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A APPENDIX

A.1 DATASET COVERAGE

Functional Rows Unique BAWL rows Alexandria Materials Project OQMD
PBE 5,335,298 5,005,017 4,628,422 138,931 567,945
PBESol 447,824 432,633 415,419 32,405 0
SCAN 422,840 417,666 415,419 7,421 0
Non Compatible 519,627 - 0 10,646 508,981

Table 2: Summary of LeMat-Bulk’s functional distribution. Unique BAWL rows reports the number
of unique structures found using the BAWL hash. The number of structures from the source database
for every functional is also reported. Non Compatible rows use a non compatible pseudopotential
or Hubbard U but which can still be leveraged in specific Machine Learning workflows that don’t
consider interoperatbility.

We provide a detailed breakdown of the materials included in LeMat-Bulk, highlighting the coverage
and the number of materials. The number of rows is reported in Table 2, along with the unique rows
as identified by the BAWL fingerprint. Figure 3c shows the distribution of materials across the
Materials Project database. This periodic table show the two elements that every other element
is more likely to form a compound with. Figure 3d shows the distribution of materials across the
LeMat-Bulk database. In the Materials Project, we observe that oxygen is the most common element
in the database, forming compounds with a wide range of elements. In contrast, the LeMat-Bulk
database shows a more balanced distribution of materials across the periodic table, with a higher
proportion for almost all elements.

A.2 HASHING FUNCTIONS PARAMETERS

We detail the different configurations used to assert the equivalence of two structures using the
different algorithms presented in section 4.

Hashers. For BAWL, CLOUD and SLICES, which return a string (hash) for a given input struc-
ture, we consider two structures to be equivalent if their hashes are identical.

PDD. For PDD, we consider two structures to be equivalent if the euclidean distance between their
embeddings is below a certain threshold.

EqV2-sim. For EquiformerV2, we consider two structures to be equivalent if the cosine similarity
between their embeddings is above a certain threshold. This threshold was hand-picked to maximize
the number of structures matched by both BAWL and EquiformerV2 while minimizing the number
of false positives. Experiments were conducted using a Euclidean distance instead of cosine simi-
larity, but the embeddings length were highly correlated with the number of atoms in the structure,
which made the distance metric less reliable. The embeddings were extracted at the entry of the
energy prediction head of the model trained on OMAT24 (l = 0 of the spherical harmonics) and
summed over all atoms in the structure. Experiments using the mean of the embeddings instead of
the sum or using an untrained architecture of model were also conducted, showing poor performance
in this perturbation benchmark.

A.3 STRUCTURAL PERTURBATIONS

In addition to Gaussian perturbations of the atomic positions and the lattice, we also investigate the
performance of the different methods under isometric strain, translation and space group symme-
try operations. Isometric strain consists of applying a uniform strain to the lattice vectors of the
structure, while translation consists of moving the structure along a random direction. We show
the results of these experiments in Figure 4. Unsurprisingly, a lot of methods succeed perfectly in
identifying the same structure under translations because they are invariant to this operation. How-
ever, some methods like CLOUD, SLICES and PDD struggle with translations. For isometric strain,
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(a) Materials Project (b) OQMD

(c) Alexandria (d) LeMat-Bulk

Figure 3: Distribution of materials across the periodic table in the Materials Project, OQMD and
Alexandria and LeMat-Bulk databases.
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BAWL, Pymatgen and CLOUD perform perfectly well too. However, it is worth noting that vec-
tor based methods like EquiformerV2 and PDD fail to generalize to this perturbation. While better
threshold tuning could potentially improve their performance, it is clear that they are not robust to
this type of perturbation.
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Figure 4: Success rate of structure identification methods under more perturbations than Figure 2.

