
A Notation and Definitions

We first overview standard definitions about sample complexity in PAC learning.

PAC Sample Complexity. The realizable PAC sample complexity M(H; ", �) of H is defined as

M(H; ", �) = inf
A2A

MA(H; ", �) , (1)

where the infimum is over all possible learning algorithms and MA(H; ", �) is the minimal integer
such that for any m � MA(H; ", �), every distribution DX on X , and, true target h?

2 H, the
expected loss Ex⇠DX [`(A(T)(x), h?(x))] of A is at most " with probability 1� � over the training
set T = {(x, h?(x)) : x 2 S}, S ⇠ D

m

X
.

PAC Cut-Off Sample Complexity. We slightly overload the notation of the sample complexity
and we define

M(H; ", �, �) = inf
A2A

MA(H; ", �, �) , (2)

where the infimum is over all possible learning algorithms and MA(H; ", �, �) is the minimal integer
such that for any m � MA(H; ", �, �), every distribution DX on X , and, true target h?

2 H, the
expected cut-off loss Prx⇠DX [`(A(T)(x), h?(x)) > �] of A is at most " with probability 1� � over
the training set T = {(x, h?(x)) : x 2 S}, S ⇠ D

m

X
.

Lemma 1 (Equivalence Between Sample Complexities). For every ", � 2 (0, 1)2 and every H ✓

[0, 1]X , where X is the input domain, it holds that

M(H;
p
", �,

p
")  M(H; ", �)  M(H; "/2, �, "/2)

Proof. Let A be a learning algorithm. We will prove the statement for each fixed A and for each data-
generating distribution D, so the result follows by taking the infimum over the learning algorithms.

Assume that the cut-off sample complexity of A is MA(H; "/2, �, "/2). Then, with probability 1� �
over the training sample S ⇠ D, for its expected loss it holds that

E
x⇠DX

[`(A(S;x), h?(x))] 
"

2
+
⇣
1�

"

2

⌘
·
"

2
 " ,

thus, MA(H; ", �)  MA(H; "/2, �, "/2).

The other direction follows by using Markov’s inequality. In particular, if we have that with probability
at least 1� � over S ⇠ D it holds that

E
x⇠DX

[`(A(S;x), h?(x))]  " ,

then Markov’s inequality gives us that

Pr
x⇠DX

[`(A(S;x), h?(x)) �
p
"] 

p
" ,

which shows that MA(H; ", �) � MA(H;
p
", �,

p
").

ERM Sample Complexity. In the special case where A is the class ERM of all possible ERM
algorithms, i.e., algorithms that return a hypothesis whose sample error is exactly 0, we define the
ERM sample complexity as the number of samples required by the worst-case ERM algorithm, i.e.,

MERM(H; ", �) = sup
A2ERM

MA(H; ", �) , (3)

and its cut-off analogue as

MERM(H; ", �, �) = sup
A2ERM

MA(H; ", �, �) , (4)

B �-Graph Dimension and ERM Learnability

In this section, we show that �-graph dimension determines the learnability of H ✓ [0, 1]X using any
ERM learner. We first revisit the notion of partial concept classes which will be useful for deriving
our algorithms.

16

B.1 Partial Concept Classes and A Naive Approach that Fails

[AHHM22] proposed an extension of the binary PAC model to handle partial concept classes, where
H ✓ {0, 1, ?}X , for some input domain X , where h(x) = ? should be thought of as h not knowing
the label of x 2 X . The main motivation behind their work is that partial classes allow one to
conveniently express data-dependent assumptions. As an intuitive example, a halfspace with margin
is a partial function that is undefined inside the forbidden margin and is a well-defined halfspace
outside the margin boundaries. Instead of dealing with concept classes H ✓ Y

X where each concept
h 2 H is a total function h : X ! Y , we study partial concept classes H ✓ (Y [{?})X , where
each concept h is now a partial function and h(x) = ? means that the function h is undefined at x.
We define the support of h as the set supp(h) = {x 2 X : h(x) 6= ?}. Similarly as in the case of
total classes, we say that a finite sequence S = (x1, y1, . . . , xn, yn) is realizable with respect to H if
there exists some h⇤

2 H such that h⇤(xi) = yi, 8i 2 [n].

An important notion related to partial concept classes is that of disambiguation.
Definition 14 (Disambiguation of Partial Concept Class [AHHM22]). Let X be an input domain.
A total concept class H ✓ {0, 1}X is a special type of a partial concept. Given some partial
concept class H ✓ {0, 1, ?}X we say that H is a disambiguation of H if for any finite sequence
S 2 (X ⇥ {0, 1})⇤ if S is realizable with respect to H, then S is realizable with respect to H.

Intuitively, by disambiguating a partial concept class we convert it to a total concept class without
reducing its “expressivity”.

Let us first describe an approach to prove the upper bound, i.e., that if the scaled-graph dimension
is finite for all scales then the class is ERM learnable, that does not work. We could perform the
following transformation, inspired by the multiclass setting [DSS14]: for any h 2 H ✓ [0, 1]X , let us
consider the function eh : X ⇥ [0, 1] ! {0, 1} with eh(x, y) = 1 if and only if h(x) = y, eh(x, y) = 0

if and only if `(h(x), y) > " and eh(x, y) = ? otherwise. This induces a new binary partial hypothesis
class eH = {eh : h 2 H} ✓ {0, 1, ?}X . We note that DG

"
(H) = VC(eH). However, we cannot use

ERM for the partial concept class since in general this approach fails. In particular, a sufficient
condition for applying ERM is that VC({supp(eh) : eh 2 eH)} < 1.
Remark 1. Predicting ? in [AHHM22] implies a mistake for the setting of partial concept classes.
However, in our regression setting, ? is interpreted differently and corresponds to loss at most �
which is desirable. In particular, the hard instance for proper learners in the partial concepts paper
(see Proposition 4 in [AHHM22]) is good in settings where predicting ? does not count as a mistake,
as in our regression case.

B.2 Main Result

We are now ready to state the main result of this section. We will prove the next statement.
Theorem 1. Let ` be the absolute loss function. For every class H ✓ [0, 1]X and for any ", �, � 2

(0, 1)3, the sample complexity bound for realizable PAC regression by any ERM satisfies

⌦

DG

�
(H) + log(1/�)

"

!
 MERM(H; ", �, �)  O

DG

�
(H) log(1/") + log(1/�)

"

!
.

In particular, any ERM algorithm A achieves

E
x⇠DX

[`(A(S;x), h?(x)]  inf
�2[0,1]

� + e⇥

DG

�
(H) + log(1/�)

n

!
,

with probability at least 1� � over S of size n.

Proof. We prove the upper bound and the lower bound of the statement separately.

Upper Bound for the ERM learner. We deal with the cut-off loss problem with parameters
(", �, �) 2 (0, 1)3. Our proof is based on a technique that uses a “ghost” sample to establish
generalization guarantees of the algorithm. Let us denote

erD,�(h) , Pr
x⇠DX

[`(h(x), h?(x)) > �] , (1)

17

and for a dataset z 2 (X ⇥ [0, 1])n,

berz,�(h) ,
1

|z|

X

(x,y)2z

I{`(h(x), y) > �} . (2)

We will start by showing the next symmetrization lemma in our setting. Essentially, it bounds the
probability that there exists a bad ERM learner by the probability that there exists an ERM learner on
a sample r whose performance on a hidden sample s is bad. For a similar result, see Lemma 4.4 in
[AB99].

Lemma 2 (Symmetrization). Let ", � 2 (0, 1)2, n > 0. Fix Z = X ⇥ [0, 1]. Let

Q",� = {z 2 Zn : 9h 2 H : berz,�(h) = 0, erD,�(h) > "} (3)

and

R",� = {(r, s) 2 Zn
⇥ Zn : 9h 2 H : erD,�(h) > ", berr,�(h) = 0, bers,�(h) � "/2} . (4)

Then, for n � c/", where c is some absolute constant, we have that

D
n(Q",�)  2D2n(R",�) .

Proof. We will show that D2n(R",�) �
D

n
(Q",�)

2
. By the definition of R",� we can write

D
2n(R",�) =

Z

Q",�

D
n(s : 9h 2 H, erD,�(h) > ", berr,�(h) = 0, bers,�(h) � "/2)dDn(r) .

