=1} +Pr{A=1]Y = 1,R = 1}a,

— |Pr{Y =1|Z2" =1} -Pr{Y =1|Z =1}| <
B Pr{A:0|Y:1,R=1}+Pr{A=1\Y:1,R=1}@11)|
0

Since we assumed Pr{A = a|Y = 1,R = 1} € Pr{4 = a|R = 1},Va{0, 1}, the second term in
above equation is zero, and the theorem has been proved.

e+ |Pr{Y =1R=1}(1

— |Pr{Y =12 =1} -Pr{Y =1|Z=1}| < e

Lemmalll Based on the Theorem ([T} predictor Z satisfies the ES fairness notion if
Pr{Z=1,A=0,Y=1}=Pr{Z=1,A=1,Y =1}.
We use the law of total probability to rewrite the above condition using 3, 3. Note that A is derived
directly from A and is conditionally independent of (X,Y") given A. We have,
Pr{Z=1,A=1Y =1}
= Y Pr{Z=1LA=ar(X,A)=§A=1Y =1}
a9y

Y Pr{Z=1A=ar(X,A) =g} -Pr{A=ar(X,a)=jlA=1Y =1}Pr{A=1Y =1}
a,y

= Y Bag-Pr{A=alA=1Y =1}Pr{r(X,a) =§|A=1,Y =1}Pr{A=1Y =1}

Y
B I 1 SN
= %@w 1+ exp{e} Pr{r(X,d) =9, A=1Y =1},

where indicator function I(s) = 1 if statement s is true, otherwise I(s) = 0. Similarly, we have,

Pr{Z=1A=0,Y = 1}:Zﬁavg-wm{r(x,a) =§,A=0Y =1}.
a9

1+ exp{e}

Therefore, Z satisfies the ES fairness notion if the following holds,
Pr{Z=1,A=0,Y=1}=Pr{Z=1,A=1,Y =1}
& PBoo-ef-Pr{r(X,00=0,A=0,Y =1} + o1 e -Pr{r(X,00=1,A=0,Y =1}
+B10-Pr{r(X,1)=0,A=0,Y =1} + 11 - Pr{r(X,1) =1,A=0,Y =1}
= Boo - Pr{r(X,0)=0,A=1Y =1} +Fo1-Pr{r(X,0)=1,A=1Y =1}
+B010-ePr{r(X,1)=0,A=1Y =1} + 811 ¢ -Pr{r(X,1)=1,A=1Y =1}.
(28)
O

Lemmal2l We rewrite (28)) as follows,

0 = Boo- (e -Pr{r(X,00=0,A=0,Y =1} - Pr{r(X,0)=0,A=1,Y =1})
+B01 - (e -Pr{r(X,0)=1,A=0,Y =1} = Pr{r(X,0) =1, A=1,Y = 1})
+B810- (Pr{r(X,1)=0,A=0,Y =1} —e*Pr{r(X,1) =0,A=1,Y =1})
+B811-(Pr{r(X,1)=1,A=0,Y =1} —e*Pr{r(X,1) =1,A=1,Y = 1}).
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If Equation () holds, then e - Pr{r(X,a) = 1,4 = a,Y = 1} > 1,Va € {0,1}. Therefore,
(ef - Pr{r(X,0)=0,A=0,Y =1} — Pr{r( 0)=0,A=1Y = 1}) is a positive coefficient
and (Pr{r(X,1)=1,A=0,Y =1} —ePr{r(X,1

) =1,A=1Y = 1}) is anegative coefficient.
Therefore, above hnear equation has a feasible pomt other than Bo,o = Bog =Pro=06i1=0 0O

TheoremH First, we find Pr{f/ = 1} as a function of 35 ;. We have,

(o)
> Pr{Zi=1,Y; =1} x Pr{Z;_1 = 0} x --- x Pr{Z; = 0}

Pr{f/ =1} =
=1
Pr{Z=1Y=1} Pr{Z=1Y =1}
- _ — Py =1/Z=1
1—Pr{Z =0} Pr{Z =1} r{ | b

Pr{Z=1Y =1} Y Pr{Z=1Y =1|A=a,r(X,A) =} - Pr{d = a,r(X, 4) = j}

_ Zﬂa,g) Pr{Y = 1|A =a,r(X,A) = §} - Pr{Ad = a,r(X, A) = §}

— Zﬂay Pr{Y =1,A=a,r(X,A) =g}
— Zﬂay (Pr{Y:1,A:&,r(X,A)=g,A=d}

4Py =1, A=ar(X,A) =g A= 1-&})

- ZBM : (Pr{A —alA=a}Pr{y =1,r(X,d) = §|A = a} Pr{A = a}

+Pr{Ad=alA=1-a}Pr{Y = 1,r(X,a) = §|A = 1—a}Pr{A=1—a})

= 265@«14_ -Pr{Y =1,r(X,a) = y|A =a} Pr{A = a}
a,g

s zl,r(X,&):Q|A:17d}Pr{Azlf&}>

Pr{Z=1 = Zﬁw ( — Pr{r(X,a) = j|4 = a} Pr{4 = &}

(X,a) =glA=1-a}Pr{A = 1-@}).