A.4 DISORDERED STRUCTURES

The benchmark for disordered structures is computed by generating a dataset from a number of
materials with the Supercell software package (Okhotnikov et al., 2016). For every material, we
generate a large number of disordered structures by randomly substituting partial occupancies to
atomic positions in the bulk structure based on symmetry constraints. The materials are curated
from the Supercell study itself with various disorder types from materials (Sn0.5Pb0.5Te, MnCaCO3,
Ti1 – xMgxN), proton disorder in Ice Ih, and cationic site disorder (Ca2Al2SiO7, CZTSe, FeSbO4,
MgAlFeO4, PZT, Rb-PST-1, SrSiAlOx). We then compute, for every chosen material, the success
rate for identifying that two random disordered structures of the same material are indeed identified
to be the same by the structure checker. To ensure that the test doesn’t just set all observed pairs
to be equivalent, we also compute the success rate of correctly flagging two different molecules as
being different. The full results are reported in Table 3.

A.5 COMPUTATIONAL EFFICIENCY

Figure 5 shows the computational efficiency of each method as the number of structures increases.
We also extrapolate the compute time to the amount of time it would take to compare the entire
LeMat-Bulk against itself, based on the observed run times of our experiments. While exact graph-
based methods (e.g., StructureMatcher) are initially fast, they scale poorly with the number of struc-
ture (at least quadratically). The runtime for BAWL has a bigger slope than other algorithms such
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Composition BAWL Short-BAWL PDD Pymatgen EqV2-sim CLOUD SLICES
Ca8Al8Si4O28 0.04 ± 0.00 0.18 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.87 ± 0.00 0.04 ± 0.00 0.00 ± 0.00
Fe2Cu4Sn2Se5S3 0.10 ± 0.00 0.30 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.00 0.00 ± 0.00
Fe4Sb4O16 0.05 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
H8O4 0.42 ± 0.15 0.70 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.54 ± 0.15 0.00 ± 0.00
Mg8Al8Fe8O32 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.30 ± 0.06 0.00 ± 0.00
Sn4Te8Pb4 0.00 ± 0.00 0.18 ± 0.00 1.00 ± 0.00 0.04 ± 0.00 0.57 ± 0.00 0.04 ± 0.00 0.00 ± 0.00
Sr5Al10Si6O32 0.09 ± 0.01 0.09 ± 0.01 0.25 ± 0.02 0.00 ± 0.00 0.63 ± 0.07 0.90 ± 0.09 0.00 ± 0.00
Zr4Ti4Pb8O24 0.09 ± 0.00 0.27 ± 0.00 1.00 ± 0.00 0.02 ± 0.00 1.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00

Table 3: Detailed comparison of different methods for matching pairs of disordered structures per
chemical formula. The success rate is reported on all the combinations of pairwise similarity for
every chemical formula. We report the average success rate and standard deviation over 5 runs (of
40 structures) when a given composition has more than 40 structures.

as CLOUD or SLICES but is still below EqV2-sim on the hardware used to run these experiments.
Hashing-based functions scale linearly for pairwise comparisons in the number of structures, mak-
ing them all viable for large-scale materials databases. This balance between efficiency and accuracy
enables rapid screening in real-world materials discovery applications.

B DFT PARAMETERS

We detail in Table 4 and Table 5 the DFT parameters used in LeMat-Bulk along with the original
dataset amongst Alexandria, Materials Project and OQMD where they are extracted from.