For r 2 Q",� , fix hr 2 H that satisfies berr,�(hr) = 0, erD,�(h) > ". It suffices to show that for hr

D
n(s : bers,�(hr) � "/2) � 1/2 .

Then, the proof of the lemma follows immediately. Since erD,�(hr) > ", we know that n · bers,�(h)
follows a binomial distribution with probability of success on every try at least " and n number of
tries. Thus, the multiplicative version of Chernoff’s bound gives us

D
n(s : bers,�(hr) < "/2)  e�

n·"
8 .

Thus, if n = c/", for some appropriate absolute constant c we see that

D
n(s : bers,�(hr) < "/2) < 1/2 ,

which concludes the proof.

Next, we can use a random swap argument to upper bound D
2n(R",�) with a quantity that involves a

set of permutations over the sample of length 2n. The main idea behind the proof is to try to leverage
the fact that each of the labeled examples is as likely to occur among the first n examples or the last
n examples.

Following [AB99], we denote by �n the set of all permutations on {1, . . . , 2n} that swap i and
n+ i, for all i that belongs to {1, . . . , n} . In other words, for all � 2 �n and i 2 {1, . . . , n} either
�(i) = i,�(n + i) = n + i or �(i) = n + i,�(n + i) = i. Thus, we can think of � as acting
on coordinates where it (potentially) swaps one element from the first half of the sample with the
corresponding element on the second half of the sample. For some z 2 Z2n we overload the notation
and denote �(z) the effect of applying � to the sample z.

We are now ready to state the bound. Importantly, it shows that by (uniformly) randomly choosing
a permutation � 2 �n we can bound the probability that a sample falls into the bad set R",� by a
quantity that does not depend on the distribution D.

Lemma 3 (Random Swaps; Adaptation of Lemma 4.5 in [AB99]). Fix Z = X ⇥ [0, 1]. Let R",� be
any subset of Z2n and D any probability distribution on Z. Then

D
2n(R",�) = E

z⇠D2n
Pr

�⇠U(�n)

[�(z) 2 R",�]  max
z2Z2n

Pr
�⇠U(�n)

[�(z) 2 R",�] ,

where U(�n) is the uniform distribution over the set of swapping permutations �n.

18

Proof. First, notice that the bound

E
z⇠D2n

Pr
�⇠U(�n)

[�(z) 2 R",�]  max
z2Z2n

Pr
�⇠U(�n)

[�(z) 2 R",�] ,

follows trivially and the maximum exists since Pr�⇠U(�n)
[�(z) 2 R",�] takes finitely many values

for any finite n and all z 2 Z2n. Thus, the bulk of the proof is to show that

D
2n(R",�) = E

z⇠D2n
Pr

�⇠U(�n)

[�(z) 2 R",�] .

First, notice that since example is drawn i.i.d., for any swapping permutation � 2 �n we have that

D
2n(R",�) = D

2n
��

z 2 Z2n : �(z) 2 R",�

 �
. (5)

Thus, the following holds

D
2n(R",�) =

Z

Z2n

I{z 2 R",�} dD
2n(z)

=
1

|�n|

X

�2�n

Z

Z2n

I{�(z) 2 R",�} dD
2n(z)

=

Z

Z2n

1

|�n|

X

�2�n

I{�(z) 2 R",�}

!
dD2n(z)

= E
z⇠D2n

Pr
�⇠U(�n)

[�(z) 2 R",�] ,

where the first equation follows by definition, the second by Equation (5), the third because the
number of terms in the summation is finite, and the last one by definition.

As a last step we can bound the above RHS by using all possible patterns when H is (roughly
speaking) projected in the sample rs 2 Z2n.

Lemma 4 (Bounding the Bad Event). Fix Z = X ⇥ [0, 1]. Let R",� ✓ Z2n be the set

R",� = {(r, s) 2 Zn
⇥ Zn : 9h 2 H : berr,�(h) = 0, bers,�(h) � "/2} .

Then
Pr

�⇠U(�n)

[�(z) 2 R",�]  (2n)O(DG

� (H) log(2n))2�n"/2 .

Proof. Throughout the proof we fix z = (z1, ..., z2n) 2 Z2n, where zi = (xi, yi) = (xi, h?(xi))
and let S = {x1, ..., x2n}. Consider the projection set H|S . We define a partial binary concept class
H

0
✓ {0, 1, ?}2n as follows:

H
0 :=

8
<

:h0
2 {0, 1, ?}2n : 9h 2 H|S : 8i 2 [2n]

8
<

:

h(xi) = yi, h0(i) = 0
`(h(xi), yi) > �, h0(i) = 1
0 < `(h(xi), yi)  �, h0(i) = ?

9
=

;

9
=

; .

Importantly, we note that, by definition, VC(H0)  DG
�
(H).

Currently, we have a partial binary concept class H0. As a next step, we would like to replace the
? symbols and essentially reduce the problem to a total concept class. This procedure is called
disambiguation (cf. Definition 14). The next key lemma shows that there exists a compact (in terms
of cardinality) disambiguation of a VC partial concept class for finite instance domains.

Lemma 5 (Compact Disambiguations, see [AHHM22]). Let H be a partial concept class on a
finite instance domain X with VC(H) = d. Then there exists a disambiguation H of H with size
|H| = |X |

O(d log |X |).

This means that there exists a disambiguation H0 of H0 of size at most

(2n)O(DG

� (H) log(2n)) .

19

Since this (total) binary concept class is finite, we can apply the following union bound argument.
We have that �(z) 2 R if and only if some h 2 H satisfies

P
n

i=1
I{`(h(x�(i)), y�(i)) > �}

n
= 0,

P
n

i=1
I{`(h(x�(n+i)), y�(n+i)) > �}

n
� "/2 .

We can relate this event with an event about the disambiguated partial concept class H0 since the
number of 1’s can only increase. In particular, for any swapping permutation � of the 2n points, if
there exists a function in H that is correct on the first n points and is off by at least � on at least "n/2
of the remaining n points, then there is a function in the disambiguation H0 that is 0 on the first n
points and is 1 on those same ✏n/2 of the remaining points.

If we fix some � 2 �n, and some h0 2 H0 then h0 is a witness that �(z) 2 R",� only if 8i 2 [n] we do
not have that h0(i) = 1, h0(i+ n) = 1. Thus at least one of h0(i), h0(n+ i) must be zero. Moreover,
at least n"/2 entries must be non-zero. Thus, when we draw random swapping permutation the
probability that all the non-zero entries land on the second half of the sample sample is at most
2�n"/2.

Crucially since the number of possible functions is at most |H0|  (2n)O(DG

� (H) log(2n)) a union
bound gives us that

Pr
�⇠U(�n)

[�(z) 2 R",�]  (2n)O(DG

� (H) log(2n))
· 2�n"/2 .

Thus, since z 2 Z2n was arbitrary we have that

max
z2Z2n

Pr
�U(�n)

[�(z) 2 R",�]  (2n)O(DG

� (H) log(2n))
· 2�n"/2 .

This concludes the proof.

Lower Bound for the ERM learner. Our next goal is to show that

MERM(H; ", �, �) � C0 ·
DG

�
(H) + log(1/�)

"
.

To this end, we will show that there exists an ERM learner satisfying this lower bound. This will
establish that the finiteness of �-graph dimension for any � 2 (0, 1), is necessary for PAC learnability
using a worst-case ERM. It suffices to show that there exists a bad ERM algorithm that requires
at least C0

DG

� (H)+log(1/�)

"
samples to cut-off PAC learn H. First let us consider the case where

d = DG
�
(H) < 1 and let S = {x1,, xd} be a �-graph-shattered set by H with witness f0.

Consider the ERM learner A that works as follows: Upon seeing a sample T ✓ S consistent with f0,
A returns a function A(T) that is equal to f0 on elements of T and �-far from f0 on S \ T . Such a
function exists since S is �-graph-shattered with witness f0. Let us take � < 1/100 and " < 1/12.
Define a distribution over S ✓ X such that

Pr[x1] = 1� 2", Pr[xi] = 2"/(d� 1), 8i 2 {2, ..., d} .

