
Supplementary Material for Learning with

Algorithmic Supervision via Continuous Relaxations

Felix Petersen Christian Borgelt Hilde Kuehne Oliver Deussen

In the supplementary material, we give implementation details, and present the algorithms.

A Implementation Details

A.1 Sorting Supervision

Network Architecture For comparability to Grover et al. [6] and Cuturi et al. [7], we use the same
network architecture. That is, two convolutional layers with a kernel size of 5×5, 32 and 64 channels
respectively, each followed by a ReLU and MaxPool layer; after flattening, this is followed by a fully
connected layer with a size of 64, a ReLU layer, and a fully connected output layer mapping to a
scalar.

A.2 Shortest-Path Supervision

Network Architecture For comparability to Vlastelica et al. [8] and Blondel et al. [23], we use
the same network architecture. That is, the first five layers of ResNet18 followed by an adaptive max
pooling to the size of 12× 12 and an averaging over all features.

Training As in previous works, we train for 50 epochs with batch size 70 and decay the learning
rate by 0.1 after 60% as well as after 80% of training.

A.3 Silhouette Supervision

Network Architecture For comparability to Liu et al. [4], we use the same network architecture.
That is, three convolutional layers with a kernel size of 5× 5, 64, 128, and 256 channels respectively,
each followed by a ReLU; after flattening, this is followed by 6 ReLU-activated fully connected
layers with the following output dimensions: 1024, 1024, 512, 1024, 1024, 642 × 3. The 642 × 3

elements are interpreted as three dimensional vectors that displace the vertices of a sphere with 642

vertices.

Training We train the Three Edges approach with Adam (η = 5 · 10−5) for 2.5 · 106 iterations and
train the directed Euclidean distance approach with Adam (η = 5 · 10−5) for 106 iterations. The
reason for this is that each of them took around 6 days of training on a single V100 GPU. We decay
the learning rate by 0.3 after 60% as well as after 80% of training.

A.4 Levenshtein Distance Supervision

Network Architecture The CNN consists of two convolutional layers with a kernel size of 5 and
hidden sizes of 32 and 64, each followed by a ReLU, and a max-pooling layer. The convolutional
layers are followed by two fully connected layers with a hidden size of 64 and a ReLU activation.

13

B Standard Deviations for Results

Table 5: Sorting Supervision: Standard deviations for Table 1.

Method n = 3 n = 5 n = 7

Relaxed Bubble Sort 0.944± .009 0.842± .012 0.707± .008

(0.961± .006) (0.930± .005) (0.898± .003)

Table 6: Shortest-Path Supervision: Standard deviations for Table 2.

Method EM cost ratio

Black-Box Loss [8] 86.6%± 0.8% 1.00026± 0.00005

Relaxed Shortest-Path 88.4%± 0.7% 1.00014± 0.00008

Table 7: Levenshtein Distance Supervision: Standard deviations for Table 4.
Method AB BC CD DE EF IL OX ACGT OSXL

Baseline
.616± .041 .651± .099 .768± .062 .739± .107 .701± .097 .550± .039 .893± .088 .403± .065 .448± .059

.581± .059 .629± .120 .759± .073 .711± .151 .674± .124 .490± .095 .890± .094 .336± .084 .384± .078

Relaxed LD
.671± .103 .807± .095 .816± .060 .833± .038 .847± .091 .570± .027 .960± .079 .437± .026 .487± .076

.666± .107 .805± .097 .815± .060 .831± .039 .845± .097 .539± .042 .960± .080 .367± .051 .404± .104

C Algorithms

C.1 Sorting Supervision: Bubble Sort

On the left, a Python version reference implementation of bubble sort [37] is displayed. On the right,
the relaxed version is displayed.

def bubble_sort (A):
n = len(A) - 1
swapped = True
while swapped :

swapped = False
for i in range(n):

if A[i] > A[i+1]:

a_1 = A[i+1]
a_2 = A[i]
A[i] = a_1
A[i+1] = a_2
swapped = True
loss = 1

n = n - 1
return A

bubble_sort = Algorithm (
Lambda (lambda A: A.shape [-1] - 1, [’n ’])
Lambda (lambda swapped : 1.)
While(’swapped ’, Sequence (

Lambda (lambda swapped : 0),
For(’i’, ’n’, Sequence (

If(GT(lambda A, i: IndexInplace ()(A, i),
lambda A, i: IndexInplace ()(A, i+1)) ,

if_true = Sequence (
Index(’a_1 ’, ’A’, lambda i: i+1),
Index(’a_2 ’, ’A’, ’i’),
IndexAssign (’A’, ’i’, ’a_1 ’),
IndexAssign (’A’, lambda i: i+1, ’a_2 ’),
Lambda (lambda swapped : 1.),
Lambda (lambda loss: 1.))))) ,

Lambda (lambda n: n - 1)
)))

C.2 Shortest-Path Supervision: Bellman-Ford

In the following, we provide pseudo-code for the Bellman-Ford algorithm with 8-neighborhood, node
weights, and path reconstruction.