Table 4: Pseudopotentials adopted in LeMat-Bulk

Element LeMat-Bulk Alexandria Materials Project OQMD

Ac PAW PBE Ac 06Sep2000 ✓ ✓ ✓
Ag PAW PBE Ag 06Sep2000 ✓ ✓ ✓
Al PAW PBE Al 04Jan2001 ✓ ✓ ✓
Ar PAW PBE Ar 07Sep2000 ✓ ✓ ✓
As PAW PBE As 06Sep2000 ✓ ✓ ✓
At PAW PBE At d × (not in DB) × (not in DB) ✓
Au PAW PBE Au 06Sep2000 ✓ ✓ ✓
Ba PAW PBE Ba sv 06Sep2000 ✓ ✓ ✓
Be PAW PBE Be sv 06Sep2000 ✓ ✓ ✓
Bi PAW PBE Bi 08Apr2002 ✓ ✓ ✓
B PAW PBE B 06Sep2000 ✓ ✓ ✓
Br PAW PBE Br 06Sep2000 ✓ ✓ ✓
Ca PAW PBE Ca sv 06Sep2000 ✓ ✓ × (Ca pv)
Cd PAW PBE Cd 06Sep2000 ✓ ✓ ✓
Ce PAW PBE Ce 28Sep2000 ✓ ✓ × (Ce 3)
Cl PAW PBE Cl 17Jan2003 ✓ ✓ ✓
Co PAW PBE Co 06Sep2000 ✓ ✓ ✓
C PAW PBE C 08Apr2002 ✓ ✓ ✓
Cr PAW PBE Cr pv 07Sep2000 ✓ ✓ × (Ce 3)
Cs PAW PBE Cs sv 08Apr2002 ✓ ✓ ✓
Cu PAW PBE Cu pv 06Sep2000 ✓ ✓ ✓
Dy PAW PBE Dy 3 06Sep2000 ✓ ✓ ✓
Er PAW PBE Er 3 06Sep2000 ✓ ✓ ✓
Eu PAW PBE Eu 08Apr2002 ✓ ✓ × (Eu 2)
Fe PAW PBE Fe pv 06Sep2000 ✓ ✓ ✓
F PAW PBE F 08Apr2002 ✓ ✓ ✓
Ga PAW PBE Ga d 06Sep2000 ✓ ✓ ✓
Gd PAW PBE Gd 08Apr2002 ✓ ✓ ✓
Ge PAW PBE Ge d 06Sep2000 ✓ ✓ ✓

Continued on next page
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Table 4 – Continued from previous page
Elements LeMat-Bulk Alexandria Materials Project OQMD

He PAW PBE He 05Jan2001 ✓ ✓ ✓
Hf PAW PBE Hf pv 06Sep2000 ✓ ✓ ✓
Hg PAW PBE Hg 06Sep2000 ✓ ✓ ✓
Ho PAW PBE Ho 3 06Sep2000 ✓ ✓ ✓
H PAW PBE H 15Jun2001 ✓ ✓ ✓
In PAW PBE In d 06Sep2000 ✓ ✓ ✓
I PAW PBE I 08Apr2002 ✓ ✓ ✓
Ir PAW PBE Ir 06Sep2000 ✓ ✓ ✓
K PAW PBE K sv 06Sep2000 ✓ ✓ ✓
Kr PAW PBE Kr 07Sep2000 ✓ ✓ ✓
La PAW PBE La 06Sep2000 ✓ ✓ ✓
Li PAW PBE Li sv 23Jan2001 ✓ ✓ ✓
Lu PAW PBE Lu 3 06Sep2000 ✓ ✓ ✓
Mg PAW PBE Mg pv 06Sep2000 ✓ ✓ ✓
Mn PAW PBE Mn pv 07Sep2000 ✓ ✓ × (Mn)
Mo PAW PBE Mo pv 08Apr2002 ✓ ✓ ✓
Na PAW PBE Na pv 05Jan2001 ✓ ✓ ✓
Nb PAW PBE Nb pv 08Apr2002 ✓ ✓ ✓
Nd PAW PBE Nd 3 06Sep2000 ✓ ✓ ✓
Ne PAW PBE Ne 05Jan2001 ✓ ✓ ✓
Ni PAW PBE Ni pv 06Sep2000 ✓ ✓ ✓
N PAW PBE N 08Apr2002 ✓ ✓ ✓
Np PAW PBE Np 06Sep2000 ✓ ✓ ✓
O PAW PBE O 08Apr2002 ✓ ✓ ✓
Os PAW PBE Os pv 20Jan2003 ✓ ✓ ✓
Pa PAW PBE Pa 07Sep2000 ✓ ✓ ✓
Pb PAW PBE Pb d 06Sep2000 ✓ ✓ ✓
Pd PAW PBE Pd 05Jan2001 ✓ ✓ ✓
Pm PAW PBE Pm 3 07Sep2000 ✓ ✓ ✓
P PAW PBE P 17Jan2003 ✓ ✓ ✓
Po PAW PBE Po × (not in DB) × (not in DB) ✓
Pr PAW PBE Pr 3 07Sep2000 ✓ ✓ ✓
Pt PAW PBE Pt 05Jan2001 ✓ ✓ ✓
Pu PAW PBE Pu 06Sep2000 ✓ ✓ ✓
Rb PAW PBE Rb sv 06Sep2000 ✓ ✓ ✓
Re PAW PBE Re pv 06Sep2000 ✓ ✓ ✓
Rh PAW PBE Rh pv 06Sep2000 ✓ ✓ × (Rh)
Ru PAW PBE Ru pv 06Sep2000 ✓ ✓ × (Ru)
Sb PAW PBE Sb 06Sep2000 ✓ ✓ ✓
Sc PAW PBE Sc sv 07Sep2000 ✓ ✓ ✓
Se PAW PBE Se 06Sep2000 ✓ ✓ ✓
Si PAW PBE Si 05Jan2001 ✓ ✓ ✓
Sm PAW PBE Sm 3 07Sep2000 ✓ ✓ ✓
Sn PAW PBE Sn d 06Sep2000 ✓ ✓ ✓
S PAW PBE S 17Jan2003 ✓ ✓ ✓
Sr PAW PBE Sr sv 07Sep2000 ✓ ✓ ✓
Ta PAW PBE Ta pv 07Sep2000 ✓ ✓ ✓
Tb PAW PBE Tb 3 06Sep2000 ✓ ✓ ✓
Tc PAW PBE Tc pv 06Sep2000 ✓ ✓ ✓
Te PAW PBE Te 08Apr2002 ✓ ✓ ✓
Th PAW PBE Th 07Sep2000 ✓ ✓ ✓
Ti PAW PBE Ti pv 07Sep2000 ✓ ✓ × (Ti)
Tl PAW PBE Tl d 06Sep2000 ✓ ✓ ✓
Tm PAW PBE Tm 3 20Jan2003 ✓ ✓ ✓
U PAW PBE U 06Sep2000 ✓ ✓ ✓