1
14 e€
We can see that Pr{Y = 1} is not a linear function in ; ;. As a result, optimization problem (@) is
not a linear program.

Now we prove the first part of the theorem using contradiction. Note that B&,g is a feasible point for
optimization problem (). If /3 ; is not optimal for (9), then there exists B4 4 such that the objective
function of (9) at ﬁ - 1s higher than that at Ba .- With the similar approach as the proof of Theoreml

we can show that the existence of (3 ; implies that ﬁ ; is not optimal for (T0) because 35 4 defined
as follows is feasible and improves the objective functlon in (10).

Pay _ mitag Pa(@) e - Prxaa(la) + Pa(l —a) - Prxaya(gll - a)
Pmax >4, gmx (PA( )€ Prxaya(dla) + Pa(l—a) - Prxaya(9ll — d))

where Bnax = maXze{0,1},5€{0,1} Ba,g and Pr(Xﬁ)\A(m&) = Pr{r(X,a) = g|A = a}, Pa(a) :=
Pr{A = a} are defined to simplify notations.

Bay =

)

This contradiction shows that B;w is optimal for optimization problem (9).

The proof of the second part of the theorem is similar to the first part. Proof by contradiction. Assume
that ,8 - is the solution to optimization problem (9), and (T0) does not have a solution. In this case,
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we can show that Ba,g defined as follows is a feasible point for (T0).

Pag  mingg Pa(a)- e - Prxa)a(dla) + Pa(l —a) - Pxaa(ll —a)
max Ba,ﬁ ~ € oA = 9 ~ '
Pma g pot (PA(G) e Pxaya(@la) + Pa(l —a) - Poxa)a(@ll — a))

Since (I0) is a linear program and with a bounded and non-empty feasible set, it has at least a solution.
This is a contradiction which proves the second part of the theorem. O

B&,gj =

Theorem[3 Note that the assumption that accuracy Pr{Y = 1|Z = 1} is increasing in 79 and 7,
implies that an applicant with a higher score is more likely to be qualified and the policy with a larger
threshold leads to higher accuracy. In other words, under this assumption, the decision-maker should
make thresholds as large as possible to maximize the accuracy. We have,

Pr{Y =1|Z=1} =

Pr{Y =1|R>7,A=0Pr{A=0]Z =1} +Pr{Y = 1|R> 1, A=1}Pr{A =1|Z = 1}.
Since Pr{Y = 1|Z = 1} is increasing in thresholds 7( and 71, it is optimal to select 79 = py-
and 7y > p, if Pr{Y = 1|R = p,/,A = 0} > Pr{Y = 1|R = p,/, A = 1}. That is, no one
with sensitive attribute A = 1 is selected, and only an applicant with sensitive attribute A = 0

and the highest possible score is selected. Note that 7y and 7 satisfy EO because we assumed that
Pr{R=pnp|Ad=0a,Y =1} <~.

Similarly, it is optimal to select 71 = p,s and 79 > pp/ if Pr{Y = 1|R = p,, A =1} > Pr{Y =
1R = ppr, A = 0}. O
Lemmal(3]. Based on Theoremm to satisfy the ES fairness notion, the following should hold,

Pr{r(X,A) >7;, A=0,Y =1} =Pr{r(X,4) > 7;, A=1,Y = 1},

where
Pr{r(X,A) >7;, A=a,Y =1}
= Pr{r(X,/Nl)Z~A,A:a,Y:l,flza}—FPr{r(X,fl)Z%A,A:a,Yzl,flzl—a}
= Pr{r(X,a)>7|]Y =1,A=a}-Pr{Ad=a|]Y =1,A=0a}-Pr{Y =1,A=a}
+Pr{r(X,1—a)>7_4Y =1,A=a} -Pr{A=1—-qalY =1, A=a} -Pr{Y =1,A=a}
= Pr{r(X,a)Z%a|Y:1,A:a}-1i Pr{Y =1,A=a}
66
+Pr{r(X,1fa)2%1_a|Y:1,A:a}~L~Pr{Y:1,A:a}

1+ e

Therefore, the ES fairness notion is satisfied if and only if

Pr{r(X,0) > 7|y = 1,4 =0} - lj—ef Pr{Y =1,4 = 0}
1
+ Pr{r(X,1) >A|Y =1,A=0}- o Pr{Y =1,4=0}
(&

= Pr{T(X,1)2?1|Y:1,A:1}~1 Pr{Y =1,A=1}

+ Pr{r(X,0)>5|Y =1,4=1}- Pr{y =1,4=1}
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