Let us set h? = f0 and consider m samples {(zi, f0(zi)}i2[m]. Since we work in the scaled PAC
model, A will make a �-error on all examples from S which are not in the sample (since in that
case the output will be �-far from the true label). Let us take m 

d�1

6"
. Then, the sample will

include at most (d�1)/2 examples which are not x1 with probability 1/100, using Chernoff’s bound.
Conditioned on that event, this implies that the ERM learner will make a �-error with probability at
least 2"

d�1
·(d�1� d�1

2
) = ", over the random draw of the test point. Thus, MA(H; ", �, �) = ⌦(d�1

"
).

Moreover, the probability that the sample will only contain x1 is (1�2")m � e�4"m which is greater
that � whenever m  log(1/�)/(4"). This implies that the �-cut-off ERM sample complexity is
lower bounded by

max

⇢
d� 1

6"
,
log(1/�)

2"

�
= C0 ·

DG
�
(H) + log(1/�)

"
.

Thus MERM(H; ", �, �), satisfies the desired bound when the dimension is finite. Finally, it remains
to claim about the case where DG

�
(H) = 1 for the given �. We consider a sequence of �-graph-

shattered sets Sn with |Sn| = n and repeat the claim for the finite case. This will yield that for any n
the cut-off ERM sample complexity is lower bounded by ⌦((n+ log(1/�))/") and this yields that
MERM(H; ", �, �) = 1.

20

However, as Example 4 shows, the optimal learner cannot be proper and as a result, this dimension
does not characterize PAC learnability for real-valued regression (there exist classes whose �-graph
dimension is infinite but are PAC learnable in the realizable regression setting).

C �-OIG Dimension and Learnability

In this section we identify a dimension characterizing qualitatively and quantitatively what classes of
predictors H ✓ [0, 1]X are PAC learnable and we provide PAC learners that achieve (almost) optimal
sample complexity. In particular, we show the following result.
Theorem 2. Let ` be the absolute loss function. For every class H ✓ [0, 1]X and for any ", �, � 2

(0, 1)3, the sample complexity bound for realizable PAC regression satisfies

⌦

DOIG

2�
(H)

"

!
 M(H; ", �, �)  O

DOIG

�
(H)

"
log2

DOIG
�

(H)

"
+

1

"
log

1

�

!
.

In particular, there exists an algorithm A such that

E
x⇠DX

[`(A(S;x), h?(x)]  inf
�2[0,1]

� + e⇥

DOIG

�
(H) + log(1/�)

n

!
,

with probability at least 1� � over S ⇠ D
n.

A finite fat-shattering dimension implies a finite OIG dimension. Let F ✓ [0, 1]X be a function
class with finite �-fat shattering dimension for any � > 0. We show that DOIG

�
(F) is upper bounded

(up to constants and log factors) by Dfat
c�

(F), for some c > 0, where the OIG dimension is defined
with respect to the `1 loss. Note that the opposite direction does not hold. Example 1 exhibits a
function class with an infinite fat-shattering dimension that can be learned with a single example,
and as a result, the OIG dimension has to be finite. On the one hand, we have an upper bound on the
sample complexity of O

�
1

✏

�
Dfat

c̃"
(F) log2 1

✏
+ log 1

�

��
, for any ", � 2 (0, 1). See sections 19.6 and

20.4 about the restricted model in [AB99]. On the other hand, we prove in Lemma 6 a lower bound
on the sample complexity of ⌦

⇣
DOIG

2" (F)

✏

⌘
, for any " 2 (0, 1), and so DOIG

�
(F) is upper bounded by

Dfat
c�

(F) up to constants and log factors.

C.1 Proof of the Lower Bound

Lemma 6. [Lower Bound of PAC Regression] Let A be any learning algorithm and ", �, � 2 (0, 1)3

such that � < ". Then,

MA(H; ", �, �) � ⌦

DOIG

2�
(H)

"

!
.

Proof. Let n0 = DOIG
2�

(H). Let n 2 N, 1 < n  n0. We know that for each such n there exists
some S 2 X

n such that the one-inclusion graph of H|S has the property that: there exists a finite
subgraph G = (V,E) of GOIG

H|S
such that for any orientation � : E ! V of the subgraph, there exists

a vertex v 2 V with outdeg(v;�, 2�) > DOIG
2�

(H)/3.

Given the learning algorithm A : (X ⇥ [0, 1])?⇥X ! [0, 1], we can describe an orientation �A of the
edges in E. For any vertex v = (v1, . . . , vn) 2 V let Pv be the distribution over (x1, v1),, (xn, vn)
defined as

Pv((x1, v1)) = 1� ", Pv((xt, vt)) =
"

n� 1
, t 2 {2, . . . , n} .

Let m = n/(2"). For each vertex v 2 V and direction t 2 [n], consider the hyperedge et,v . For each
u 2 et,v we define

pt(u) = Pr
S⇠Pm

u

[`(A(S;xt), ut) > �|(xt, ut) /2 S] ,

and let Cet,v = {u 2 et,v : pt(u) < 1/2}. If Cet,v = ;, we orient the edge et,v arbitrarily. Since for
all u, v 2 et,v the distributions Pm

u
, Pm

v
conditioned on the event that (xt, ut), (xt, vt) respectively

21

are not in S are the same, we can see that 8u, v 2 Cet,v it holds that `(ut, vt)  2�. We orient the
edge et,v using an arbitrary element of Cet,v .

Because of the previous discussion, we can bound from above the out-degree of all vertices v 2 V
with respect to the orientation �A as follows:

outdeg(v;�A, 2�) 
X

t

I{pt(v) � 1/2}  1 + 2
nX

t=2

Pr
S⇠Pm

v

[`(A(S, xt), yt) > �|(xt, yt) /2 S] .

Notice that

Pr
S⇠Pm

v

[`(A(S, xt), yt) > �|(xt, yt) /2 S] =
PrS⇠Pm

v
[{`(A(S, xt), yt) > �} ^ {(xt, yt) /2 S}]

PrS⇠Pm
v
[(xt, yt) /2 S]

,

and by the definition of Pv , we have that

Pr
S⇠Pm

v

[(xt, yt) /2 S] =

✓
1�

"

n� 1

◆m

� 1�
n

2(n� 1)
,

since m = n/(2"). Combining the above, we get that

outdeg(v;�A, 2�)  1 + 2

✓
1�

n

2(n� 1)

◆ nX

t=2

E
S⇠Pm

v

[I{`(A(S, xt), yt) > �} · I{(xt, yt) /2 S}] ,

and so

outdeg(v;�A, 2�)  1 + 2

✓
1�

n

2(n� 1)

◆
E

S⇠Pm
v

"
nX

t=2

I{`(A(S, xt), yt) > �}

#

= 1 + 2

✓
1�

n

2(n� 1)

◆
n� 1

"
E

S⇠Pm
v

"
"

n� 1

nX

t=2

I{`(A(S, xt), yt) > �}

#

 1 + 2

✓
1�

n

2(n� 1)

◆
n� 1

"
E

S⇠Pm
v


E

(x,y)⇠Pv

[I{`(A(S;x), y) > �}]

�

= 1 + 2

✓
1�

n

2(n� 1)

◆
n� 1

"
E

S⇠Pm
v


Pr

(x,y)⇠Pv

[`(A(S;x), y) > �]

�

 1 +
n� 2

"
E

S⇠Pm
v


Pr

(x,y)⇠Pv

[`(A(S;x), y) > �]

�

By picking “hard” distribution D = Pv? , where v? 2 argmaxv02V outdeg(v0;�A, 2�) we get that
that

E
S⇠Pm

v?


Pr

(x,y)⇠Pv?

[`(A(S;x), y) > �]

�
� (outdeg(v?;�A, 2�)� 1) ·

"

n� 2

�
"

6
,

since outdeg(v?;�A, 2�) > n/3. By picking n = n0 we see that when the learner uses m = n0/"
samples then its expected error is at least "/6. Notice that when the learner uses m0 = MA(H; ", �, �)
samples we have that

E
S⇠Pm0

v?


Pr

(x,y)⇠Pv?

[`(A(S;x), y) > �]

�
 � + (1� �)"  � + "  2" .