Continued on next page
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Table 4 – Continued from previous page
Elements LeMat-Bulk Alexandria Materials Project OQMD

V PAW PBE V sv 07Sep2000 ✓ × (V pv) × (V)
W PAW PBE W pv 06Sep2000 ✓ ✓ ✓
Xe PAW PBE Xe 07Sep2000 ✓ ✓ ✓
Yb PAW PBE Yb 24Feb2003 ✓ × (Yb 3) × (Yb 2)
Y PAW PBE Y sv 06Sep2000 ✓ ✓ ✓
Zn PAW PBE Zn 06Sep2000 ✓ ✓ ✓
Zr PAW PBE Zr sv 07Sep2000 ✓ ✓ ✓

Element System Hubbard U (eV)
Co Oxides, Fluorides 3.32
Cr Oxides, Fluorides 3.7
Fe Oxides, Fluorides 5.3
Mn Oxides, Fluorides 3.9
Mo Oxides, Fluorides 4.38
Ni Oxides, Fluorides 6.2
V Oxides, Fluorides 3.25
W Oxides, Fluorides 6.2

Table 5: Hubbard-U values adopted in LeMat-Bulk
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Figure 5: Time taken to compare all combinations from a list of n structures picked randomly from
LeMat-Bulk. Error bars show the time complexity measured over 5 different seeds when extracting
the structures from the dataset. Extrapolated time in 5b is obtained by fitting a polynomial regression
based on 5a and estimating the time it would take to compare all the pairwise materials in the
database. No algorithm was explicitly parallelized (outside of existing implementations). An AMD
Ryzen 5600G CPU was used for algorithms running on the CPU and an RTX 3070 for EqV2-sim.
Mattergen Disordered is the Structure matcher implemented in (Zeni et al., 2024).
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