14

def shortest_path (cost):
n = cost.shape [0]
D[0:n+2, 0:n+2] = INFINITY
D[1, 1] = 0
for _ in range(n*n):

arg_D = arg_minimum_neighbor (D) # 8- neighborhood
D = cost + minimum_neighbor (D)
D[1, 1] = 0

path [0:n+2, 0:n+2] = 0
position = n+1, n+1
while path [1, 1] == 0:

path[position] = 1
position = get_next_location (arg_D , position)

return path

For the relaxation, arg_minimum_neighbor and minimum_neighbor use softmax. Further, for
the relaxation, get_next_location returns a marginal distribution over all possible positions. An
alternative, where get_next_location returns a pair of real-valued coordinates is possible, however
the quality of the gradients is reduced.

C.3 Silhouette Supervision: 3D Mesh Renderer

In the following, we provide pseudo-code for the two simple silhouette rendering algorithms that we
use.

C.3.1 Three Edges

def silhouette_renderer (triangles , camera_extrinsics , resolution =64):
triangles = transform_and_projection (triangles , camera_extrinsics)

image [0: resolution , 0: resolution] = 0
for p_x in range(resolution):

for p_y in range(resolution):
for t in triangles :

t.e1 , t.e2 , t.e3 are the three edges of t
if directed_dist (t.e1 , p_x , p_y) <= 0:

if directed_dist (t.e2 , p_x , p_y) <= 0:
if directed_dist (t.e3 , p_x , p_y) <= 0:

image[p_x , p_y] = 1
else:

if directed_dist (t.e2 , p_x , p_y) > 0:
if directed_dist (t.e3 , p_x , p_y) > 0:

image[p_x , p_y] = 1
return image

C.3.2 Directed Euclidean Distance

def silhouette_renderer (triangles , camera_extrinsics , resolution =64):
triangles = transform_and_projection (triangles , camera_extrinsics)

image [0: resolution , 0: resolution] = 0
for p_x in range(resolution):

for p_y in range(resolution):
for t in triangles :

if directed_euclidean_distance (t, p_x , p_y) <= 0:
image[p_x , p_y] = 1

return image

15

For both algorithms, we parallelize the three loops as they are independent. As for runtime, the Three
Edges algorithm is around 3 times faster than the directed euclidean distance algorithm. This is
because computing the euclidean distance between a point and a triangle is an expensive operation.

C.4 Levenshtein Distance Supervision (Dynamic Programming)

Pseudo-code of our implementation of the Levenshtein distance [41] and a simplified code for our
framework is displayed below.

def levenshtein_distance (s, t):
n = len(s)
d[0:n + 1, 0:n + 1] = 0
for i in range(n):

d[i + 1, 0] = i + 1
for j in range(n):

d[0, j + 1] = j + 1
for i in range(n):

for j in range(n):
if s[i] == t[j]:

subs_cost = 0
else:

subs_cost = 1
d[i + 1, j + 1] = min(d[i, j + 1] + 1,

d[i + 1, j] + 1,
d[i, j] + subs_cost)

return d[n, n]

levenshtein_distance = Algorithm (
For(’i’, ’n’,

IndexAssign2D (’d’, lambda i: [i + 1, i*0], lambda i: i + 1)),
For(’j’, ’n’,

IndexAssign2D (’d’, lambda j: [i*0, j + 1], lambda j: j + 1)),
For(’j’, ’n’,

For(’i’, ’n’, Sequence (
If(CatProbEq (lambda s, i: IndexInplace (s, i),

lambda t, j: IndexInplace (t, j)),
if_true = Lambda (lambda subs_cost : 0),
if_false = Lambda (lambda subs_cost : 1),
),
IndexAssign2D (’d’,

index= lambda i, j: [i + 1, j + 1],
value= lambda d, i, j, subs_cost :

Min(d[:, i, j + 1] + 1,
d[:, i + 1, j] + 1,
d[:, i, j] + subs_cost))

))
)

)

16

	Implementation Details
	Sorting Supervision
	Shortest-Path Supervision
	Silhouette Supervision
	Levenshtein Distance Supervision

	Standard Deviations for Results
	Algorithms
	Sorting Supervision: Bubble Sort
	Shortest-Path Supervision: Bellman-Ford
	Silhouette Supervision: 3D Mesh Renderer
	Three Edges
	Directed Euclidean Distance

	Levenshtein Distance Supervision (Dynamic Programming)