Thus, we see that for any algorithm A

MA(H; ", �, �) � ⌦

DOIG

2�
(H)

"

!
,

hence

M(H; ", �, �) � ⌦

DOIG

2�
(H)

"

!
.

22

C.2 Proof of the Upper Bound

Let us present the upper bound. For this proof, we need three tools: we will provide a weak learner
based on the scaled one-inclusion graph, a boosting algorithm for real-valued functions, and consistent
sample compression schemes for real-valued functions.

To this end, we introduce the one-inclusion graph (OIG) algorithm AOIG
�

for realizable regression at
scale �.

C.2.1 Scaled One-Inclusion Graph Algorithm and Weak Learning

First, we show that every scaled orientation � of the one-inclusion graph gives rise to a learner A�

whose expected absolute loss is upper bounded by the maximum out-degree induced by �.
Lemma 7 (From Orientations to Learners). Let DX be a distribution over X and h?

2 H ✓ [0, 1]X ,
let n 2 N and � 2 (0, 1). Then, for any orientation � : En ! Vn of the scaled-one-inclusion graph
GOIG

H
= (Vn, En), there exists a learner A� : (X ⇥ [0, 1])n�1

! [0, 1]X , such that

E
S⇠D

n�1

X


Pr

x⇠DX
[`(A�(x), h

?(x)) > �]

�


maxv2Vn outdeg(v;�, �)

n
,

where A� is trained using a sample S of size n� 1 realized by h?.

Algorithm 1 From orientation � to learner A�

Input: An H-realizable sample {(xi, yi)}
n�1

i=1
and a test point x 2 X , � 2 (0, 1).

Output: A prediction A�(x).

1. Create the one-inclusion graph GOIG

H|(x1,...,xn�1,x)

.

2. Consider the edge in direction n defined by the realizable sample {(xi, yi)}
n�1

i=1
; let

e = {h 2 H|(x1,...,xn�1,x)
: 8i 2 [n� 1] h(i) = yi} .

3. Return A�(x) = �(e)(n).

Proof. By the classical leave-one-out argument, we have that

E
S⇠D

n�1

X


Pr

x⇠DX
[`(A�(x), h

?(x)) > �]

�
= E

(S,(x,y))⇠Dn
[I{`(hS(x), y) > �}] = E

S0⇠Dn,I⇠U([n])
[I{`(hS0

�I
(x0

I
), y0

I
) > �}] ,

where hS is the predictor A� using the examples S, and U([n]) is the uniform distribution on
{1, . . . , n}. Now for every fixed S0 we have that

E
I⇠U([n)]

[I{`(hS0
�I
(x0

I
), y0

I
) > �}] =

1

n

X

i2[n]

I{`(�(ei)(i), y0i) > �} =
outdeg(y0;�, �)

n
,

where y0 is the node of the scaled OIG that corresponds to the true labeling of S0. By taking
expectation over S0

⇠ D
n we get that

E
S0⇠Dn,I⇠U([n])

[I{`(hS0
�I
(x0

I
), y0

I
) > �}]  E

S0⇠Dn


outdeg(y0;�, �)

n

�


maxv2Vn outdeg(v;�, �)

n
.

Equipped with the previous result, we are now ready to show that when the learner gets at least
DOIG

�
(H) samples as its training set, then its expected �-cutoff loss is bounded away from 1/2.

Lemma 8 (Scaled OIG Guarantee (Weak Learner)). Let DX be a distribution over X and h?
2 H ✓

[0, 1]X , and � 2 (0, 1). Then, for all n > DOIG
�

(H) there exists an orientation �? such that for the
prediction error of the one-inclusion graph algorithm AOIG

�? : (X ⇥ [0, 1])n�1
⇥X ! [0, 1] , it holds

that
E

S⇠D
n�1

X


Pr

x⇠DX

⇥
`(AOIG

�? (x), h?(x)) > �
⇤�

 1/3 .

23

Proof. Fix � 2 (0, 1). Assume that n > DOIG
�

(H) and let GOIG

H|(S,x)

= (Vn, En) be the possibly
infinite scaled one-inclusion graph. By the definition of the �-OIG dimension (see Definition 9), for
every finite subgraph G = (V,E) of GOIG

H|(S,x)

there exists an orientation � : E ! V such that for
every vertex in G the out-degree is at most n/3, i.e.,

8S 2 X
n, 8 finite G = (V,E) of GOIG

H|S
, 9 orientation �E s.t. 8v 2 V, it holds outdeg(v;�E , �)  n/3 .

First, we need to create an orientation of the whole (potentially infinite) one-inclusion graph.

We will create this orientation using the compactness theorem of first-order logic which states that a
set of formulas � is satisfiable if and only if it is finitely satisfiable, i.e., every finite subset �0

✓ �
is satisfiable. Let GOIG

H|S
= (Vn, En) be the (potentially infinite) one-inclusion graph of H|S . Let Z

be the set of pairs z = (v, e) 2 Vn ⇥ En so that v 2 e. Our goal is to assign binary values to each
z 2 Z. We define the following sets of formulas:

• For each e 2 En we let �e := 9 exactly one v 2 e : z(v, e) = 1.

• For each v 2 Vn we let �v := 9 at most n/3 different ei,f 2 En : v 2 ei,f ^

(9v0 2 ei,f : (z(v0, e) = 1 ^ `(v0
i
, vi) > �))

It is not hard to see that each �e,�v can be expressed in first-order logic. Then, we define

� :=

\

e2En

�e

!
\

\

v2Vn

�v

!
.

Notice that an orientation of the edges of GOIG

H|S
is equivalent to picking an assignment of the elements

of Z that satisfies all the �e. Moreover, notice that for such an assignment, if all the �v are satisfied
then then maximum �-scaled out-degree of GOIG

H|S
is at most n/3.

We will now show that � is finitely satisfiable. Let �0 be a finite subset of � and let E0
✓ En, V 0

✓

Vn, be the set of edges, vertices that appear in �0, respectively. If V 0 = ;, then we can orient the
edges in E0 arbitrarily and satisfy �0. Similarly, if E0 = ; we can let all the z(e, v) = 0 and satisfy
all the �v, v 2 V 0. Thus, assume that both sets are non-empty. Consider the finite subgraph of GOIG

H|S

that is induced by V 0 and let E00 be the set of edges of this subgraph. For every edge e 2 E0
\E004,

pick an arbitrary orientation, i.e, for exactly one v 2 e set z(e, v) = 1 and for the remaining v0 2 e set
z(e, v0) = 0. By the definition of DOIG

�
(H) there is an orientation �E00 of the edges in E00 such that

8v 2 V 0outdeg(v;�E00 , �)  n/3. For every e 2 E00 pick the assignment of all the z(v, e), v 2 e,
according to the orientation �E00 . Thus, because of the maximum out-degree property of �E00 we
described before, we can also see that all the �v, v 2 V 0, are satisfied. Hence, we have shown that �
is finitely satisfiable, so it is satisfiable. This assignment on z(v, e) induces an orientation �? under
which all the vertices of the one-inclusion graph have out-degree at most n/3.

We will next use the orientation �? of GOIG

H|S
= (Vn, En) to design a learner AOIG

�? : (X⇥[0, 1])n�1
⇥

X ! [0, 1], invoking Lemma 7. In particular, we get that, from Lemma 7 with the chosen orientation,

E
S⇠D

n�1

X


Pr

x⇠DX

⇥
`(AOIG

�? (x), h?(x)) > �
⇤�


maxv2Vn outdeg(v;�?, �)

n
 1/3 ,

which concludes the proof.

C.2.2 Boosting Real-Valued Functions

Definition 15 (Weak Real-Valued Learner). Let ` be a loss function. Let � 2 [0, 1], � 2 (0, 1

2
),

and H ✓ [0, 1]X . For a distribution DX over X and true target function h?
2 H, we say that

f : X ! [0, 1] is (�,�)-weak learner with respect to DX and h?, if

Pr
x⇠DX

h
`(f(x), h?(x)) > �

i
<

1

2
� �.

4Since the edges in E00 are of finite length, we first need to map them to the appropriate edges in E0.

24

Following [HKS19], we define the weighted median as

Median(y1, . . . , yT ;↵1, . . . ,↵T) = min

(
yj :

P
T

t=1
↵tI[yj < yt]P
T

t=1
↵t

<
1

2

)
,

and the weighted quantiles, for ✓ 2 [0, 1/2], as

Q+

✓
(y1, . . . , yT ;↵1, . . . ,↵T) = min

(
yj :

P
T

t=1
↵tI[yj < yt]P
T

t=1
↵t

<
1

2
� ✓

)

Q�

✓
(y1, . . . , yT ;↵1, . . . ,↵T) = max

(
yj :

P
T

t=1
↵tI[yj > yt]P
T

t=1
↵t

<
1

2
� ✓

)
,

and we let Q+

✓
(x) = Q+

✓
(h1(x), . . . , hT (x);↵1, . . . ,↵T), Q

�

✓
(x) =

Q�

✓
(h1(x), . . . , hT (x);↵1, . . . ,↵T), where h1, . . . , hT ,↵1, . . . ,↵T are the values returned

by Algorithm 2. The following guarantee holds for this procedure.
Lemma 9 (MedBoost guarantee [Kég03]). Let ` be the absolute loss and S = {(xi, yi)}mi=1

,
T = O

�
1

✓2 log(m)
�
. Let h1, . . . , hT and ↵1, . . . ,↵T be the functions and coefficients returned from

MedBoost. For any i 2 {1, . . . ,m} it holds that

max
n
`
⇣
Q+

✓/2
(xi), yi

⌘
, `
⇣
Q�

✓/2
(xi), yi

⌘o
 �.

Algorithm 2 MedBoost [Kég03]
Input: S = {(xi, yi)}

m

i=1
.

Parameters: �,�, T .
Initialize P1 = Uniform(S).
For t = 1, . . . , T :

1. Find a (�,�)-weak learner ht with respect to (xi, yi) ⇠ Pt, using a subset St ✓ S.
2. For i = 1, . . . ,m:

(a) Set w(t)

i
= 1� 2I

⇥
`(ht(xi), yi) > �

⇤
.

(b) Set ↵t =
1

2
log

✓
(1��)

Pn
i=1

Pt(xi,yi)I
h
w

(t)
i =1

i

(1+�)
Pn

i=1
Pt(xi,yi)I

h
w

(t)
i =�1

i

◆
.

(c) • If ↵t = 1: return T copies of ht, (↵1 = 1, . . . ,↵T = 1), and St.
• Else: Pt+1(xi, yi) = Pt(xi, yi) exp(�↵twt

i
) /Zt, where Zt =P

n

j=1
Pt(xj , yj) exp

�
�↵twt

j

�
.

Output: Functions h1, . . . , hT , coefficients ↵1, . . . ,↵T and sets S1, . . . , ST .

C.2.3 Generalization via Sample Compression Schemes

Sample compression scheme is a classic technique for proving generalization bounds, introduced
by [LW86, FW95]. These bounds proved to be useful in numerous learning settings, such as
binary classification [GHST05, MY16, BHMZ20], multiclass classification [DSBDSS15, DSS14,
DMY16, BCD+22], regression [HKS18, HKS19], active learning [WHEY15], density estimation
[ABDH+20], adversarially robust learning [MHS19, MHS20, MHS21, MHS22, AHM22, AH22],
learning with partial concepts [AHHM22], and showing Bayes-consistency for nearest-neighbor
methods [GKN14, KSW17]. As a matter of fact, compressibility and learnability are known to be
equivalent for general learning problems [DMY16]. Another remarkable result by [MY16] showed
that VC classes enjoy a sample compression that is independent of the sample size.

We start with a formal definition of a sample compression scheme.
Definition 16 (Sample compression scheme). A pair of functions (, ⇢) is a sample compression
scheme of size ` for class H if for any n 2 N, h 2 H and sample S = {(xi, h(xi))}ni=1

, it holds
for the compression function that  (S) ✓ S and | (S) |  `, and the reconstruction function
⇢ ( (S)) = ĥ satisfies ĥ(xi) = h(xi) for any i 2 [n].

25

We show a generalization bound that scales with the sample compression size. The proof follows
from [LW86].
Lemma 10 (Sample compression scheme generalization bound). Fix a margin � 2 [0, 1]. For any
k 2 N and fixed function � : (X ⇥ [0, 1])k ! [0, 1]X , for any distribution D over X ⇥ [0, 1] and
any m 2 N, for S = {(xi, yi)}i2[m] i.i.d. D-distributed random variables, if there exist indices
i1, ..., ik 2 [m] such that

P
(x,y)2S

I{`(�((xi1
, yi1), ..., (xik , yik))(x), y) > �} = 0, then

E
(x,y)⇠D

[I{`(�((xi1
, yi1), ..., (xik , yik))(x), y) > �}] 

1

m� k
(k logm+ log(1/�)) .

with probability at least 1� � over S.

Proof. Let us define b̀
�(h;S) = 1

|S|

P
(x,y)2S

I{`(h(x), y) > �} and `�(h;D) =

E(x,y)⇠D [I{`(h(x), y) > �}]. For any indices i1, ..., ik 2 [m], the probability of the bad event

Pr
S⇠Dm

[b̀�(�((xi1
, yi1), ..., (xik , yik));S) = 0 ^ `�(�((xi1

, yi1), ..., (xik , yik));D) > "]

is at most

E
h
I{`�(�({(xij , yij)}j2[k]);D) > "}Pr[b̀�(�({(xij , yij)}j2[k]);S \ {(xij , yij)}j2[k]) = 0|{(xij , yij)}j2[k]]

i

< (1� ")m�k

where the expectation is over (xi1
, yi1), ..., (xik , yik) and the inner probability is over S \

(xi1
, yi1), ..., (xik , yik). Taking a union bound over all mk possible choices for the k indices, we get

that the bad event occurs with probability at most

mk exp(�"(m� k))  �) " =
1

m� k
(k logm+ log(1/�)) .

C.3 Putting it Together

We now have all the necessary ingredients in place to prove the upper bound of Theorem 2. First,
we use Lemma 8 on a sample of size n0 = DOIG

�
(H) to obtain a learner which makes �-errors with

probability at most 1/35. Then, we use the boosting algorithm we described (see Algorithm 2) to
obtain a learner that does not make any �-mistakes on the training set. Notice that the boosting
algorithm on its own does not provide any guarantees about the generalization error of the procedure.
This is obtained through the sample compression result we described in Appendix C.2.3. Since we
run the boosting algorithm for a few rounds on a sample whose size is small, we can provide a sample
compression scheme following the approach of [DMY16, HKS19].
Lemma 11 (Upper Bound of PAC Regression). Let H ✓ [0, 1]X and ", �, � 2 (0, 1)3. Then,

M(H; ", �, �)  O

DOIG

�
(H)

"
log2

DOIG
�

(H)

"
+

1

"
log

1

�

!
.

Proof. Let n be the number of samples S = ((x1, y1), . . . , (xn, yn)) that are available to the learner,
n0 = DOIG

�
(H) and let A be the algorithm obtained from Lemma 8. We have that

E
S⇠D

n0�1

X


Pr

x⇠DX
[`(A(S;x), h?(x)) > �]

�
 1/3 .

This means that, for any distribution DX and any labeling function h?
2 H we can draw a sample

S? = ((x1, y1), . . . , (xn0�1, yn0�1
)) with non-zero probability such that

Pr
x⇠DX

[`(A(S?;x), h?(x)) > �] 
1

3
.

5In expectation over the training set.

26

Notice that such a classifier is a (�, 1/6)-weak learner (see Definition 15). Thus, by executing the
MedBoost algorithm (see Algorithm 2) for T = O(log n) rounds we obtain a classifier ĥ : X ! R
such that, `(ĥ(xi), yi)  �, 8i 2 [n]. We underline that the subset St that is used in line 1 of
Algorithm 2 has size at most n0, for all rounds t 2 [T]. Thus, the total number of samples that is used
by MedBoost is at most O(n0 log n). Hence, following the approach of [MY16] we can encode the
classifiers produced by MedBoost as a compression set that consists of k = O(n0 log n) samples
that were used to train the classifiers along with k log k extra bits that indicate their order. Thus, using
generalization based on sample compression scheme as in Lemma 10, we have that with probability
at least 1� � over S ⇠ D

n,

E
(x,y)⇠D

h
I
n
`(ĥ(x), y) > �

oi


C

n� n0 log(n)

�
n0 log

2 n+ log(1/�)
�
,

which means that for large enough n,

E
(x,y)⇠D

h
I
n
`(ĥ(x), y) > �

oi
 O

✓
n0 log

2 n

n
+

log(1/�)

n

◆
.

Thus,

Pr
(x,y)⇠D

h
`(ĥ(x), y) > �

i
 O

✓
n0 log

2 n

n
+

log(1/�)

n

◆
.

Hence, we can see that

M(H; ", �, �)  O

DOIG

�
(H)

"
log2

DOIG
�

(H)

"
+

1

"
log

1

�

!
.

D �-DS Dimension and Learnability

In this section, we will show that finiteness of �-DS dimension is necessary for PAC learning in the
realizable case.
Theorem 3. Let H ✓ [0, 1]X , ", �, � 2 (0, 1)3. Then,

M(H; ", �, �) � ⌦

DDS

2�
(H) + log(1/�)

"

!
.

Proof. Let d = DOIG
2�

(H). Then, there exists some S = (x1, . . . , xd) 2 X
d such that H|S contains

a 2�-pseudo-cube, which we call H0. By the definition of the scaled pseudo-cube, 8h 2 H
0, i 2 [d],

there is exactly one h0
2 H

0 such that h(xj) = h0(xj), j 6= i, and `(h(xi), h0(xi)) > 2�. We pick
the target function h? uniformly at random among the hypotheses of H0 and we set the marginal
distribution DX of D as follows

Pr[x1] = 1� 2", Pr[xi] = 2"/(d� 1), 8i 2 {2, ..., d} .

Consider m samples {(zi, h?(zi)}i2[m] drawn i.i.d. from D. Let us take m 
d�1

6"
. Then, the sample

will include at most (d� 1)/2 examples which are not x1 with probability 1/100, using Chernoff’s
bound. Let us call this event E. Conditioned on E, the posterior distribution of the unobserved
points is uniform among the vertices of the d/2-dimensional 2�-pseudo-cube. Thus, if the test
point x falls among the unobserved points, the learner will make a �-mistake with probability at
least 1/2. To see that, let by be the prediction of the learner on x. Since every hyperedge has size at
least 2 and all the vertices that are on the hyperedge differ by at least 2� in the direction of x, no
matter what by is the correct label y? is at least �-far from it. Since Pr[E] � 1/100, we can see that
MA(H; ", �, �) = ⌦(d

"
). Moreover, by the law of total probability there must exist a deterministic

choice of the target function h?, that could depend on A, which satisfies the lower bound. For
the other part of the lower bound, notices the probability that the sample will only contain x1 is

27

(1 � 2")m � e�4"m which is greater that � whenever m  log(1/�)/(4"). This implies that the
�-cut-off sample complexity is lower bounded by

max

⇢
C1 ·

d

"
, C2 ·

log(1/�)

"

�
= C0 ·

DDS
2�

(H) + log(1/�)

"
.

Thus MA(H; ", �, �), satisfies the desired bound when the dimension is finite. Finally, it remains
to claim about the case where DDS

2�
(H) = 1 for the given �. We consider a sequence of 2�-DS

shattered sets Sn with |Sn| = n and repeat the claim for the finite case. This will yield that for any
n the �-cut-off sample complexity is lower bounded by ⌦((n + log(1/�))/") and this yields that
M(H; ", �, �) = 1.

We further conjecture that this dimension is also sufficient for PAC learning.
Conjecture 2. A class H ✓ (0, 1)X is PAC learnable in the realizable regression setting with respect
to the absolute loss function if and only if DDS

�
(H) < 1 for any � 2 (0, 1).

We believe that there must exist a modification of the approach of [BCD+22] that will be helpful in
settling the above conjecture.
Conjecture 3. There exists H ✓ (0, 1)X for which DNat

�
(H) = 1 for all � 2 (0, 1) but DDS

�
(H) < 1

for some � 2 (0, 1).

In particular, we believe that one can extend the construction of [BCD+22] (which uses various
tools from algebraic topology as a black-box) and obtain a hypothesis class H ✓ [0, 1]X that has
�-Natarajan dimension 1 but is not PAC learnable (it will have infinite �-DS dimension). This
construction though is not immediate and requires new ideas related to the works of [JŚ03, Osa13]

E Online Realizable Regression

In this section, we present our results regarding online realizable regression. The next result resolves
an open question of [DG22]. It provides an online learner with optimal (off by a factor of 2)
cumulative loss in realizable regression.
Theorem 4 (Optimal Cumulative Loss). Let H ✓ [0, 1]X and " > 0. Then, there exists a deterministic
algorithm (Algorithm 3) whose cumulative loss in the realizable setting is bounded by Donl(H) + ".
Conversely, for any " > 0, every deterministic algorithm in the realizable setting incurs loss at least
Donl(H)/2� ".

Algorithm 3 Scaled SOA
Parameters: {"t}t2N.
Initialize V (1) = H.
For t = 1, . . .:

1. Receive xt 2 X .

2. For every y 2 [0, 1], let V (t)

(xt,y)
=
�
h 2 V (t) : h(xt) = y

.

3. Let byt be an arbitrary label such that

Donl

⇣
V (t)

(xt,byt)

⌘
� sup

y0
Donl

⇣
V (t)

(xt,y
0)

⌘
� "t .

4. Predict byt.
5. Receive the true label y?

t
and incur loss `(byt, y?t).

6. Update V (t+1) =
�
h 2 V (t) : h(xt) = y?

t

.

Proof. Let us begin with the upper bound. Assume that Donl(H) < 1. Suppose we are pre-
dicting on the t-th point in the sequence and let V (t) be the version space so far, i.e., V (t) =

28

{h 2 H : 8⌧ 2 [t� 1], h(x⌧) = y⌧}. Let xt be the next point to predict on. For each label y 2 R,
let V (t)

(xt,y)
= {h 2 V (t) : h(xt) = y}. From the definition of the dimension Donl, we know that for

all y, y0 2 R such that V (t)

(xt,y)
, V (t)

(xt,y
0) 6= ;,

Donl(V t) � `(y, y0) + min
n
Donl

⇣
V (t)

(xt,y)

⌘
,Donl

⇣
V (t)

(xt,y
0)

⌘o
.

Let byt be an arbitrary label with Donl

⇣
V (t)

(xt,byt)

⌘
� supy0 Donl

⇣
V (t)

(xt,y
0)

⌘
� "t, where "t is some

sequence shrinking arbitrarily quickly in the number of rounds t. The learner predicts byt. Assume
that the adversary picks y?

t
as the true label and, so, the learner incurs loss `(byt, y?t) at round t. Then,

the updated version space V (t)

(xt,y
?
t)

has

Donl

⇣
V (t)

(xt,y
?
t)

⌘
 sup

y0
Donl

⇣
V (t)

(xt,y
0)

⌘
 Donl

⇣
V (t)

(xt,byt)

⌘
+ "t ,

which implies

min
n
Donl

⇣
V (t)

(xt,byt)

⌘
,Donl

⇣
V (t)

(xt,y
?
t)

⌘o
� Donl

⇣
V (t)

(x,y?
t)

⌘
� "t .

This gives that

Donl(V (t)) � `(byt, y⇤t) + min
n
Donl

⇣
V (t)

(xt,byt)

⌘
,Donl

⇣
V (t)

(xt,y
?
t)

⌘o

� `(byt, y⇤t) + Donl

⇣
V (t)

(xt,y
?
t)

⌘
� "t ,

and, by re-arranging,

Donl

⇣
V (t)

(xt,y
?
t)

⌘
 Donl(V (t))� `(byt, y⇤t) + "t . (1)

So every round reduces the dimension by at least the magnitude of the loss (minus "t). Notice that
Donl(V (t+1)) = Donl

⇣
V (t)

(xt,y
?
t)

⌘
. Thus, by choosing the {"t}t2N sequence such that

X

t

"t  "0 ,

and summing up Equation (1) over all t 2 N, we get a cumulative loss bound
X

t

`(byt, y?t)  Donl(H) + "0 .

Hence, we see that by taking the limit as "0 goes to 0 shows that the cumulative loss is upper bounded
by Donl(H). This analysis shows that Algorithm 3 achieves the cumulative loss bound Donl(H) + "0,
for arbitrarily small "0 > 0.

Let us continue with the lower bound. For any " > 0, we are going to prove that any deterministic
learner must incur cumulative loss at least Donl(H)/2 � ". By the definition of Donl(H), for any
" > 0, there exists a tree T" such that, for every path y,

1X

i=1

�yi � Donl(H)� 2" ,

i.e., the sum of the gaps across the path is at least Donl(H) � 2". The strategy of the adversary is
the following: in the first round, she presents the learner with the instance x1 = x;. Then, no matter
what label ŷ1 the learner picks, the adversary can choose the label y?

1
so that |ŷ1 � y?

1
| � �;/2. The

adversary can keep picking the instances xt based on the induced path of the choices of the true
labels {y?

⌧
}
⌧<t

and the loss of the learner in every round t is at least �yt/2. Thus, summing up over
all the rounds as T ! 1, we see that the total loss of the learner is at least

Donl(H)

2
� " .

29

Remark 2 (Randomized Online Learners). We highlight that, unlike the setting of realizable online
classification, in the case of realizable online regression randomization does not seem to help
the learner (see also [FHMM23]). In particular, the lower bound of Donl

(H)

2
� " holds even for

randomized learners. To see it, notice that for all distributions over D over [0, 1] it holds that

max
c1,c2

n
E

X⇠D

[`(X, c1)], E
X⇠D

[`(X, c2)]
o
� `(c1, c2)/2 .

Example 2 (Sequential Complexity Measures). Sequential fat-shattering dimension and sequen-
tial covering numbers are two standard combinatorial measures for regression in online settings
[RST15b, RST15a]. Note that Example 1 can be learned with 1 sample even in the online realizable
setting. Hence, Example 1 shows that sequential fat-shattering dimension fails to characterize online
realizable regression (since this dimension is at least as large as fat-shattering dimension which
is infinite in this example). Moreover, we know that sequential covering numbers and sequential
fat-shattering dimension are of the same order of magnitude and so they are also infinite in the case
of Example 1.

F Dimension and Finite Character Property

[BDHM+19] gave a formal definition of the notion of “dimension” or “complexity measure”, that all
previously proposed dimensions in statistical learning theory comply with. In addition to characteriz-
ing learnability, a dimension should satisfy the finite character property:
Definition 17 (Finite Character [BDHM+19]). A dimension characterizing learnability can be
abstracted as a function F that maps a class H to N[{1} and satisfies the finite character property:
for every d 2 N and H, the statement “F (H) � d” can be demonstrated by a finite set X ✓ X

of domain points, and a finite set of hypotheses H ✓ H. That is, “F (H) � d” is equivalent to
the existence of a bounded first order formula �(X ,H) in which all the quantifiers are of the form:
9x 2 X , 8x 2 X or 9h 2 H, 8h 2 H.
Claim 1. The scaled one-inclusion graph dimension DOIG

�
(H) satisfies the finite character property.

Proof. To demonstrate that DOIG(H) � d, it suffices to find a set S of n domain points and present
a finite subgraph G = (V,E) of the one-inclusion hypergraph induced by S where every orientation
� : E ! V has out-degree at least n/3. Note that V is, by definition, a finite collection of datasets
realizable by H and so this means that we can demonstrate that DOIG(H) � d with a finite set of
domain points and a finite set of hypotheses.

G Examples for Scaled Graph Dimension

These examples are adaptations from [DSS14, DSBDSS15].
Example 3 (Large Gap Between ERM Learners). For every d 2 N, consider a domain Xd such that
|Xd| = d and Xd,Xd0 are disjoint for d 6= d0. For all d 2 N, let P (Xd) denote the collection of all
finite and co-finite6 subsets of Xd. Let us fix � 2 (0, 1). Consider a mapping f : [d2NP (Xd) !
[0, 1] such that f(Ad) 2 (�, 1) for all d 2 N, Ad 2 P (Xd), and f(Ad) 6= f(A0

d0) for all Ad 6=
A0

d0 , Ad 2 P (Xd), Ad0 2 P (Xd0). Such a mapping exists due to the density of the reals. For any
d 2 N, Ad ✓ Xd, let hAd(x) = f(Ad) · {x 2 Ad} and consider the scaled first Cantor class
HXd,� = {hAd : Ad 2 P (Xd)}. We claim that DNat

�
(HXd,�) = 1 and that DG

�
(HXd,�) = |Xd| = d

since one can use f; for the �-graph shattering. Consider the following two ERM learners for the
scaled first Cantor class HXd,�:

1. Whenever a sample of the form S = {(xi, 0)}i2[n] is observed, the first algorithm outputs
h[{xi}

c
i2[n]

which minimizes the empirical error. If the sample contains a non-zero element,
the ERM learner identifies the correct hypothesis. The sample complexity of PAC learning is
⌦(d).

2. The second algorithm either returns the all-zero function or identifies the correct hypothesis
if the sample contains a non-zero label. This is a good ERM learner A

ERM
good with sample

complexity m(", �) = 1

"
log

�
1

�

�
.

6A set S ✓ Xd is co-finite if its complement Sc is finite.

30

The construction that illustrates the poor performance of the first learner is exactly the same as in
the proof of the lower bound of Theorem 1. The second part of the example is formally shown in
Claim 2, which follows.
Claim 2 (Good ERM Learner). Let ", � 2 (0, 1)2. Then, the good ERM learner of Example 3 has
sample complexity M(", �) = 1

"
log

�
1

�

�
.

Proof. Let d 2 N,DXd be a distribution over Xd and hA?
d

be the labeling function. Consider a sample
S of length m. If the learner observes a value that is different from 0 among the labels in S, then
it will be able to infer hA?

d
and incur 0 error. On the other hand, if the learner returns the all zero

function its error can be bounded as

E
x⇠DXd

[`(h;(x), hA?
d
(x))]  Pr

x⇠DXd

[x 2 A?

d
] .

Since in all the m = 1

"
log

�
1

�

�
draws of the training set S there were no elements from A?

d
we can

see that, with probability at least 1� � over the draws of S it holds that

Pr
x⇠DXd

[x 2 A?

d
]  " .

Thus, the algorithm satisfies the desired guarantees.

The next example shows that no proper algorithm can be optimal in the realizable regression setting.
Example 4 (No Optimal PAC Learner Can be Proper). Let Xd contain d elements and let � 2 (0, 1).
Consider the subclass of the scaled first Cantor class (see Example 3) with H

0

d,�
= {hA : A 2

P (Xd), |A| = bd/2c}. First, since this class is contained in the scaled first Cantor class, we can
employ the good ERM and learn it. However, this learner is improper since h; /2 H

0

d,�
. Then, no

proper algorithm is able to PAC learn H
0

d,�
using o(d) examples.

Proof. Suppose that an adversary chooses hA 2 H
0

d,�
uniformly at random and consider the distribu-

tion on Xd which is uniform on the complement of A, where |A| = O(d). Note that the error of every
hypothesis hB 2 H

0

d,�
is at least �|B \A|/d. Therefore, to return a hypothesis with small error, the

algorithm must recover a set that is almost disjoint from A and so recover A. However the size of A
implies that it cannot be done with o(d) examples.

Formally, fix x0 2 Xd and " 2 (0, 1). Let A ✓ Xd \ {x0} of size d/2. Let DA be a distribution with
mass DA((x0, hA(x0))) = 1� 16" and is uniform on the points {(x, hA(x)) : x 2 Ac

}, where Ac

is the complement of A (without x0).

Consider a proper learning algorithm A. We will show that there is some algorithm-dependent set A,
so that when A is run on DA with m = O(d/"), it outputs a hypothesis with error at least � with
constant probability.

Pick A uniformly at random from all sets of size d/2 of Xd \ {x0}. Let Z be the random variable
that counts the number of samples in the m draws from DA that are not (x0, hA(x0)). Standard
concentration bounds imply that with probability at least 1/2, the number of points from (Xd \

{x0}) \A is at most d/4. Conditioning on this event, A is a uniformly chosen random set of size d/2
that is chosen uniformly from all subsets of a set X 0

⇢ Xd with |X
0
| � 3d/4 (these points are not

present in the sample). Now assume that the learner returns a hypothesis hB , where B is a subset of
size d/2. Note that E[|B \A|] � d/6. Hence there exists a set A such that with probability 1/2, it
holds that |B \A| � d/6. This means that A incurs a loss of at least � on all points in B \A and the
mass of each such point is ⌦("/d). Hence, in total, the learner will incur a loss of order � · ".

H Extension to More General Loss Functions

Our results can be extended to loss functions that satisfy approximate pseudo-metric axioms (see
e.g., [HKLM22, CKW08]). The main difference from metric losses is that we allow an approximate
triangle inequality instead of a strict inequality. Many natural loss functions are captured by this
definition, such as the well-studied `p losses for the regression setting. Abstractly, in this context, the

31

label space7 is an abstract non-empty set Y , equipped with a general loss function ` : Y2
! R�0

satisfying the following property.
Definition 18 (Approximate Pseudo-Metric). For c � 1, a loss function ` : Y

2
! R�0 is c-

approximate pseudo-metric if (i) `(x, x) = 0 for any x 2 Y , (ii) `(x, y) = `(y, x) for any x, y 2 Y ,
and, (iii) ` satisfies a c-approximate triangle inequality; for any y1, y2, y3 2 Y , it holds that
`(y1, y2)  c(`(y1, y3) + `(y2, y3)).

Furthermore, note that all dimensions for H, DG
�
(H), DOIG

�
(H), DDS

�
(H), and Donl

�
(H) are defined

for loss functions satisfying Definition 18.

Next, we provide extensions of our main results for approximate pseudo-metric losses and provide
proof sketches for the extensions.

ERM Learnability for Approximate Pseudo-Metrics. For ERM learnability and losses satisfying
Definition 18, we can obtain the next result.
Theorem 5. Let ` be a loss function satisfying Definition 18. Then for every class H ✓ Y

X , H is
learnable by any ERM in the realizable PAC regression setting under ` if and only if DG

�
(H) < 1

for all � 2 (0, 1).

The proof of the upper bound and the lower bound follow in the exact same way as with the absolute
loss.

PAC Learnability for Approximate Pseudo-Metrics. As for PAC learning with approximate
pseudo-metric losses, we can derive the next statement.
Theorem 6. Let ` be a loss function satisfying Definition 18. Then every class H ✓ Y

X is PAC
learnable in the realizable PAC regression setting under ` if and only if DOIG

�
(H) < 1 for any

� 2 (0, 1).

Proof Sketch. We can generalize the upper bound in Theorem 2 for the scaled OIG dimension as
follows. One of the ingredients of the proof for the absolute loss is to construct a sample compression
scheme through the median boosting algorithm (cf. Algorithm 2). While the multiplicative update
rule is defined for any loss function, the median aggregation is no longer the right aggregation
for arbitrary (approximate) pseudo-metrics. However, for each such loss function, there exists an
aggregation such that the output value of the ensemble is within some cutoff value from the true label
for each example in the training set, which means that we have a sample compression scheme for
some cutoff loss. In particular, we show that by using weak learners with cutoff parameter �/(2c),
where c is the approximation level of the triangle inequality, the aggregation of the base learners can
be expressed as a sample compression scheme for cutoff loss with parameter �.

Indeed, running the boosting algorithm with (�/(2c), 1/6)-weak learners yields a set h1, . . . , hN

of weak predictors, with the property that for each training example (x, y), at least 2/3 of the
functions hi (as weighted by coefficients ↵i), 1  i  N , satisfy `(hi(x), y)  �/(2c). For any
x, let ĥ(x) be a value in Y such that at least 2/3 of hi (as weighted by ↵i), 1  i  N , satisfy
`(hi(x), ĥ(x))  �/(2c), if such a value exists, and otherwise ĥ(x) is an arbitrary value in Y . In
particular, note that on the training examples (x, y), the label y satisfies this property, and hence ĥ(x)
is defined by the first case. Thus, for any training example, there exists hi (indeed, at least 2/3 of
them) such that both `(hi(x), y)  �/(2c) and `(hi(x), ĥ(x))  �/(2c) are satisfied, and therefore
we have

`(ĥ(x), y)  c(`(ĥ(x), hi(x)) + `(hi(x), y))  �.

This function ĥ can be expressed as a sample compression scheme of size O
⇣
DOIG

�/(2c)
(H) log(m)

⌘

for cutoff loss with parameter �: namely, it is purely defined by the hi functions, where each hi is
7We would like to mention that, in general, we do not require that the label space is bounded. In contrast, we

have to assume that the loss function takes values in a bounded space. This is actually necessary since having
an unbounded loss in the regression task would potentially make the learning task impossible. For instance,
having some fixed accuracy goal, one could construct a learning instance (distribution over labeled examples)
that would make estimation with that level of accuracy trivially impossible.

32

specified by O
⇣
DOIG

�/(2c)
(H)

⌘
training examples, and we have N = O(log(m)) such functions, and ĥ

satisfies `(ĥ(x), y)  � for all m training examples (x, y). Thus, by standard generalization bounds
for sample compression, we get an upper bound that scales with Õ

⇣
DOIG

�/(2c)
(H) 1

m

⌘
for the cutoff

loss with parameter �, and hence by Markov’s inequality, an upper bound

E[`(ĥ(x), y)] = Õ

✓
DOIG

�/(2c)
(H)

1

m�

◆
.

We next deal with the lower bound. For the absolute loss, we scale the dimension by 2� instead of �
since for any two possible labels y1, y2 the learner can predict some intermediate point, and we want
to make sure that the prediction will be either � far from y1 or y2. For an approximate pseudo-metric,
we should take instead 2c� in order to ensure that the prediction is � far, which means that the lower
bounds in Theorem 2 hold with a scale of 2c�.

Online Learnability for Approximate Pseudo-Metrics. Finally, we present the more general
statement for online learning.
Theorem 7. Let ` be a loss function satisfying Definition 18 with parameter c � 1. Let H ✓ Y

X and
" > 0. Then, there exists a deterministic algorithm whose cumulative loss in the realizable setting is
bounded by Donl(H) + ". Conversely, for any " > 0, every deterministic algorithm in the realizable
setting incurs loss at least Donl(H)/(2c)� ".

Proof Sketch. The upper bound of Theorem 4 works for any loss function. Recall the proof idea;
in every round t there is some byt 2 Y the learner can predict such that no matter what the
adversary picks as the true label y?

t
, the online dimension of the version space at round t, i.e,

V = {h 2 H : h(x⌧) = y?
⌧
, 1  ⌧  t}, decreases by `(y?

t
, byt), minus some shrinking number ✏t

that we can choose as a parameter. Therefore we get that the sum of losses is bounded by the online
dimension and the sum of ✏t that we can choose to be arbitrarily small.

The lower bound for online learning in Theorem 4 would be Donl(H)/(2c)� ", for any ✏ > 0, since
the adversary can force a loss of �yt/(2c) in every round t, where �yt is the sum of the gaps
across the path y.

33

	Introduction
	Related Work

	PAC Learnability for Realizable Regression
	-Fat Shattering Dimension
	-Natarajan Dimension
	-Graph Dimension
	-One-Inclusion Graph Dimension
	-DS Dimension

	Online Learnability for Realizable Regression
	Conclusion
	Notation and Definitions
	-Graph Dimension and ERM Learnability
	Partial Concept Classes and A Naive Approach that Fails
	Main Result

	-OIG Dimension and Learnability
	Proof of the Lower Bound
	Proof of the Upper Bound
	Scaled One-Inclusion Graph Algorithm and Weak Learning
	Boosting Real-Valued Functions
	Generalization via Sample Compression Schemes

	Putting it Together

	-DS Dimension and Learnability
	Online Realizable Regression
	Dimension and Finite Character Property
	Examples for Scaled Graph Dimension
	Extension to More General Loss Functions

